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Abstract: Liver cancer (LC), a frequently occurring cancer, has become the fourth leading cause
of cancer mortality. The small number of reported data and diverse spectra of pathophysiological
mechanisms of liver cancer make it a challenging task and a serious economic burden in health
care management. Fumaria indica is a herbaceous annual plant used in various regions of Asia to
treat a variety of ailments, including liver cancer. Several in vitro investigations have revealed the
effectiveness of F. indica in the treatment of liver cancer; however, the exact molecular mechanism is
still unrevealed. In this study, the network pharmacology technique was utilized to characterize the
mechanism of F. indica on liver cancer. Furthermore, we analyzed the active ingredient-target-pathway
network and uncovered that Fumaridine, Lastourvilline, N-feruloyl tyramine, and Cryptopine
conclusively contributed to the development of liver cancer by affecting the MTOR, MAPK3, PIK3R1,
and EGFR gene. Afterward, molecular docking was used to verify the effective activity of the active
ingredients against the prospective targets. The results of molecular docking predicted that several
key targets of liver cancer (along with MTOR, EGFR, MAPK3, and PIK3R1) bind stably with the
corresponding active ingredient of F. indica. We concluded through network pharmacology methods
that multiple biological processes and signaling pathways involved in F. indica exerted a preventing
effect in the treatment of liver cancer. The molecular docking results also provide us with sound
direction for further experiments. In the framework of this study, network pharmacology integrated
with docking analysis revealed that F. indica exerted a promising preventive effect on liver cancer by
acting on liver cancer-associated signaling pathways. This enables us to understand the biological
mechanism of the anti liver cancer activity of F. indica.

Keywords: network pharmacology; Fumaria indica; liver cancer; active constituents; molecular docking

1. Introduction

Liver cancer is the fourth major cause of cancer-related deaths globally. According
to a report from Cancer Research UK, liver cancer will be one of the fastest-growing
malignancies by 2035 [1]. It is a fatal condition that affects people with hepatitis A or
C, fatty liver disease, and diabetes, and it has been associated with excessive alcohol
consumption, smoking, and dietary toxins [2]. Some hereditary variables may also play a
role in the development of this disease. Abnormalities in the cell cycle, metabolic networks,

Pharmaceuticals 2022, 15, 654. https://doi.org/10.3390/ph15060654 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph15060654
https://doi.org/10.3390/ph15060654
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0003-1079-8717
https://orcid.org/0000-0003-0570-6224
https://doi.org/10.3390/ph15060654
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph15060654?type=check_update&version=1


Pharmaceuticals 2022, 15, 654 2 of 18

and inflammatory response may also lead towards liver cancer [3]. Despite well-known
threats for liver cancer such as viral hepatitis and metabolic syndrome, liver cancer is
detected late in the majority of cases [4]. Despite substantial advances in liver cancer
treatment over the last few years, the majority of drugs still fail to produce satisfying results
in patients.

Fumaria indica (synonym: Fumaria parviflora, Fumariaceae) is a wild plant that has been
used in traditional ayurvedic texts to treat a wide range of illnesses, including skin diseases,
tropical diseases, cardiovascular disorder, circulatory disease, fever, and headache, as well
as many other things [5]. The latest pharmacological studies suggest that F. indica possesses
anticancer, antidiabetic, antimicrobial, and antiinflammatory properties due to the presence
of natural bioactive compounds [6]. The Fumitory genus is distributed in central Asia.
Previous studies indicated that F. indica is a fundamental and a unique source of a variety
of potential phytochemicals, making it a useful and versatile plant with a wide range of
medicinal properties [7]. Hussain et al. [8] evaluated the chemo-preventive effect of F. indica
against N-nitrosodiethylamine and CCl4-induced hepatocellular carcinoma in Wistar rats.
Their findings powerfully support that treatment with F. indica significantly reduced the
liver injury and restored the entire liver cancer markers

