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Abstract: Materials derived from natural plants and animals have great potential for transdermal
drug delivery. Polysaccharides are widely derived from marine, herbal, and microbial sources. Com-
pared with synthetic polymers, polysaccharides have the advantages of non-toxicity and biodegrad-
ability, ease of modification, biocompatibility, targeting, and antibacterial properties. Currently,
polysaccharide-based transdermal drug delivery vehicles, such as hydrogel, film, microneedle (MN),
and tissue scaffolds are being developed. The addition of polysaccharides allows these vehicles
to exhibit better-swelling properties, mechanical strength, tensile strength, etc. Due to the stratum
corneum’s resistance, the transdermal drug delivery system cannot deliver drugs as efficiently as
desired. The charge and hydration of polysaccharides allow them to react with the skin and promote
drug penetration. In addition, polysaccharide-based nanotechnology enhances drug utilization
efficiency. Various diseases are currently treated by polysaccharide-based transdermal drug delivery
devices and exhibit promising futures. The most current knowledge on these excellent materials will
be thoroughly discussed by reviewing polysaccharide-based transdermal drug delivery strategies.

Keywords: polysaccharide; biocompatibility; biodegradability; penetration; diseases therapeutic;
transdermal drug delivery

1. Introduction

Transdermal drug delivery has many advantages over conventional administration,
including avoiding the first-pass effect in the liver, reduced side effects, and improved
patient compliance [1]. However, due to the “brick and mortar” structure of the stratum
corneum, drugs cannot effectively cross the skin barrier. To surmount the cutaneous
obstacle for more effective topical drug delivery, natural polymeric polysaccharides played
an essential role in transdermal delivery as drug or drug delivery carriers and traditional
methods such as ultrasound [2] and electrical conduction [3].

Compared with traditional carriers such as polylactic acid (PLA), poly (lactic-co-
glycolic acid) (PLGA), and polyvinyl pyrrolidone (PVP), naturally derived polymeric
polysaccharides performed well as drug delivery carriers with high water retention, non-
toxicity, good biocompatibility, biodegradability, and many other critical biological proper-
ties. For example, chitosan (CS) has significant slow-release properties for drug delivery [4];
hyaluronic acid (HA) can increase skin hydration and involve cell signaling to promote
tissue regeneration and wound healing [5]; sodium alginate could be applied for drug en-
capsulation by cross-linking with metal ions to prepare nanoparticles and therefore enhance
skin penetration of drugs [6], etc. Further, the cross-linking or functional group modification
of natural polysaccharides can change their surface properties, including hydrophilicity,
hydrophobicity, mechanical strength, etc., and endow them with new functions. In addi-
tion, naturally derived polymeric polysaccharides have various pharmacological properties
such as antitumor, anticoagulant, immunomodulatory, antioxidant, and anti-inflammatory.
For example, Bletilla striata polysaccharides (BSP) have wound healing, anti-allergic, and
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antibacterial effects [7]; Panax notoginseng polysaccharides (PNPS) promote the activation
of skin dendritic cells (DCs) [8]; and Centella asiatica polysaccharides have antibacterial and
anti-inflammatory effects [9].

Polymeric polysaccharides play an influential role in treating scars, psoriasis, acne,
and other skin diseases. There is an excellent potential for naturally derived polymeric
polysaccharides in transdermal delivery, but a systematic summary is lacking. In this
case, this review specifically presents the application of polysaccharides based on natural
sources (plant, marine, microbial) as drug or drug delivery vehicles for transdermal delivery,
including hydrogel, film, microneedle (MN), tissue scaffolds, and polysaccharide-based
nanoparticles are developed for their targeting and good penetration ability. Diseases that
require therapeutic measures, such as psoriasis, skin cancer, hypertrophic scars (HSs), etc.,
treated by polysaccharide-based transdermal drug delivery, are also discussed.

2. Polysaccharide

Polysaccharides have received increasing attention as an essential natural bioactive
substance with the advantages of safety, stability, and biodegradability. They have demon-
strated their unique gifts in antiviral, immunomodulatory, antioxidant, and other as-
pects [10,11]. In addition, the multifunctional group properties of polysaccharides make
them susceptible to being modified and demonstrate more applications. Polysaccharides
are broadly present in animals, plants, microorganisms, and algae. The following section
will focus on several commonly used polysaccharides.

2.1. Herbal Polysaccharide

Herbal polysaccharides are explored to be medicines to treat various diseases due
to their excellent performance in treating diabetes, hypertension, malaria, and other dis-
eases [12–14]. However, traditional herbal medicines are mainly applied externally and
administrated orally, limiting their therapeutic effects for these skin diseases. In this case,
today, herbal medicines are investigated for transdermal drug delivery systems. Polysac-
charides extracted from herbs are of increasing interest due to their extensive range of
pharmacological applications, including acting on antitumor, immunomodulatory, antioxi-
dant, and anti-inflammatory [15–18].

2.1.1. Bletilla Striata Polysaccharide

BSP is the main active ingredient of Bletilla striata, with a relative molecular mass
size of 1.35 × 105 [19]. BSP was used as a cosmetic additive to treat cracked skin and
promote skin recovery [20], which had the functions of promoting wound healing [21],
anti-aging [22], and antibacterial qualities [23]. BSP was used to treat chapped skin and
ulcerative carbuncle acknowledged by the human body and comparatively painless to
satisfy the diverse requirements in pharmacology.

2.1.2. Panax Notoginseng Polysaccharide

PNPS is mainly found in saponin, the main active ingredient of Panax notoginseng.
PNPS is obtained by grinding the plant and extracting it with ethanol, and a large amount of
PNPS remains in the residue, accounting for about 3–5% of the extract. It is of great interest
for various biological properties such as immunomodulatory, antitumor, antioxidant, anti-
aging, and neuroprotective effects and has been used in the treatment of diseases [24,25].

2.1.3. G. lucidum Polysaccharides

Ganoderma lucidum, known as “Lingzhi”, is a renowned traditional Chinese herb with a
history of more than 2000 years. G. lucidum polysaccharides (GLPs) are highly abundant in
G. lucidum cells and are used for their anti-inflammatory [26], immunomodulatory [27], and
antitumor qualities [28]. In addition, GLPs have been used in combination with doxorubicin
(DOX) as an additive that enhances the effectiveness of medical treatment in cancer [29].



Pharmaceuticals 2022, 15, 602 3 of 31

2.1.4. Others

BSP, PNPS, and GLPs, Plantaginis Semen polysaccharide (PSP), derived from the herb
Plantaginis Semen, were combined with titanium dioxide nanoparticles as a new promis-
ing immune adjuvant to prevent infectious laryngotracheitis (ILT) [30]. Radix Hedysari
polysaccharides (HPS), derived from Radix Hedysari, have been proved to have antitu-
mor and antidiabetic effects [31]. Lycium barbarum polysaccharides (LBPs), obtained from
Lycium barbarum L., have also been widely discussed for their anticancer effects [32]. The
efficacy of more and more herbal polysaccharides is being discovered, providing good
prospects for future drug therapy.

2.2. Marine Polysaccharide

Polysaccharides extracted from marine organisms have been extensively investigated
over the last few years because they can be easily extracted from marine organisms and
exhibit anti-inflammatory and antibacterial properties in drug delivery [33]. Moreover,
marine polysaccharides show unique advantages in transdermal drug delivery owing to
their good targeting and readiness to be modified.

