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Abstract: Type 2 diabetes mellitus (T2DM) is a notable health care load that imposes a serious
impact on the quality of life of patients. The small amount of reported data and multiple spectra of
pathophysiological mechanisms of T2DM make it a challenging task and serious economic burden
in health care management. Abrus precatorius L. is a slender, perennial, deciduous, and woody
twining plant used in various regions of Asia to treat a variety of ailments, including diabetes
mellitus. Various in vitro studies revealed the therapeutic significance of A. precatorius against
diabetes. However, the exact molecular mechanism remains unclarified. In the present study, a
network pharmacology technique was employed to uncover the active ingredients, their potential
targets, and signaling pathways in A. precatorius for the treatment of T2DM. In the framework
of this study, we explored the active ingredient–target–pathway network and figured out that
abrectorin, abrusin, abrisapogenol J, sophoradiol, cholanoic acid, precatorine, and cycloartenol
decisively contributed to the development of T2DM by affecting AKT1, MAPK3, TNFalpha, and
MAPK1 genes. Later, molecular docking was employed to validate the successful activity of the active
compounds against potential targets. Lastly, we conclude that four highly active constituents, namely,
abrusin, abrisapogenol J, precatorine, and cycloartenol, help in improving the body’s sensitivity
to insulin and regulate the expression of AKT1, MAPK3, TNFalpha, and MAPK1, which may act
as potential therapeutic targets of T2DM. Integrated network pharmacology and docking analysis
revealed that A. precatorius exerted a promising preventive effect on T2DM by acting on diabetes-
associated signaling pathways. This provides a basis to understand the mechanism of the anti-diabetes
activity of A. precatorius.

Keywords: active ingredients; Abrus precatorius; bioinformatics; network pharmacology; molecular
docking

1. Introduction

Type 2 diabetes mellitus (T2DM) is the most common form of diabetes mellitus and
is a rapidly growing global problem [1]. T2DM is associated with the diverse interplay
of genetic, environmental, and behavioral risk factors [2]. T2DM patients are often more
vulnerable to a number of short- and long-term difficulties, which can result in serious
complications [3]. In 2011, 366 million individuals were expected to have diabetes; by
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2030, that number will have increased to 552 million [4]. It is proposed that the incidence
of T2DM will rise in the next couple of decades, with much of the growth appearing in
the developed world [5]. Despite the fact that the etiology and pathogenesis of T2DM are
unclear, insulin resistance has long been thought to be a major pathological hallmark of
T2DM patients [6,7]. As a result, understanding the mechanisms of insulin resistance and
discovering novel drugs that promote insulin sensitivity are critical in the fight against
T2DM. Pharmacotherapy consisting of natural products is seen as a viable therapeutic
method for T2DM and could provide answers to the questions raised above.

Abrus precatorius L. is a herbaceous plant of fabaceae, which flowers in winters. The
latest pharmacological studies suggest that A. precatorius possesses antidiabetic, antimicro-
bial, anticancer, and anti-inflammatory properties due to the presence of natural bioactive
compounds [8,9]. Alkaloids, steroids, tannin, triterpenoids, protein, flavonoids, and pheno-
lic compounds are among the secondary chemicals isolated from A. precatorius [8–11]. The
findings of this study show that A. precatorius is a root and distinctive source of numerous
promising phytochemicals, making it a valuable and adaptable plant with a wide range of
therapeutic qualities.

Network pharmacology (NP) is a rising star in the field of drug discovery, as it
integrates systematic medicine with information science [12]. It is an integrative in silico
approach for introducing a ‘protein-compound/disease-gene’ network in order to reveal
the mechanisms underlying the synergistic therapeutic actions of traditional medicines [13].
This advancement, in turn, has shifted the paradigm from a ‘one-target, one-drug’ mode to
a ‘network-target, multiple-component-therapeutics’ mode.