Network pharmacology (NP) is a field of study that is based on systems biology and
multi-directional pharmacology [9]. Rather than focusing on the single-target procedure in
which drugs work, it looks at the multi-target process in which drugs work [10]. Hence, the
new drug development process and strategy combines computer science, molecular biology,
and pharmacology [11–15]. A systematic and comprehensive exposition of ‘disease–target
protein–drug’ linkages may be constructed utilizing professional networks and existing
resources such as genes, proteins, illnesses, and medications [16]. Based on the component-
target network, this study will also be conducted more in-depth after it has been set up.
Molecular docking is a computer programme that simulates how ligands and receptors
might interact in real life. It also predicts how the ligands and receptors might interact.
Molecular docking is used to learn more about how ligands and receptors work together,
as well as how to make new drugs. The potential of using bioactive constituents to reform
medicine in the future is thrilling, and chances for healing a variety of disorders are
encouraging. Recently Yu et al. [17] implemented a network pharmacology-based approach
to examine the active components of Gupi Xiaoji prescription for the treatment of liver
cancer. Therefore, network pharmacology apportioned a strong technique for finding
bioactive ingredients and the mechanism of action for traditional medicine formula used to
treat illness and diseases [18].

In the current study, a comprehensive NP-based approach was used to explore the
active phytochemicals of F. indica. To the best of our knowledge, this is the first study to
combine bioinformatics analysis with NP to reveal the mechanism of F. indica for liver cancer
treatment. This research study will add to our understanding of the molecular mechanism
of F. indica’s anti-liver effect and help to speed up the drug discovery process. The bioactive
components and putative molecular network mechanism of F. indica against liver cancer
are examined from a systematic and molecular level using network pharmacology along
with molecular docking analysis. In the near future, wet lab research is also proposed to
explore the additional pharmacological potentials.

2. Results
2.1. Screening of Active Compounds and Targets

A total of 62 active components of Fumaria indica were found in the literature. Out of
these, 15 (Protopine, Fumaridine, Parfumine, Lastourvilline, N-feruloyl tyramine, Fuma-
rizine, Paprarine, Cryptopine, Berberine, Stigmesterol, Campesterol, Papaverine, Oxyhy-
drastinine, Noscapine, Apigenin) components met the screening standards of the DL index
≥ 0.18 and OB ≥ 30%. Furthermore, from the SwissTargetPrediction database, we found
1500 genes that could be the target of the 15 active ingredients (Table 1). After finding the
most promising targets for drugs, a total of 38,477 genes linked to liver cancer were found
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in the GeneCards and DisGeNET databases. Later, a Venn diagram was used to figure out
the common targets of both liver cancer and compound linked genes. A total of 557 genes
from F. indica that could fight against liver cancer were considered as key targets.

Table 1. Fifteen active compounds, their properties and structures.

Molecule Name Molecular Weight (MW)Drug Likeness (DL) Oral Bioavailability (OB) Structure PubChem ID

Protopine 353.37 0.29 0.55
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Table 1. Cont.

Molecule Name Molecular Weight (MW)Drug Likeness (DL) Oral Bioavailability (OB) Structure PubChem ID

Paprarine 397.38 0.3 0.55
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Table 1. Cont.

Molecule Name Molecular Weight (MW)Drug Likeness (DL) Oral Bioavailability (OB) Structure PubChem ID

Noscapine 413.42 0.54 0.55
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2.2. Compounds-Target Network Construction

A total of 15 active compounds from F. indica were found to be satisfactory. To construct
the ‘active compound–targeted genes–connected pathway’ network diagram, 15 active
compounds, 1500 key targets, and their associated pathways with high gene count were
chosen. Each of these active compounds have multiple targets, which shows that many
targets induce a synergistic effect when F. indica is used as an anti-hepatic cancer agent. The
degree of these 12 compounds in the compound-targeted genes-connected pathways net-
work was then assessed (Table 2). As indicated in Table 2, alkaloids together with tyramines
have comparably maximum degree; however, the degree of both alkylamides and steroids
are comparatively low as compared to alkaloids and tyramines. Furthermore, from these 12
compounds, 4 compounds were selected for docking analysis: two alkaloids with a higher
degree of connectivity, especially Fumaridine and Cryptopine, one tyramine compound,
namely N-Feruloyltyramine, and one alkylamides compound, namely Lastourvilline.

Table 2. Degree of 12 compounds explored through network analyzer in Cytoscape.