2.2.1. Chitosan

CS is among the most broadly employed polymers in numerous biomedical appli-
cations and has seen increased research in recent years. It is derived from chitin and is
available by partial deacetylation of chitin [34]. The molecular weight of CS is between
300 and 1000 kDa. CS is the only positively charged polysaccharide in natural polysaccha-
rides, and protonated CS can cooperate with the negative charge of the stratum corneum to
improve drug penetration. The hydroxyl groups at the C-3 and C-6 positions and amino
groups at the C-2 position are easily modified and facilitate various reactions [35]. The
modifiability of the functional groups leads to their ability to be tailored to the desired
mechanical strength and functionality. Many pH-responsive compounds based on CS are
extensively applied in transdermal drug delivery [36,37]. In addition, it is considered a
potential antifungal drug because of its biocompatibility, biodegradability, non-toxicity,
hemostatic activity, and antibacterial and antimycotic properties [38–40].

2.2.2. Hyaluronic Acid

HA is a linear glycosaminoglycan (GAG) consisting of N-acetyl-D-glucosamine and
D-glucuronic acid. HA derived from rooster comb [41], microbial source [5]. HA was first
isolated from the vitreous humor of bovine eyes. Studies suggest that HA may be the most
widely used marine polymer in transdermal drug delivery systems [42]. HA is one of the
essential components of human skin and is detected in extracellular tissues in different
body parts [43,44]. HA has the properties of non-toxic, non-immunogenic, biocompatible,
and high-water affinity [45]. HA is also used in various biomedical applications, such as
cartilage regeneration [46], ophthalmology [47], and cancer therapy [48]. It could interact
with the stratum corneum barrier to promote drug penetration. HA could also target
CD44 fibroblasts, and cancer therapy with HA as a vehicle is evolving [49]. HA has been
authorized by the Food and Drug Administration (FDA) as a dermal filler, showing great
promise in drug delivery [50].

2.2.3. Alginate

Alginate is a natural, biodegradable anionic polysaccharide, and sodium alginate is
the most commonly employed one. Alginate consists of different ratios of β-Dmannuronic
acid (M-blocks) and α-L-guluronic acid (G-blocks). The mannuronic blocks/guluronic acid
block (M/G) ratio predominantly affects the properties of alginate [51]. Alginate with a
high M/G ratio can promote chronic wound healing by producing cytokine production
through human monocytes [52]. In addition, alginate also binds to metal ions through
electrostatic and ionic interactions. In transdermal drug delivery systems, alginate is mainly
utilized to prepare MNs [53] and nanoparticles [54]. Alginate-based MNs were used to load
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vaccines and deliver macromolecules such as bovine serum proteins and insulin [55,56].
Alginate was combined with CS to prepare nanoparticles possessing anti-inflammatory
activity and antibacterial for the targeted therapy of cutaneous pathogens [57].

2.2.4. Ulvan Polysaccharide

Ulvan polysaccharide is a biologically active natural sulfated polysaccharide with
excellent properties such as antibacterial [58], antioxidant [59], antiviral [60], and hy-
polipidemic activity [61]. Ulvan polysaccharide mainly consists of rhamnose 3-sulfate,
xylose-2-sulfate, and glucuronic acid, and is widely used as a raw material for the prepa-
ration of hydrogels [62]. Ulvan polysaccharide contains hydroxyl groups that can form
hydrogen bonds, producing gel-like properties [63]. In the presence of boric acid and
divalent cations, thermally reversible hydrogels can be formed [64]. Composite hydrogels
prepared using ulvan polysaccharide and CS exhibited excellent cell proliferation [65].

2.3. Exopolysaccharide

EPSs are currently considered helpful in dealing with cancer, tumors, ulcers, etc. [66].
A fungal homopolymer, schizophyllan, produced by schizophyllum commune, has been
used to treat cancer, demonstrating excellent therapeutic efficacy when present in the triple-
helical form [67]. Xanthan gum (XG), produced by Xanthomonas campestre, is considered the
most commercially available EPSs and has been prepared as hydrogels [68]. Notably, ex-
treme environments tend to harbor specific microorganisms that secrete substances, which
often have high temperature, alkali, and acid resistance in some respects. Proteins and
microbial EPSs collected from these extremophiles are currently used industrially [69,70].
In this case, polysaccharides secreted by such microorganisms are to be expected.

3. Polysaccharide-Based Vehicles

Compared with traditional polymers, polysaccharides are biodegradable and non-
toxic, making them widely employed in transdermal drug delivery. Polysaccharide-based
transdermal drug delivery system is also evolving, as shown in Figure 1. For example,
the polysaccharide-based hydrogel shows advantages in wound dressings due to their
good swelling and high hydrophilia properties; the polysaccharide-based films enable
continuous drug release due to their good elasticity and breathability; the polysaccharide-
based MNs have good mechanical strength and can smoothly penetrate the skin stratum
corneum, and the biodegradability of polysaccharides makes MNs more biocompatible;
the polysaccharide-based tissue scaffolds show unique biomimetic potential due to its
good biocompatibility. The polysaccharide-based transdermal drug delivery vehicles are
discussed in detail in the following section.
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3.1. Polysaccharide-Based Hydrogels

Hydrogels are three-dimensional, hydrophilic, and polymeric networks with the
ability to absorb large quantities of water. Hydrogels have received heaps of attention
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as outstanding candidates for bioadhesion, controlled release, and targeted therapeutic
agent devices in drug delivery systems. Hydrogels prepared from conventional materials
such as hydroxyethyl methacrylate are not soluble for the existence of chemical cross-
linking or physical cross-linking [71]. Polysaccharide-based hydrogels are soluble and
have good water retention ability and antibacterial advantages. Highly absorbent hydrogel
materials prepared by cross-linking carboxymethyl agarose (CMA) and polyacrylamide
(PAm) can absorb an aqueous solution hundreds of times heavier than its weight [72].
The hydrogel of BSP combined with Carbopol 940 has good viscoelasticity and physical
strength and can be used in wound dressing to promote plasma coagulation and facilitate
wound healing [73,74]. Polysaccharide-based hydrogels are also adopted for the delivery
of macromolecules. Polysaccharide transparent hydrogel patches were used to improve the
permeability of proteins to the skin. Gold nanorods are placed on the surface of the HA-
based hydrogel. The temperature of the skin was raised by irradiating the gold nanorods
with a laser to promote protein penetration through the skin [75].

Some “smart” hydrogels are continuously researched for the controlled release of
drugs according to changing external conditions. Common ones are pH/temperature-
sensitive hydrogels. pH-sensitive hydrogels made from hydroxyethyl cellulose (HEC)/HA
complex loaded with isoliquiritigenin (ILTG) were used to treat skin disorders caused by
pH imbalance [76]. Hydrogels that can be regulated by pH and temperature have also been
prepared. Pluronic F-127 based pH and temperature dual-responsive hydrogels prepared
with nano-conjugate of HA and CS oligosaccharide lactate were loaded with gallic acid
(GA) in treating atopic dermatitis [77]. The cost-effective and versatile dual dynamic cross-
linking hydrogels have been studied to facilitate wound healing and prevent infection.
The hydrogels composed of oxidized Bletilla striata polysaccharide (OBSP), GA-grafted
CS, and pyrogallol-Fe3+, and Schiff base influenced its cross-linking form (Figure 2). The
photothermal effect and polysaccharide combination enabled the hydrogels to degrade and
accelerate the gelation on demand. The cross-linking of GA with Fe3+ made the hydrogel
have good photothermal properties. The gelation time of the hydrogel under NIR radiation
was 1/2–1/3 of that without radiation. The NIR irradiation made the temperature of
the hydrogel rise, and by adjusting the irradiation time and IR intensity, the antibacterial
activity can be satisfied without burning the skin. The photothermal effect also accelerated
the degradation of the hydrogel. NIR radiation for 20 min allowed complete decomposition
of the hydrogel in 2% acetic acid solution, providing a convenient way to observe the
wound. The potential antibacterial activity of GA and Fe3+ and the increase in the number
of CS naked amine groups allowed the hydrogel to exhibit good antibacterial effects. It
created a long-lasting antibacterial environment that persisted to a large extent until wound
healing, showing good promise in clinical practice [78].

To summarize, hydrogels corresponding to external stimuli are constantly develop-
ing and becoming smarter. They have good prospects in transdermal drug delivery in
the future.

3.2. Polysaccharide-Based Films

Polymeric films have attracted interest as an alternative to patches because they are
transparent, flexible, non-occlusive, and easy to administer while prolonging the drug
retention time in the skin [79]. The films demonstrate greater drug loading and better drug
release than ointment [80]. The film-forming ability of polysaccharides and their unique
adhesion properties have attracted widespread attention. In this case, the polysaccharide-
based films emerge as a candidate for transdermal drug delivery vehicles.

Films prepared with two or more polysaccharides tend to exhibit better properties.
Nifedipine (NFD) polysaccharide-based transdermal films with sodium alginate and pectin
as matrix polymers were developed to provide their long-term plasma concentrations [81].
CS-based films containing methyl salicylate (MS) nanoemulsions (NE) were prepared in
some studies. NE-film demonstrated good MS release volume compared to the physical
mixture (Figure 3). TGA and FTIR results confirmed that the encapsulation of MS into
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NE made the oily drugs fully integrated into the hydrophilic CS films, which increased
the stability of the film [82]. Loading rifampicin into alginate and gelatin fiber-based film
showed good wound healing effects [83].
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New composite membrane formulations are also being investigated. Multilayer
films by electrostatic interactions using alginate/CS/alginate-modified silica nanocapsules
(SNCs) and CS biopolymers were prepared. They encapsulated Fulvestrant, a selective
estrogen receptor downregulator, in SNC and then incorporated it into the film. The effec-
tiveness of the film was releasing the drug influenced by the external pH. At pH 7.4, the film
can entrap Fulvestrant well, while at pH 5.0, it releases the drug rapidly. The rate of drug
release can be changed continuously according to the external pH change [84]. In the follow-
ing study, HA and temperature-responsive micelles were used to prepare a sandwich-like
membrane that utilized the protonation and deprotonation reactions of the micelle core for
the controlled release of anticancer drugs osimertinib [85]. A layer-by-layer self-assembly
method using sodium cellulose sulfate (NaCS), chitosan hydrochloride (CHC), and sodium
tripolyphosphate (STPP) was used to prepare “sandwich structure” hydrogel film for load-
ing ibuprofen (IBU). The results showed that the film penetrated the skin of mice with good
controlled drug release [86]. Tri-layers prepared from sodium alginate and poly (4-vinyl
pyridine) can be stabilized in an acidic buffer at pH 4.2 and used for skin wound healing
under acidic conditions [87]. Ternary blend films of CS, polyethylene oxide (PEO), and
levan prepared by the solution casting method demonstrated better biocompatibility than
the CS-PEO binary films [88]. The weight ratio of different polysaccharides in films also
affects the release of drugs [89].

3.3. Polysaccharide-Based Microneedles

MNs technology has attracted the attention of researchers as a minimally and efficient
invasive way of drug delivery. Traditional MNs made from solids, such as silicon and
metals, typically create microchannels on the skin surface where the drug enters, limiting
the drug utilization [90]. Polysaccharides have the biodegradability advantage and are
similar to the components of the extracellular matrix [91]. In this case, soluble MNs with
polysaccharides as raw materials are continuously studied and used to enhance MN biocom-
patibility and improve patient compliance. The recent examples of polysaccharide-based
MNs are listed in Table 1, including the basic components, pharmaceutical ingredients,
and applications.

Some natural polysaccharides such as HA [92], carboxymethyl cellulose [93], alginate,
maltose, and CS [94] are widely used to prepare soluble MNs. Calcium ion cross-linking
alginate/maltose composite MNs loaded with insulin had a significant hypoglycemic
effect compared with traditional transdermal injection [56]. Bacillus Calmette–Guérin
polysaccharide nucleic acid MN patches (BCG-PSN MNP) were prepared by incorporating
the ribonucleic acid fraction of the BCG vaccine into a sodium hyaluronate (HNA) based
MN patch and were used for immunotherapeutic treatment. The BCG-PSN MNP exhibited
increased IFN-c and TNF-a production in peripheral blood CD4+T cells [95].

Most herbal medicines have the inherent properties of promoting wound healing, and
antiseptic and anti-inflammatory properties. Combined with this feature, MNs based on
herbal polysaccharides have been continuously investigated in recent years. In 2018, BSP
was used for the first time in the preparation of MNs [96], and BSP MN (BMN) containing
Rhodamine B (RB) demonstrated good mechanical strength and a desirable cumulative
penetration rate. Subsequently, BMN was used to deliver vaccines (Figure 4). The process
of preparing MNs has two steps. First, the OVA/BSP solution is poured into the mold
and centrifuged to form the MN tip, and then the remaining solution is removed. The BSP
solution (15% w/v) was poured, centrifuged, and dried to form the BMN substrate. The BSP
in the tip gave the BMN a mechanical strength of 0.63 N/needle and enabled it to penetrate
the stratum corneum. The BSP in the substrate relied on its specific anti-inflammatory
and antibacterial activity to promote the healing of the microchannels caused by the BMN.
BMN was cytocompatible, less irritating to the skin, promoted cell growth to a certain
extent, and had good low hygroscopicity. The OVA of 76.74% was released within three
hours, and BMN loaded with antigen ovalbumin (OVA) maintained an intact secondary
structure within 21 days [97].
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Table 1. Some latest polysaccharide-based MNs.

Composition Pharmaceutical
Active Ingredient Application Main Achievement Ref.

BSP OVA Infectious diseases
Better mechanical strength and stability than
HA-MNs and PVA-MNs, well-reserved OVA

at 4 ◦C for 21 days
[97]

CD-MOF,
QUE, BSP HSF membrane Hypertrophic Scars

The combination of bio nanoparticles and
soluble MNs inhibited collagens I and

III expressions
[98]

BSP RB Drug delivery
The transdermal effect was more effective

than the patch, had better mechanical
strength, and promoted wound healing

[96]

PNPS Dox, 5-Fu Skin dendritic cell
activation

It targeted skin dendritic cells, activated
immune cells, and triggered T cell immune

response mediated by DCs
[99]

DCS DCS Hemostasis
Pagoda-like shape, the insect-foot-inspired
multilayer structure helped MNs adhere to

the bleeding area
[100]

CS meloxicam Pain management
for cattle

Indicated for pain control in cattle
after routine surgery [101]

CS
Insulin in a

macroporous
alumina core

Diabetes mellitus

The dissolution of the gel Intelligent
controlled the release of insulin according to

in vivo glucose level, and kept
normoglycemia stable for 5 h

[102]
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Table 1. Cont.