Molecule Name Class Degree

Protopine Alkaloids 4

Fumaridine Alkaloids 8

Parfumine Alkaloids 3

Lastourvilline Alkylamides 1

N-Feruloyltyramine Tyramines 4

Cryptopine Alkaloids 7

Berberine Alkaloids 3

Stigmasterol Steroid 3

Campesterol Steroid 2

Papaverine Alkaloids 2

Oxhydrastinine Alkaloids 2

Noscapine Alkaloids 6

2.3. PPI Network Construction

The 557 genes that overlapped were uploaded to the STRING database to build
a PPI network. A PPI network shows how different targets work together during the
development of a disease. The nodes and their connections show how these targets
work together (Figure 1A). Later, Cytoscape was utilized at the PPI network of genes
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that overlapped (Figure 1C). AKT1 (224), TNF (207), SRC (184), EGFR (169), STAT3 (169),
MAPK3 (165), CASP3 (MTOR), MAPK1 (134), EP300 (115), PIK3CA (109), CDC42 (107),
MDM2 (104), MAPK14 (95), PIK3R1 (94), MAPK8 (77), and GSK3B (75) showed the highest
degree (Figure 1D). This means that the highest degree genes are greatly linked to each
other; thus, all of these genes might be hub targets.
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Figure 1. Network pharmacology-based analysis of multi-compound, multi-target, and multi-
pathway treatment for liver cancer. (A) Network diagram of compounds and their targets. Size
and color of gene and compound’s nodes represent their degree (B) Network diagram of target
genes–enrichment pathways. The blue square indicates the pathways and pink nodes indicates the
target. (C) Top 10 genes ranked by degree method. (D) The bar plot of the PPI network. (E) Observed
expression of 10 target genes in Homo sapiens.

Comparing these findings with those provided by enrichment analysis (Table 3) four
genes in particular, EGFR, MAPK3, MTOR, and PIK3R1, were identified as the main
anti-liver cancer targets of F. indica and were chosen for molecular docking experiments.
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Table 3. Top 10 genes ranked by degree method.

Gene
Name Compounds Score Pathways

AKT1 Fumaridine/Paprarine/Apigenin 224
Neuroactive ligand–receptor

interaction, pathways in cancer, cAMP
signaling pathway,

TNF N-feruloyl tyramine 207 Proteoglycans in cancer, MAPK
signaling pathway, insulin resistance

SRC Protopine/Stigmasterol/Fumaridine/Berberine
Campesterol/Cryptopine/Apigenin 184 Chemokine signaling pathway,

viral carcinogenesis

EGFR Fumaridine/Parfumine/Lastourvilline
/N-feruloyl tyramine/Noscapine/Apigenin 169

Focal adhesion,
Rap1 signaling

pathway, serotonergic synapse

STAT3 Cryptopine 167 Pathway in cancer, proteoglycans in
cancer, FoxO signaling pathway

MAPK3 Fumaridine/Cryptopine/Stigmasterol
/Campesterol/, Noscapine 165 Viral carcinogenesis,

focal adhesion, Rap1 signaling pathway

CASP3 Oxyhydrastinine 155
Pathways in cancer,

proteoglycans in cancer, MAPK
signaling pathway, Hepatitis B

MTOR
Protopine/Fumaridine/N-feruloyl

tyramine/Fumarizine,
Cryptopine/Noscapine

135 MicroRNAS in cancer,
insulin resistance

MAPK1 Protopine/Fumaridine/Cryptopine/Noscapine 134 Neurotrophin signaling pathway,
serotonergic synapse

PIK3R1 Apigenin/Lastourvilline/Cryptopine/
Berberine/Papaverine 94 Sphingolipid signaling

pathway, Hepatitis B

2.4. GO and KEGG Pathway Analysis

The functional annotation and enrichment analysis unveiled the potential biologi-
cal roles of F. indica targets. The targets of F. indica, according to GO functional analysis,
were related to protein phosphorylation, inflammatory response, integral part of plasma
membrane, and so on. (Figure 2). The KEGG pathway analysis was performed to identify
the significant signaling pathways linked to the anti-liver cancer effect of F. indica. It is
noteworthy that most of the genes were involved in following pathways. These include the
NF-κB, the stress-responsive mitogen-activated protein kinase (MAPK), and the STAT path-
ways [19], including the PI3K-AKT-mTOR, AMPK-mTOR, EGF, MAPK, Wnt/β-catenin,
p53, and NF-κB pathways [20]. KEGG pathway analysis revealed that EGFR, MAPK3,
MTOR, and PIK3R1 were significantly enriched genes (Figure 3).