Composition Pharmaceutical
Active Ingredient Application Main Achievement Ref.

CS Mg, PNS Chronic wounds
It promoted neovascularization in chronic

wounds and regulated macrophage
phenotype conversion to reduce inflammation

[103]

HA, PVP Propranolol
Hydrochloride IH About 100% propranolol hydrochloride was

released in 20 min [104]

HA, CuS
into ZIF-8 CPT Melanoma

Achieve long-lasting enrichment at the tumor
site, and the scab disappeared within

7–10 days
[105]

HA Shikonin HSs

HA MNs markedly reduced the proliferation
and viability of HSF and downregulated

fibrotic-related genes such as TGF-β1, FAP-α,
and COL1A1

[106]

HA MXD Alopecia

HA and MXD had a synergistic effect in
treating alopecia, which maximized the

effectiveness of the treatment and minimized
the side effects of MXD for alopecia

[107]

Alg-ABA,
chondroitin sulfate

Mineralized insulin
particles, GOD Diabetes mellitus

The H+ produced by the reaction of GOD
with glucose gradually dissolved mineralized
insulin particles, leading to the self-adjustable

release of insulin

[108]

Ulvan FITC-BSA, R6G Drug delivery
Enhance the cumulative release of FITC-BSA
and biocompatibility, and it dissolved in only

2 min in porcine skin
[109]

BSP: Bletilla striata polysaccharide; OVA: Ovalbumin; CD-MOF: The cyclodextrin metal-organic framework;
QUE: Quercetin; HSF: Hypertrophic scar fibroblast; RB: Rhodamine B; PNPS: Panax notoginseng polysaccharide;
DOX: Doxorubicin; 5-Fu: 5-fluorouracil; DCS: Dodecyl-modified chitosan; CS: Chitosan; PNS: Panax notoginseng
saponins; HA: Hyaluronic acid; PVP: Polyvinyl pyrrolidone; PVA: Polyvinyl alcohol; IH: Infantile hemangioma;
ZIF-8: Zeolitic imidazolate framework-8; CPT: Camptothecin; HSs: Hypertrophic scars; MXD: Minoxidil; Alg-
ABA: 3-amino-phenylboronic acid-modified alginate; GOD: Glucose oxidase; FITC-BSA: Bovine serum albumin–
fluorescein isothiocyanate conjugate; R6G: Rhodamine 6G.

3.4. Polysaccharide-Based Tissue Scaffolds

Polysaccharides have been widely used for tissue scaffolds due to their good biocom-
patibility and biodegradability [110]. In bone tissue engineering field, different polysac-
charides exhibit different excellent properties. CS can promote the attachment, prolif-
eration, and mineralization of osteoblasts in vitro and activate endogenous bone regen-
eration [111,112]; cross-linking modified HA can increase the porosity to meet different
strengths of bone tissue scaffolds, HA-based scaffolds show a synergistic effect with stem
cells in tissue engineering [113], alginate is more suitable for cell attachment by modi-
fication of chemical bonds [114], and XG also shows a unique bionic potential in bone
tissue engineering applications [115]. Nano hydroxyapatite particles (nHAP) modulate
the biomineralization process of inorganic nanoparticles inside bone by functionalizing CS
with a graphene oxide (GO) network matrix, which crystallizes in situ into a graphene ox-
ide/chitosan/nHAP (GO/CS/nHAP) scaffold. The scaffolds exhibit good cell proliferation
capacity and bioactivity and are considered an approach for endogenous bone repair [112].

Polysaccharides allow scaffolds to exhibit better performance and provide a good
framework for drug release. Hydrogels are widely used as scaffolds for tissue engi-
neering. Composite scaffolds prepared from alginate-based hydrogels and gelatin-based
electrospun mats exhibited better mechanical strength and controlled drug release [114].
Epigallocatechin-3-gallate (EGCG) has the ability to enhance the differentiation of mes-
enchymal stem cells (MSCs) into osteoblasts, and pour EGCG is easily metabolized by
cells and reduces bioavailability. EGCG-loaded CS nanoparticles were encapsulated into
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CS/alginate (CS/Alg) scaffolds (CS/Alg-ECN) to improve the utilization of EGCG. CS/Alg-
ECN can activate the Wnt/β-catenin signaling pathway to promote the differentiation of
osteoblasts [116]. Hydrogels made from combinations of different ratios of polysaccharides
can be used as a base material for skin scaffolds and show efficient osteoinduction [117,118].

4. Polysaccharide-Based Penetration

The barrier effect of the stratum corneum is the key problem faced by transdermal
drug delivery, and how to enhance drug penetration is the main obstacle that affects
the development of transdermal drug delivery. Physical methods have been used to
enhance drug penetration, but their effectiveness is limited and may lead to skin damage;
in addition, physical methods often require additional equipment, resulting in poor patient
compliance. Polysaccharides exhibit unique advantages in promoting drug penetration,
such as charge effect, and hydration effect. Both polysaccharide permeation enhancers and
polysaccharide-related nanotechnology have promoted drug penetration.

4.1. Penetration Enhancers

The primary problem faced by transdermal drug delivery is the stratum corneum
barrier. In addition to physical penetration methods such as ultrasound, temperature,
electricity, and magnetic fields [119], chemical penetration enhancers are also used to
promote drug penetration into the stratum corneum, such as fatty alcohols and fatty
acids [120]. Chemical penetration enhancers display some skin irritation, possibly leading
to the development of inflammation and erythema [121,122]. In this case, polysaccharide-
based penetration enhancers are continuously used in transdermal drug delivery systems.
CS, the only positively charged polysaccharide among natural polysaccharides, is bound
tightly to the negatively charged sites on the epithelial cell membrane. Its positive charge
leads to the depolymerization of F-actin and the dissolution of the tight junction protein
ZO-1, thereby promoting penetration [123]. HA improves the hydration of the stratum
corneum, promoting penetration [124]. The high moisturizing properties of XG promote
the drug’s hair follicle penetration [125]. The mucilage polysaccharide extracted from
Hibiscus rosa–Sinensis L. forms non-covalent bonds with skin tissues, affecting drug pene-
tration [126]. Thiolated CS opens tight junctions through interaction with the thiol groups
of cysteine-containing membrane receptors [127].

4.2. Polysaccharide-Based Nanoparticles

Nanotechnology mainly refers to controlling the particle size of the drug at the
nanoscale, which has the advantages of improving drug solubility and stability and en-
hancing the curative efficacy [128]. Based on the advantages of polysaccharides’ natural
targeting, hydration function, and charge interaction with the skin, polysaccharide-based
nanoparticles show a better prospect than ordinary nanoparticles. A diversity of methods
using nanotechnologies has been investigated to optimize the efficiency of transdermal
drug delivery, and several currently used methods are described below.