2.5. Molecular Docking

The top four targets EGFR, MTOR, MAPK3, and PIK3R1 were chosen for molecular
docking after a thorough analysis of the PPI network. PDB structure was used to find the
3D structure of the target protein (EGFR (PDB id: 1IVO), MTOR (PDB id: 1FAP), MAPK3
(PDB id: 2ZOQ), and PIK3R1 (PDB id: 1HPO)). All the PDB structures were selected on the
basis of their resolution. Low numeric values in Å mean the resolution of the structure is
good and can be considered for further analysis. In the framework of the current study,
EGFR had a resolution of 3.30 Å, while other targets MTOR, MAPK3, and PIK3R1 had
resolution of 2.70 Å, 2.39 Å, and 2.50 Å, respectively. Furthermore, the CPort tool was
used for active site prediction of the selected proteins. The compounds interacted with
the active site of the EGFR receptor via forming a bond with the following amino acid
residues: Tyr B251, Gln A8, Leu A38, Ala A62, Asn A86, Thr B249, Pro B248, and Lys A407.
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In the case of MTOR, the active compounds bound with the Ser B2035, Glu A54, Tyr A26,
Phe A46, Asp A37, Arg A42, Thr B2098, Asp B2102, Lys B2095, Trp B2101, Phe B2039, Tyr
B2105, Phe B2108, and Leu B2031 residues. On the other hand, MAPK3 bound with active
compounds via Arg A41, Arg A64, Thr B347, Glu B194, Pro B193, Asn B161, Phe A371, Arg
A370, Pro A373, and Asp A105. Lastly, the selected compounds bound with PIK3R1 by
forming a bond with Arg A8,Ala A28,Gly B27,Asp A25,Ile A84,Asp B25,Gly B48,Ile B47,Asp
B29,Ile A50,Gly A4, and Ile B50 (Figure 4). The drug candidates showed hydrogen bond,
Pi–pi-stacked, and van der Waals interactions with the receptor proteins, indicated with
dotted lines mentioned in the additional file (Supplementary Material: Table S1). All those
binding pockets were selected by the site finder tool present in the molecular operating
environment. The top four inhibitors, Fumaridine, N-feruloyl tyramine, Cryptopine, and
Lastourvilline, were screened out of the 15 showing a good docking score along with RMSD
values for all targets as shown in Table 4.
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Table 4. Binding energy and interactions of potential active compounds and their four target proteins.

MTOR

Compound ID Compound Name Docking Score
(kcal/mol) RMSD Hydrogen Bond and Other

Interacting Residues

6537302 Fumaridine −13.86 1.71

Tyr A82, Tyr B2105,
Phe B2108, Phe B2039,

Ile A56, Phe A46,
Glu A54, Trp B2101

5280537 N-feruloyl tyramine −12.94 0.93

Ser B2035, Glu A52,
Tyr A26, Phe A46,
Asp A37, Arg A42,

Thr B2098, Asp B2102,
Lys B2095, Trp B2101,
Phe B2039, Tyr B2105,
Phe B2108, Leu B2031

72616 Cryptopine −10.95 1.4349

Phe B2039, Ile A56,
Tyr A82, Thr B2098,
Arg A42, Asp A37,

Phe A46, Asp B2102

155514 Lastourvilline −9.77 2.9765
Phe B2039, Tyr A82,
Glu A54, Ser B2035,
Trp B2101, Ser B203

Standard Drug

54675783 Minocycline −7.79 0.79 ASP A37
PHE B2039

MAPK3

6537302 Fumaridine −12.32 1.17 His B195, Arg A64
Met B350, Arg A94

5280537 N-feruloyl tyramine −12.07 1.77

Asn B161, Phe A371,
Arg A64, Pro A373,
Arg A41, Thr B347,
Glu B194, Arg A104

72616 Cryptopine −10.1110 1.01

Arg A64, Arg A41,
Arg A104, Asp A105,
Phe A371, Pro B193,
Asn B161, Asp B192,

IIe B190

155514 Lastourvilline −11.0807 1.31

Arg A41, Arg A64,
Thr B347, Glu B194,
Pro B193, Asn B161,
Phe A371, Arg A370,
Pro A373, Asp A105

Standard Drug

54675783 Minocycline −7.75 2.9235 Arq A41,Asp B192

EGFR

155514 Lastourvilline −12.6598 1.8080

Tyr B251, Gln A8,
Leu A38, Ala A62,
Asn A86, Thr B249,
Pro B248, Lys A407

72616 Cryptopine −10.2961 0.7945

Tyr B251, Arg A84
Ala A62, Thr B249,
Pro B248, Asn A86,
Glu A60, Arg A231,
Ala A265, Leu A38,

Gly A264

6537302 Fumaridine −10.12 1.5566

Tyr B251, Lys A322,
Asn A86, Thr B249,
Ala A62, Pro B248,
Leu A38, Lys A407,

Met A87
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Table 4. Cont.

MTOR

Compound ID Compound Name Docking Score
(kcal/mol) RMSD Hydrogen Bond and Other

Interacting Residues

5280537 N-feruloyl tyramine −10.27 2.4809

Asn A12, His A409,
Ser A11, Gly A410,
Thr A10, Arg A285,
Lys A407, Arg A405,
Tyr B251, Leo A38,
Gln A8, Gly C39

Standard Drug

176870 Erlotinib −8.06 2.3660 Arg A231

PIK3R1

6537302 Fumaridine −12.10 3.0608

Agr A8, Asp B30,
Val A82, Ile A84,

Asp B25, Gly B27,
Gly B48, Ala B28,
Asp B29, Asp B30

5280537 N-feruloyl tyramine −10.69 3.4899

Arg A8, Ala A28
Gly B27, Asp A25
Ile A84, Asp B25,
Gly B48, Ile B47,
Asp B29, Ile A50
Gly A49, Ile B50

72616 Cryptopine −10.45 1.2321

Arg A8, Ala A28,
Asp A25, Asp B25,
Ala B28, Gly B27,
Leu A23, Arg A8,
Val A82, Gly B48,
Pro A81, Ile B50,

Gly A49

155514 Lastourvilline −10.02 0.7393

Asp B30, Ala B28,
Arg A8, Asp A25,
Pro A31, Ile B50,
Val A32, Gly B49,
Gly B48, Asp B29

Standard Drug

49867926 XL-765 −9.80 1.73 Asp B25

Fumaridine and N-feruloyl tyramine showed good binding affinity with all the targets,
except EGFR, having docking scores between −13.86 kcal/mol and −10.69 kcal/mol.
However, EGFR showed top binding with the compounds Lastourvilline and Cryptopine,
having docking scores of −12.69 kcal/mol and −10.29 kcal/mol, respectively. Similarly, all
the compounds also showed strong hydrogen bond interactions with interacting residues
of MTOR. Thus, docking analysis strengthened our findings that predicted stable target
bonds with active compounds of F. indica. Figure 4 represents the sketch map of target
proteins together with their strongest binding components.

2.6. ADMET Profiling

ADMET analysis is a challenging process in drug discovery. The SwissADME tool was
applied to forecast different types of pharmacokinetic properties. The pharmacokinetic factor
may be used to predict the absorption, distribution, metabolism and elimination (ADME), and
toxicity of the top therapeutic novel compounds. ADMET profiling of all the top selected drug
candidates showed that there are no negative consequences of the pharmacokinetic properties,
first and foremost, of the potential compounds (Table 5). The ADMET characteristics of
possible drugs for various models such as P-glycoprotein substrates, BBB penetration, and
CYP2C19 inhibitors, CYP2C9 inhibitors, CYP2D6 inhibitors, and CYP3A4 inhibitors produced
promising results that substantially confirm the compound ability to function as a drug



Pharmaceuticals 2022, 15, 654 12 of 18

candidate. Furthermore, the skin permeation lop Kp values describe that, depending on its size
and chemophysical qualities, a chemical can permeate the stratum corneum via intercellular,
transcellular, or appendageal channels. It is noteworthy that all the compounds showed
non-toxic behavior, although different types of toxicity were measured for all compounds,
and none of the compounds showed toxic behavior.

Table 5. ADMET profiling of compounds.