4.2.1. Emulsion

The polysaccharide-based emulsion is a thermodynamically stable colloidal system
composed of the oil phase and water phase and stabilized by surfactants or cosurfactants.
The pro-permeation effect of NE was used to deliver a hypoglycemic drug, Glimepiride
(GMP). The NE was prepared from clove oil, Tween-80, and PEG-400, gelated with XG.
It improved skin permeability and hypoglycemic activity, providing a new option for
the treatment of diabetes (Figure 5) [129]. The ratio of polymer to surfactant has been
proved to influence the permeation effect. Researchers prepared a microemulsion of HA
and collagen and found that the molecular weight of collagen and HA did not affect the
delivery efficiency [130].
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Some polysaccharides with natural pharmacological activity are combined with NE
to load drugs. The antifungal properties of CS were combined with the antifungal drug
Fluconazole (FZ), essential oils, and sucrose fatty acid esters to prepare gel microemulsions
for the treatment of mycoses [131]. CS emulsions loaded with 5-fluorouracil (5-FU) are
considered a promising method for delivering 5-FU. CS facilitates the movement of 5-FU
through the stratum corneum by altering the arrangement of phospholipids in the epithelial
cell membrane [132]. Pickering emulsions stabilized by CS/collagen peptides nanoparticles
were penetrated into the deeper stratum corneum due to the interaction of protonated CS
with the negatively charged sites of the stratum corneum [133]. NE containing HNA and
indomethacin (Ind) demonstrated better skin penetration and drug deposition than the
HNA-Ind solution. In addition, it had an anti-inflammatory effect on ear edema in mice to
a certain extent [134].

4.2.2. Ethosomes

Similar to liposomes, ethosomes (ES) have a phospholipid bilayer. In addition, ES
have unique properties such as high deformability and fluidity due to their relatively
high concentration of ethanol (20–45%) [135–137], exhibiting a better effect in promoting
penetration than traditional liposomes [138]. However, the promotion of permeation also
leads to the problem of easy drug leakage. In this case, polysaccharides are chosen to
combine with ES to enhance the stability of the formulation.

Polysaccharides are used to modify ES to improve their susceptibility to drug leakage.
HA-modified ES (HA-ES) formed a hydrogel network on the surface of ES to reduce drug
leakage, and HA-ES loaded with eugenol (EUG), and cinnamaldehyde ([EUG/CAH])
(volatile oil medicines) demonstrated better encapsulation ability and better stability com-
pared to ES. Pharmacokinetics showed that EUG and cinnamic acid (CA) concentrations
in subcutaneous tissues were considerably higher in the HA-ES group than in the ES
group. In addition, the moisturizing ability of HA enhanced the hydration of the stratum
corneum and facilitated transdermal drug delivery [139]. HA/ES-aminolevulinic acid
(ALA) (HA/ES-ALA) with a synergistic effect was prepared by combining HA gels and ES
of 5-ALA (ES-ALA). HA/ES-ALA protected ES-ALA during permeation, then HA/ES-ALA
actively aggregated on the hypertrophic scar fibroblast (HSF) surface using HA receptors
to release ES-ALA, and finally, ES-ALA on the surface of HSF delivered ALA into HSF
through the membrane fusion mechanism [140]. HA was combined with glycol-based ES to
prepare a drug carrier, HA-ES, to transport curcumin (Figure 6). The HA gel network on the
surface reduced curcumin leakage, and its eight-hour cumulative transdermal volume was
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1.6 times higher than that of ES. Due to the specific targeting of HA-ES on CD44 exhibited
higher intradermal drug accumulation, and the levels of TNF-α, IL-17A mRNA, and CCR-6
protein were also reduced [141].
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4.2.3. Lipid Nanoparticles

Lipid nanoparticles (LNPs) consist of a monolayer of surfactants with a lipophilic
nucleus, which is different from liposomes. At present, there are three types of LNP
used for drug delivery: lipid nano-emulsions (LNE), solid lipid nanoparticles (SLN), and
nano-lipid carriers (NLC). They can enhance drug permeability and have a good retention
effect [142]. Bilosomes (BLS) are novel lipid nanocarriers composed mainly of amphiphilic
bile salts (ABS). CS-modified bilosomes containing terbutaline sulfate (TBN) exhibited
good encapsulation efficiency, with an approximately 2.33-fold increase in bioavailability
compared to oral solutions [143]. However, the LNP aqueous dispersions exhibit unsuitable
rheological properties. In this case, some studies combined LNP with other substances to
modify this property, such as LNP-hydrogel systems. Lipophilic drugs can be efficiently
loaded into the LNP, encapsulating LNP in a hydrogel network [144].

XG was added to the LNP-poloxamer hydrogel to enhance the mucoadhesive proper-
ties during the synthesis of poloxamers [145]. CS-LNPs loaded with IBU were packed into
the hydrogel for the transdermal delivery of IBU. CS interacted with negatively charged IBU
to form drug-polymer complexes, and in addition, the bioadhesive nature of CS improved
the residence time of IBU at the application site [146]. This form of double encapsulation
strategy provides better control of drug release. Although the LNP-hydrogel system shows
great promise, the mechanism of drug release needs to be further investigated.

4.2.4. Nanoassemblies

Due to the potential applications of nanoscale polymer in the biomedical field, many
efforts have been committed to designing nanoscale polymer assemblies. The currently
commonly used self-assembly method of amphiphilic copolymers usually leads to the
ability of core/shell nanostructures to carry dipolar drugs in their dipolar cores [147].

Self-assembled polysaccharide-based nanoassemblies were prepared using N-alkyla
minated chitosan (NACs) to deliver the anti-inflammatory drug Voltaren. The modified
NACs had amphiphilic characteristics and could voluntarily assemble into nanoaggregates
at particular concentrations because of the added hydrophobic aliphatic side chains of
CS. The capacity of NACs to load diclofenac under a lipid environment was verified by
adding almost insoluble diclofenac into paraffin oil. The solubility of diclofenac in an
aqueous solution was improved by NACs [148]. Negatively charged lecithin and positively
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charged CS interacted electrostatically to form nanoparticles for coating drugs and achieve
self-assembly at the supramolecular level forming lecithin-CS hybrid nanoparticles, thereby
enhancing drug penetration to treat psoriasis. The positive charge on the surface of CS
increased the deposition of nanoparticles in the skin. Compared to commercially avail-
able products, lecithin-CS hybrid nanoparticles showed faster control of psoriasis [149].
Lecithin/CS nanoparticles (LCNs) were also used to load baicalein-phospholipid com-
plexes to form BPC-LCNs. Phospholipids combined with baicalein to form a complex and
enhance the solubility of baicalein, which is encapsulated into lecithin/CS nanoparticles to
enhance skin penetration [150]. Polyunsaturated fatty acids (PUFAs) and the photosensi-
tizer chlorin e6 (Ce6) were self-assembled into nanoassemblies to prepare L-Ce6 NAs and
incorporated into fast-dissolving oligo-HA MN patches to prepare L-Ce6 MNs. Combining
the tumor-targeting function of HA with photodynamic therapy (PDT) allowed L-Ce6 MNs
loaded with very low doses of photosensitizers to show promising results in melanoma
treatment [151].