Standard Parameters Fumaridine N-Feruloyl Tyramine Cryptopine Lastourvilline

GI absorption High High High High

BBB Yes No Yes Yes

P-gp substrate Yes No Yes Yes

CYP1A2 inhibitor No No Yes Yes

CYP2C19 inhibitors Yes No No No

CYP2C9 inhibitors Yes No Yes No

CYP2D6 inhibitors Yes Yes Yes Yes

CYP3A4 inhibitors Yes Yes Yes Yes

Log Kp (skin permeation) −6.62 cm/s −6.72 cm/s −6.48 cm/s −6.71 cm/s

Toxicity

Carcinogens Non-carcinogenic Non-carcinogenic Non-carcinogenic Non-carcinogenic

Cytotoxicity Non-toxic Non-toxic Non-toxic Non-toxic

Mutagenicity Nil Nil Nil Nil

3. Discussion

Natural product research has received a lot of interest in recent years [21]. The net-
work pharmacology method aids in the understanding of the complicated interactions
that exist between medicines and their targets, as well as the probable mechanisms of
action [22,23]. Moreover, the diversity of developing new drugs from plant sources pro-
vides methodological challenges [24]. Because of the lack of ADME qualities in the newly
discovered medication, and because of the high-budget nature of research, drug discovery
methodologies face additional challenges [25]. As a result, in the creation of medications,
pharmaceutical specialists place a high value on ADME-based screening [26]. Liver fibrosis,
viral hepatitis, fatty liver, cirrhosis, and liver cancer are all serious disorders that endanger
human health and are the top causes of mortality globally [27]. Despite significant advances
in the treatment of liver disorders over the last several centuries, the majority of medica-
tions still fail to provide satisfying results in patients [28]. Hepatocellular carcinoma is
significantly linked to chronic hepatitis B virus (HBV) or hepatitis C virus (HCV) infection,
aflatoxin-contaminated food consumption, and high alcohol usage [29]. Multiple drug
resistance (MDR), a high clearance rate, severe side effects, undesirable drug distribution
to the specific site of liver cancer, and a low concentration of medication that reaches liver
cancer cells are just a few of the drawbacks of traditional liver cancer chemotherapy. As
a result, new techniques and network pharmacology must be developed to convey the
medication molecules specific to the malignant hepatocytes in enough of an amount and
for a sufficient period of time within the therapeutic window [30,31]. As a consequence, the
search for novel drugs is becoming targeted. A high-potency origin of phytochemicals with
medical advantage would have a potential liver cancer therapy option in this scenario.

Fumaria indica is a medicinal plant of the fumitory family that is rich with phytochem-
ical constituents, which have huge medicinal value [32,33]. F. indica has antipyretic, an-
tidiarrheal, and hypoglycemic effects, according to pharmacological investigations [34,35].
Various in vitro studies revealed the therapeutic significance of F. indica against liver dis-
eases. However, the exact molecular mechanism remains unclarified [8]. This study
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provides a foundation for the initial screening of F. indica bioactive compounds, as well
as a novel therapeutic concept for future research into F. indica processes for liver cancer
therapy. The hallmark of this age will be the identification of potential bioactive ingredients
that stop the pathophysiology of disorders and disease.

In the current study we uncover several target genes that are revealed to be involved
in various pathways in cancer. The pathogenesis of disease can be avoided by targeting
the genes that cause disruption in pathways in cancer. A slew of studies strengthened
our findings, such as most people that are suffering from liver cancer include chronic
infections with HBV or HCV, or cirrhosis, and certain people inherit liver diseases and
diabetes [36]. It is important to note that two of our major targets, MTOR and MAPK3,
are primarily implicated in liver cancer resistance pathways [37]. Our research proposed
that MTOR, MAPK3, and EGFR are directly involved in hepatitis B pathways. As a result,
changes in these genes may disrupt the pathways that interconnect them, leading to
disorder. Beyond this, the targeted genes of active constituents are also enriched in various
inflammatory conditions such as arthritis and so forth, which seems to indicate that they
can act on various antiinflammatory cytokines and exert an effect on liver cancer. It is
worth noting that our key gene, namely EGFR, has been shown to play a key role during
liver regeneration following acute and chronic liver damage, as well as in cirrhosis and
hepatocellular carcinoma, highlighting the importance of EGFR in the development of liver
diseases [38]. Hence blocking the EGFR genes might help in the treatment of liver cancer.
Furthermore, the mammalian target of the rapamycin (mTOR) signaling system is involved
in many aspects of cancer such as cell growth, the inhibition of apoptosis, and metabolic
reprogramming proliferation [39]. This demonstrates conclusively that the dysregulation
of mTOR is emphasized in the pathogenesis of liver cancer.