4.2.5. Omniphilic Nanocarriers

The main problem with drug delivery is that it is often necessary to transfer from one
phase to another, such as the transfer between the aqueous phase and lipid phase. This
situation would affect the delivery of medications. Therefore, researchers were investigating
if it is possible to develop a nanoparticle carrier that can deliver drugs in different phases
without affecting too many properties of the drug. In this case, the concept of the omniphilic
nanocarrier was proposed. These nanocarriers are named “omniphilic”, meaning “like
everything”, to illustrate their ability to accommodate all kinds of molecules and adapt to
solvent environments.

Nanocarriers based on the biopolymer CS encapsulate both hydrophilic and hydropho-
bic drugs and convey them into lipid or aqueous environments. The results exhibited that
omniphilic polysaccharide-based nanocarriers (OPNs) showed excellent self-regulation
ability in media with different polarities and successfully encapsulated different guest
molecules in lipid or water environments, making it possible to cross the barriers between
different phases. In addition, OPNs exhibited structural plasticity and adaptiveness, which
allowed them to actively load drugs and achieve cross-phase transport. Based on the
advantages of OPNs, for fields where nanoparticles can be used, such as the cosmetic
industry, agriculture, and transdermal delivery of drugs, the combination of OPNs allows
for a better performance of delivering drug molecules to the site of action and improved
drug utilization [152].

5. Polysaccharide Based Drug Delivery for Diseases Therapeutics

Transdermal drug delivery systems allow a controlled release rate of drugs [153], and
they have prospective applications in personalized medicine, matching each patient to
the most appropriate medical regimen [154]. Polysaccharides are natural polymers with
targeting, modifiable, inherent antibacterial, antioxidant, and other properties. These prop-
erties make them desirable compounds for biomedical applications. When drug delivery
systems are modified by polysaccharides, receptors on target cells trigger phagocytosis,
producing active targeting effects [155]. Polysaccharide-based transdermal drug delivery
systems are now widely used in the medical field and in combination with other drugs to
address therapeutic diseases, such as immunotherapy [156], diabetes [56], psoriasis [157],
etc. They are described in more detail in the following sections.

5.1. Vaccination

Polysaccharides were used in vaccine development fifty or sixty years ago, and the
capsular polysaccharide vaccine was used to prepare of anti-streptococcus pneumoniae at
that time. It has become common sense to construct polysaccharide-based antimicrobial
vaccines and commercialize several polysaccharide-based vaccines. For example, Ac Vax®,
Pneumovaxll®, and Typhim Vi® were respectively formulated against Neiseria meningitidis,
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Streptococcus pneumoniae, and Salmonella typhi [158,159]. In order to overcome poor immuno-
genicity, polysaccharides were coupled to immunogenic protein carriers and acted as part
of the vaccine formulation [160]. The immunogenicity of the conjugated polysaccharide
vaccine was related to the length of the polysaccharide, and the length of the Vi polysaccha-
ride has a direct effect on the secretion of anti-Vi lgG [161]. In addition, polysaccharides
with unique properties are also used in the vaccine field. For example, trimethyl chitosan, a
derivative of CS, was regarded as an adjuvant for vaccine delivery owing to its advantages
of high aqueous solubility and high charge density [162].

CS MNs were used as intradermal delivery tools for vaccination (Figure 7). CS MNs
have good mechanical strength, and the entire needle tip could reach the deep dermis. In
addition to providing good mechanical strength, CS acts as an adjuvant to facilitate antigen
uptake and presentation [163]. A composite MN with HA tip and CS base has also been
used for long-lasting vaccine release. The fast release of antigen from the HA tip upon
entry into the skin and the slow release of antigen from CS enhances the immunogenicity
of the antigen. It produces a stable level of lgG antibodies for at least 16 weeks [164].
The dry-coated MN vaccine formulations reduce the demand for expensive cold-chain
processes and facilitate the transmission of vaccines to rural areas [165].
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5.2. Wound Healing

Wound healing is a sophisticated process, encompassing inflammatory, prolifera-
tive, and remodeling phases, involving good interactions between complex tissues and
cells [166]. Polysaccharides exhibit unique advantages in promoting wound healing. In the
early stages of inflammation, BSP stimulates the accumulation of inflammatory factors and
exerts a healing effect on the wound. BSP could activate the expression of pro-inflammatory
cytokines in M2 macrophages [167]. A BSP of 80 µg/mL induces human umbilical vascular
endothelial cell proliferation and enhances VEGF and EGF expression [168]. CS could
increase the level of anti-inflammatory factors (IL-10, TGF-β1) and decrease the level of
pro-inflammatory factors [169]. Alginate could cause cytokine to arise produced by human
monocytes, which facilitates tissue repair and promotes chronic wound healing [170].
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Polysaccharides also act as delivery vehicles for active drugs to promote wound
healing. Maltose MNs loaded with myrsinoside B exhibited good antioxidant and anti-
inflammatory effects [171]. HA MNs loaded with green tea extraction (tea polyphenols)
showed good antibacterial activity against Gram-positive and Gram-negative bacteria [172].
Pectin-rich Premna microphylla and Asiatic acid (AA), an extract of CentellaaAsiatica, have
the abilities of anti-bacterial activity, and were utilized together to prepare the Chinese
herb MN (CHMN) (Figure 8). The CHMN showed a better wound healing effect. Due
to the good repair capacity of AA, the thickness of regenerated granulation tissue was
up to 0.96 ± 0.12 mm, becoming the highest in the three experimental groups. CHMN
significantly promoted the formation of new blood vessels and collagen in the wound [21].
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5.3. Hypertrophic Scars

HSs are mainly due to the excessive collagen deposition of dermal fibroblasts, which
often occur after wound healing. Shikonin, an active component extracted from Arnebiae
Radix, was added to MN, which was made from soluble HA. Shikonin HA-MN was used
to treat HSs. The results showed that Shikonin HA-MN had local therapeutic effects and
was beneficial for local scar treatment in clinical practice. In addition, Shikonin HA-MN
inhibited the expression of scar-related genes (TGF-β1, FAP-α, and COL1A1), providing a
new approach to treating HSs [106]. Soluble HA MNs loaded bleomycin were also used
to treat HSs [173]. Hydroxypropyl β-cyclodextrin (HP-β-CD) encapsulated with triamci-
nolone acetonide (TA) was co-loaded with verapamil (VRP) into carboxymethyl chitosan
(CMCH), and BSP based MNs. The MN decreased the expression of the transforming
growth factor-beta 1 (TGF-β1) and hydroxyproline (HYP) in HSs. The combination of TA
and VRP showed a synergistic effect on the treatment of HSs [174].

The MN-mediated biomimetic transdermal system shown in Figure 9 was designed with a
cyclodextrin metal-organic framework cross-linking with diphenyl carbonate (CDF). Quercetin
(QUE) was loaded into the cyclodextrin metal-organic framework (CD-MOF) to prepare QUE-
loaded CDF (QUE@CDF) and then coated with an HSF membrane (QUE@HSF/CDF). Then,
QUE@HSF/CDF was dispersed in BSP-based MN to achieve targeted delivery. BSP showed
synergistic effects, and the mechanical strength was superior to HA-based MN. This system
reduced the expression of collagens I and III in HSs to improve the treatment efficacy
of HSs, and MNs prepared in this way had better mechanical strength than HA-based
MNs [98].
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5.4. Psoriasis

Psoriasis is a chronic degenerative inflammatory disease with multiple signs caused by
a mixture of genetic and environmental factors [175]. There are many therapies available for
psoriasis. Methotrexate (MTX) is the most commonly adopted drug for psoriasis treatment.
Side effects such as stomatitis and gastrointestinal discomfort may occur when MTX is
administered orally or through the parenteral route. The high molecular weight and
hydrophilic nature of MTX make it less effective in passively diffusing through the stratum
corneum. To overcome this problem, the MTX-HA MN was prepared. The good hydration
ability of HA allows MTX to stay in the epidermis and reduces penetration into the deeper
skin [176]. The overexpression of CD44 protein in psoriatic skin is used as a potential target
to treat psoriasis. CS/HA nanogels loaded with MTX and ALA (MTX-ALA NGs) exhibited
good synergistic therapeutic effects (Figure 10).

On the one hand, CS and HA enabled the nanogels to have cellular uptake enhance-
ment and targeting ability for psoriasis. On the other hand, the nanogels exhibited char-
acteristics shared by nanoparticles and hydrogels, enhanced drug penetration, and high
loading capacity. MTX-ALA NGs effectively downregulated the pro-inflammatory cy-
tokines of IL-17A and TNF-α, reduced the side effects of oral MXT, and enhanced MXT and
ALA penetration and deposition in the skin [177]. CS nanoparticles loaded with tacrolimus
utilized the positive charge of CS to combine with the negative charge sites of the skin,
enhancing the deposition rate of tacrolimus in the skin, with 82.0% ± 0.6 of the drugs re-
tained in the skin. Its therapeutic efficacy is superior to commercially available tacrolimus®

ointment [157].

5.5. Skin dendritic Cell Activation

Immune effector DCs are important antigen-presenting cells (APC) that are associated
with adaptive and innate immunity and target cancer immunotherapy and vaccine adju-
vants [178]. Mature DCs are the only cells that can directly communicate with T cells and
trigger their proliferation to generate cellular immunity. The skin contains quantities of
epidermal DCs, which recognize and deliver antigens to lymph nodes, thereby triggering
a response. Skin DCs activation is of great immunological importance. PNPS, isolated
from the traditional Chinese herb Panax notoginseng, significantly induces the maturation
of bone-marrow-derived DCs (BMDCs). The PNPS MN was prepared for delivery of PNPS
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(Figure 11). PNPS MNs could easily cross the stratum corneum and diffuse to the depth of
450 µm, allowing good targeting of skin DCs. In addition, PNPS with biological activity
could identify and target skin DC through Toll-like receptor 2 (TLR2)/Toll-like receptor 4
(TLR4) and trigger the maturation of DC. Administration via PNPS MNs demonstrated
a higher ratio of CD11c+/FTSC+ DCs cells, 7 and 2.5 times that of PNPS solutions and
dextran MNs [99].
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Figure 10. Schematic diagram of combined chemical-photodynamic treatment of psoriasis with MTX
and ALA loaded CS/HA nanogels (NGs). MTX-ALA NGs promoted the penetration of both ALA
and MTX into the skin, synergistically enhancing the local treatment of psoriasis and reducing the
toxicity and pain associated with the photodynamic therapy of ALA and oral MTX [177]. Reproduced
with permission from Yixuan Wang, Carbohydrate Polymers; published by Elsevier, 2022.

5.6. Insulin

Insulin is the most powerful drug for regulating the level of blood glucose in patients
with type I diabetes. However, the transdermal route has become the favored insulin
administration due to the low absorption or enzymatic degradation of insulin in the liver.
Usually, insulin is administered through a transdermal needle, but this is painful and in-
convenient, often causing poor patient compliance [179]. Therefore, polysaccharide-based
MN systems have been used to deliver insulin, such as HA [180], alginate [181], and mal-
tose [56]. Insulin MN patches prepared from gelatin and starch have sufficient mechanical
strength and dissolve completely after five minutes of insertion into the skin [179]. Pullulan
polysaccharide (PL), a non-ionic natural occurring exopolysaccharide produced by yeasts,
was adopted to prepare PL microneedle (PLMN) for insulin delivery. It can be stored at
4, 20, and 40 ◦C for at least one month to ensure insulin activity, which enables insulin to
be preserved for a long time and is of great significance for the use of insulin in remote
areas [182].
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Figure 11. Schematic diagram of the preparation of the dissolved Panax notoginseng polysaccharides
MN (PNPS MNs) and in vivo activation process. (a) The preparation process of PNPS MNs loaded
with the model drugs. (b) PNPS MNs dissolved and activated skin dendritic cells and triggered DC-
initiated T cell immune response for transcutaneous immunization [99]. Reproduced with permission
from Chengxiao Wang, Carbohydrate Polymers; published by Elsevier, 2021.

In addition to enhancing insulin preservation time in vitro, smart insulin MN patches
are also being developed. An MN patch that allowed visualization and quantification of
blood glucose and self-regulation of insulin release was investigated (Figure 12). MNs
were prepared by cross-linking chondroitin sulfate and 3-aminophenyl boronic acid (ABA)-
modified sodium alginate, loaded with mineralized glucose oxidized (GOD) and insulin
particles. H+ produced by the catalytic reaction of GOD with glucose progressively dis-
solved mineralized insulin particles, leading to the self-regulated release of insulin. The
increasing level of H2O2 resulted in a visible color change, which allowed for a reading
of the glucose content changes [108]. The dynamically capped hierarchically porous MNs,
which utilized the dissolution of CS hydrogels, allowed for the intelligent release of in-
sulin [102]. Smart MN patches offer a new perspective in the self-adjustable insulin release
field. To prevent hypoglycemia caused by the overuse of insulin, methacrylate hyaluronic
acid (MeHA)-based smart insulin MNs were used to automatically deliver glucagon at low
glucose concentrations. This smart MN patch shifts the treatment of hypoglycemia from
emergency treatment to a preventive measure, enhancing patient safety [183].
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Figure 12. Schematic diagram of glucose responsiveness that triggers the self-adjustable release of
insulin and perception of blood glucose in real-time. (a) Insulin mineralization under Ca2+. (b) Dual-
functional MN prepared by cross-linking and micro-molding. (c) Self-regulated release of insulin is
triggered by glucose responsiveness and real-time glucose sensing [108]. Reproduced with permission
from Xuetong Sun, Biomaterials Science; published by The Royal Society of Chemistry, 2022.