The biological information of target genes was obtained using GO enrichment analysis.
According to GO functional analysis, anti-liver cancer targets of F. indica were mainly
involved in protein phosphorylation, peptidyl-tyrosine phosphorylation phosphatidylinos-
itol 3-kinase complex, class IA, and GO protein serine/threonine/tyrosine kinase activity.
KEGG pathway studies revealed that targets were involved in liver cancer-related path-
ways. The KEGG pathway enrichment results revealed that the putative targets were
significantly enriched in hepatitis B and viral carcinogenesis, and the cAMP signaling
pathway, PI3K-Akt signaling route, MAPK signaling pathway, estrogen signaling pathway,
p53 signaling pathway, and cell cycle signaling pathway were all found to be enriched in
cancer pathways.

It is noteworthy that our core genes are mainly enriched in the cyclic adenosine
monophosphate (cAMP) signaling pathway. Previous studies demonstrated that the cAMP
signaling pathway controls a variety of cellular activities such as lipid, metabolism, in-
flammation, cell differentiation, and injury and regulates gene-protein expression and
function [40]. Hence, disturbance in the cAMP signaling pathway might be associated with
liver cancer. Furthermore, through the KEGG pathways it has been revealed that MAPK3
genes are directly involved in the mitogen-activated protein kinase (MAPK) signaling
pathway. MAPK inhibitors are effective at reducing pro-inflammatory cytokinesis and
increasing anticancer activity, especially in human pancreatic cancer cells [31]. This gives
clear evidence that dysregulation of the MAPK3 gene causes disturbance in the MAPK
signaling pathway, which ultimately leads to liver cancer. Therefore, by targeting MAPK3,
the pathophysiology of liver cancer can be halted. Beyond this, the targeted genes of active
constituents are also enriched in various other cancer-related signaling pathways, which
seems to indicate that these compounds and their associated target genes exert a strong
effect on liver cancer.

According to topological parameters of the compound–genes–pathway network, four
major targets named EGFR, MAPK3, MTOR, and PIK3R1 were identified as the core targets.
Furthermore, these core targets were validated using molecular docking, which revealed
that Fumaridine, N-feruloyl tyramine, Lastourvilline, and Cryptopine bound stably with
these core targets. The findings of docking analysis indicated that these four compounds
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can be used for treatment of liver cancer because of their ability to bind stably with core
targets. In the light of current network pharmacology, this research predicted the active
compounds, their prospective targets, and associated pathways for the treatment of liver
cancer, thereby providing a theoretical foundation for future experimental research. Given
the limitation of network pharmacology, the basic pharmacological mechanism for liver
cancer treatment can only be discovered by data mining. The mining of active compounds
is particularly based on different databases. Although the information in databases are
curated, a lot of inconsistencies may, however, occur due to variety of information resources
and experimental data. In this regard, modern high throughput techniques including
chromatography can be used; liquid chromatography and mass spectrometry can help to
solve this problem. Even though we have given some intriguing evidence, more research
and clinical trials are required to fully investigate the potential of F. indica and to validate
its medicinal applications.

4. Materials and Methods
4.1. Virtual Screening of Active Constituents

The information on active phytocompounds of Fumaria indica was collected from the
literature using different databases such as PubMed and Google scholar and KNApSAcK.
PubChem Explore Chemistry [41] was used to obtain the Canonical Simplified Molecular-
Input Line-Entry System (SMILES) of each active ingredient, while PubMed [42] and
ChemSpider [43] were used to obtain the chemical structures of active compounds. All
constituents of F. indica were virtually screened by applying bioavailability (OB) and
drug likeness (DL) parameters, which are crucial in the characteristics of absorption,
distribution, metabolism, and excretion (ADME) characteristics of drugs. Compounds
were only retained if DL ≥ 0.18 and OB ≥ 30% to satisfy ADME criteria. Biologically
active compounds that did not match these conditions were discarded and were not
investigated further. In this regard, DL and OB of all active constituents were calculated
using Molsoft [44] and SwissADME [45].