5.7. Immunotherapy

Transdermal immunotherapy exhibits better results than oral administration and in-
jection due to a large number of APCs in the skin. Polysaccharides have certain specific
target cells that show unique advantages in immunotherapy. The main mechanism by
which polysaccharides perform immunomodulation is usually considered to be through
activation of the body’s immune response [184]. Polysaccharides could activate immune
cells such as T lymphocytes and macrophages to exert immune activity [185]. HA with
galactosylated chitosan (GC) modified ES (Eth-HA-GC) was loaded on silk fibroin (SF)
nanofiber mats (Eth HA-GC/SF) to perform transdermal immunization (Figure 13). Galac-
tosyl is thought to be able to target DCs [186]. Eth-HA-GC/SF can target and induce
DCs maturation. Eth-HA-GC/SF loaded with OVA can increase the expression of marker
molecules (CD80, CD86) associated with DCs maturation in BMDCs and improve the
expression of IFN-γ and IL-6 in spleen cells. Eth-HA-GC/SF is considered to have the good
immunotherapeutic potential [187]. Chemically modified polysaccharides often exhibit im-
munomodulatory capabilities. Sulfated polysaccharides can promote interleukin secretion
by macrophages [188], acetylated polysaccharides can enhance antioxidant properties [189],
and carboxymethylated polysaccharides can enhance the ability to induce maturation of
DCs [190]. In general, polysaccharides show promising potential in immunotherapy.
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5.8. Skin Cancer

Malignant melanoma is a fatal type of skin cancer. To reduce the side effects caused
by the systemic application of anticancer drugs, polysaccharide-based transdermal drug
delivery systems provide a new tactic for the effective treatment of skin cancer. Astragalus
polysaccharide was shown to treat melanoma by inducing programmed death-ligand 1
(PD-L1) downregulation [191]. DOX, an anthracycline drug, has been successfully used to
treat several cancers. Carboxymethylcellulose (CMC), a cellulose polysaccharide derivative,
formed nanocomplexes with DOX. The electrostatic interactions stabilized the anionic car-
boxylate group of CMCs and the cationic amino group of DOX. The degree of substitution
of CMC was shown to influence the DOX release. The CMC-DOX nanocomplexes with
citric acid hydrogels could control the drug release [192]. A multifunctional nanoparticle-
integrated soluble MN, called CPT-CuS-ZIF-8@HA@MN, was prepared for the treatment of
malignant melanoma (Figure 14). Nanoparticles were prepared by adding a photothermal
agent (CuS) to Zeolitic imidazolate framework-8 functionalized (ZIF-8) by HA. ZIF-8, a
promising drug carrier for tumor therapy, could be modified to enhance active targeting
capability [193]. HA itself could target CD44, and ZIF-8, modified by HA, could specifi-
cally gift down cellular uptake to enhance therapeutic efficacy. The MNs could be loaded
with multiple drugs simultaneously, improving the specificity of targeting tumors and
overcoming the limitation of monotherapy [105].

5.9. Rheumatoid Arthritis

Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects the joints.
Polysaccharides and polysaccharides-based nanoparticles have been widely researched in
RA treatment [194]. Dendrobium huoshanense stem polysaccharide treats RA by inhibiting
inflammatory signaling pathways [195]. Berberine encapsulated in CS, a surface-modified
bilosome nanogel (BER-CTS-BLS), was used for the treatment of RA. BER-CTS-BLS has a
size of 202.3 nm and has high drug encapsulation and good stability. The positive charge
and bioadhesive properties of BER-CTS-BLS allowed the permeability coefficient of BER-
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CTS-BLS to be 1.5 times higher than that of BER solution, achieving better drug diffusion.
BER-CTS-BLS gel significantly decreased the swelling percentage of rat paw edema after
12 h, providing a new therapeutic approach for the treatment of RA [196]. Cationic starch
and poly (vinyl alcohol) (PVA)-based films loaded with MTX were used for the treatment
of RA, avoiding the intestinal side effects caused by MTX. The films demonstrated good
drug distribution and drug loading ability (>68.4%) [197].
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permission from Yiting Zhao, Acta Biomaterialia; published by Elsevier, 2021.

Acid-responsive nanoparticles could enhance the transdermal treatment of RA. PE-
Gylated star-shaped PLGA, hybridized by the calcium carbonate, formed nanoparticles
[6 s-NPs (CaCO3)], which increase the loading of tetrandrine (Tet). Peach gum polysaccha-
rides (GPs) secreted from peach trees exhibit good antioxidant and antibacterial activities.
The [6s-NPs (CaCO3)] were loaded into MN prepared from GPs (GP-MN). GP-MN exhib-
ited good transdermal effects and better mechanical strength than HA-MN (Figure 15).
This delivery method increases Tet’s synovial uptake and improves the regulation of the
VEGF, JAK2/p-JAK2, and STAT3/p-STAT3 pathways [198].

5.10. Others

In addition to the aforementioned disease treatment, polysaccharides are extensively
employed in treating various illnesses for their distinctive advantages. Pectin-based silver
nanocomposite films loaded with donepezil were used to treat Alzheimer’s disease, where
nanosilver and pectin were compounded to improve the absorption and release of the drug,
exhibiting good antibacterial properties [199]. Sodium carboxymethylcellulose (SCMC)-
based MNs loaded with calcitonin gene-related peptide (CGRP), a neuropeptide released
from sensory nerve terminals, were used as a safe and convenient way to treat neuropathic
pain [200]. Trimethyl CS/sodium alginate multilayer nanomembranes encapsulating pen-
toxifylline (PTX) were used as a new modality to treat chronic venous ulceration [201]. In
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terms of disease treatment, polysaccharide-based transdermal drug delivery demonstrates
its unique advantages and provides a new approach to disease treatment.
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tory, antioxidant, and non-toxic. On top of reducing gastrointestinal side effects, avoiding 

Figure 15. Schematic representation of the preparation of acid-responsive released [6s-NPs (CaCO3)]
MN and the in vivo regulation of the VEGF, JAK2, and STAT3 pathways for the treatment of Rheuma-
toid Arthritis (RA) [198]. Reproduced with permission from Hu, Hongmei, Chemical Engineering
Journal; published by Elsevier, 2022.

6. Conclusions

Polysaccharides, as natural polymers, have been extensively employed in transdermal
drug delivery systems. Polysaccharides derived from herbal, marine, and microbial sources
show unique advantages, such as antibacterial, biodegradable, anti-inflammatory, antiox-
idant, and non-toxic. On top of reducing gastrointestinal side effects, avoiding hepatic
first-pass metabolism, and improving patient compliance, polysaccharide-based transder-
mal drug delivery systems show improved drug targeting, safety, and biocompatibility.

Polysaccharide-based vehicles also demonstrate better properties than traditional
polymers, including (1) better hydrophilicity and swelling properties, stimulus-responsive
hydrogel shows better therapeutic results; (2) better tensile strength, and polysaccharide-
based composite films exhibit better biocompatibility and drug synergy effects; (3) en-
hanced mechanical strength and controlled drugs release by cross-linking and modification
of polysaccharides-based MNs; (4) reduce the hindrance of the “brick and mortar” struc-
ture of the stratum corneum by hydration and charge effects and therefore improve the
drug penetration efficiency. In addition, polysaccharide-based nanoparticles have shown
advantages in the treatment of diseases, including (1) natural targeting ability. They can
be used to target specific receptors and deliver drugs to the treatment site ((2) improve



Pharmaceuticals 2022, 15, 602 23 of 31

penetration ability). They act as a carrier to help deliver drugs to the site of action, improv-
ing the utilization of the drug ((3) natural pharmaceutical activity). Some polysaccharides
exhibit natural an-bacterial and anti-inflammatory ability in the treatment of skin diseases;
((4) better patient compliance). Polysaccharides are biodegradable, which greatly improves
patient compliance.

It Is foreseeable that polysaccharides-based transdermal drug delivery systems will
become a promising way to deliver drugs. They are combining with nanotechnology to
prepare “smart” formulations. In the future, as an alternative to the oral route, improving
portability and acceptability for patients will be essential for further development.
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