4.2. Target Genes Screening

The potential target genes of screened active constituents were retrieved by entering
their Canonical SMILES to SwissTarget Prediction tool [46]. Therefore, the target with
probability ≥ 0.7 were selected. Prediction of disease-related genes is the next step to
uncover the molecular mechanism of medicinal herb to treat multiple diseases. Two
databases, GeneCards and DisGeNET, were searched using keywords ‘primary liver cancer’
and ‘Hepatic cancer’ to retrieve disease-related genes. DisGeNET is a multipurpose data
system that provides information related to genes, disorders, and their related empirical
studies [47]. GeneCards database contains information related to the genome, proteome,
and transcriptomes of an organism [48]. The Venn online tool was used to identify the
overlap genes between predicted target genes of screened compounds and disease-related
targets [49]. Therefore, the common targets of active constituents and disease were obtained
for subsequent analysis.

4.3. Pathway and Functional Enrichment Analysis

To perform gene enrichment analysis and KEGG pathway analysis, Database for
annotation, visualization, and integrated discovery (DAVID) [50] was used. List of key
genes were subjected to DAVID to perform functional annotation at three levels: cellular
component (CC), molecular function (MF), and biological process (BP). DAVID is a web-
based functional enrichment database that helps researchers to comprehend the bioactivity
of a huge number of genes. In current study, p-value ≤ 0.01 was selected, and top 10 GO
enrichments and top 10 KEGG pathways were chosen for subsequent analysis.
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4.4. Network Construction

The mechanism of F. indica in liver cancer was performed by network analysis. The
software Cytoscape 3.8.0, which is a freely available, graphical user interface for importing,
visually exploring, and analyzing bimolecular interaction networks, was used to construct
and visualize the network [51]. Active constituents and the target genes in the network were
represented by nodes, while the edges were used to represent the interaction between active
constituents and their target genes. Network analyzer tool was used to calculate degree, a
topological property that reveals the importance of compound-target gene-pathways in
network diagram. Moreover, target genes with the highest degree of connectivity were
considered as ‘key target’.

4.5. PPI Network Construction and Molecular Docking Analysis

Protein–protein interaction (PPI) data were obtained from the Search Tool for the
retrieval of Interacting Genes (STRING) database with a confidence score of >0.7 to construct
PPI network by uploading common genes on a database [52]. The PPI network obtained
from STRING was subjected to the cytoHubba plugin of Cytoscape, which was used to
analyze the core regulatory genes of the PPI web and the identification of key targets.
The observed co-expression of predicted key targets was also obtained through STRING
database. Moreover, key targets were validated through molecular docking approach. The
RCSB PDB [53] was used to obtain the X-ray crystal structure of candidate target; it was
used to obtain crystal structures of potential targets. Moreover, refinement of structure
was performed using Chimera. After that, they were brought into molecular operating
environment (MOE) [54], which was used to extract ligands from proteins, adjust their
structure, and remove water from them. The best docked score with the lowest RMSD and
binding energy were selected for further analysis. Furthermore, Chimera X and discovery
studio was used for visualization of interaction among active compounds and predicted
target. The workflow of the present study is displayed in Figure 5.
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5. Conclusions

This research establishes a scientific foundation for determining the efficacy of mul-
ticomponent, multi-target drug treatment as well as finding novel anti liver cancer ther-
apeutic targets. In this study, network pharmacology along with molecular docking was
employed to explore the underlying mechanism for the treatment of liver cancer. According
to network analysis, F. indica contains multi-targeting compounds that function on numer-
ous disease-related pathways; hence, they might be considered as novel therapeutic options
against liver cancer. Furthermore, our studies revealed that the EGFR, MAPK3, MTOR,
and PIK3R1 genes are effective and potential therapeutic agents for lowering the incidence
of liver cancer and potentially exhibiting therapeutic effects on liver cancer. However, the
current study has significant limitations since further phytochemical and pharmacological
research is needed to verify these findings.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15060654/s1. Table S1: Interaction analysis of docked complexes.
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