The use of bioactive compounds to reform medicines in the future is exciting, and
prospects for curing multiple diseases are encouraging. Recently, Li et al. [14] employed
a network pharmacology-based approach to explore the active ingredients of Ge-Gen-
Qin-Lian decoction for the treatment of T2DM. Hence, network pharmacology provided
a powerful means for identifying bioactive ingredients and mechanisms of action for
Traditional Chinese medicinal (TCM) herbs/herbal formulae for the treatment of disease
and disorders [15]. In this current work, a comprehensive NP-based approach was used
to explore the active ingredients of A. precatorius. To the best of our knowledge, this is the
first study that integrated bioinformatics analysis with NP to explore the mechanism of
A. precatorius for T2DM treatment. This study gives a new and novel insight in terms of
understanding the molecular mechanism of the anti-diabetic activity of A. precatorius and
expedites the process of drug discovery. Moreover, this breakthrough has sparked a new
interest in the search for candidate drugs from A. precatorius. In the framework of this study,
bioactive compounds of A. precatorius, as well as the putative mechanism underlying its
anti-T2DM effect, were analyzed by employing a network pharmacology approach along
with molecular-docking analysis. Moreover, laboratory experiments are recommended to
explore the substance’s pharmacological potential in the near future.

2. Materials and Methods
2.1. Collection and Screening of Active Compounds

Information on active constituents of A. precatorius was retrieved from literature as
well as database of biologically active phytochemicals (Indian Medicinal Plants, Phyto-
chemistry Additionally, Therapeutics (IMPPAT) [16], traditional Chinese medicine systems
pharmacology (TCMSP) [17], and KNApSAcK [18]) were used to collect the active con-
stituents of A. precatorius. ‘Abrus precatorius’ was used as a keyword in databases, while
a literature search was carried out on Pubmed and Google Scholar. All ingredients of A.
precatorius were virtually screened by applying bioavailability (F) and drug-likeness (DL)
parameters, which are crucial in the characteristics of absorption, distribution, metabolism,
and excretion (ADME) characteristics of drugs. Ingredients were only retained if DL ≥ 0.18
and F ≥ 30% to satisfy ADME criteria. In this regard, F30% and DL of all active compounds
were calculated using SwissADME and ADMETlab. Meanwhile, chemical information
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(CID number, structure, and molecular weight) of screened compounds was also collected
from PubChem and ChemSpider.

2.2. Screening for Potential Target Genes for A. precatorius Active Constituents against T2DM

Putative targets of the selected compounds of A. precatorius were predicted using Swiss
Target Prediction [19] and STITCH databases [20]. Screened compounds were uploaded
to STITCH database in order to achieve the targets with the search limited to ‘Homo
sapiens’. Only targets with a combined score of ≥0.7 were selected for subsequent analysis,
while SMILES number of each constituent was used in the online platform of Swiss Target
Prediction to obtain targets using reverse pharmacophore matching approach. Therefore,
the targets with probability ≥0.7 were selected.

Prediction of disease-related genes is the next preliminary step to explore the molecular
mechanism of medicinal herbs to treat multiple diseases and disorders. Two databases,
GeneCard [21] and Online Mendelian Inheritance in Man (OMIM), were searched with
keywords ‘Type 2 diabetes mellitus’ and ‘T2DM’ to retrieve disease-related genes. In
addition, these databases also provided concise genomic information along with functional
annotation of known human genes. All duplicated genes were discarded from the final
gene list, and UniProtKB [22] was employed to obtain the standard name of the target gene,
with the organism selected as ‘Homo sapiens’. Then, the predicted target genes of screened
A. precatorius compounds and T2DM-related targets were intersected, and Venn plot was
drawn to extract the common targets for subsequent analysis.

2.3. Pathway and Functional Enrichment Analysis

Database for annotation, visualization, and integrated discovery (DAVID) was hired to
perform functional annotation and enrichment analysis [23]. The key targets were subjected
to DAVID for the prediction of function at three levels: biological process (BP), molecular
function (MF), and cellular component (CC). In this study, adjusted p-value ≤ 0.05 was
selected, and top 10 GO enrichment and top 10 KEGG pathways with higher counts were
chosen for further analysis.

2.4. Network Construction

Network analysis was performed to understand the mechanism of A. precatorius
in T2DM. The network was constructed and visualized by Cytoscape 3.8.0, which is a
freely available graphical user interface for importing, visually exploring, and analyzing
biomolecular interaction networks. Nodes were used to represent the active constituents
and target genes in the network, while interactions between active constituents and their
target genes were indicated by edges. Network analyzer tool was used to calculate degree,
a topological property that reveals the importance of compound/target gene/pathways
in network diagram. Further, target genes with the highest degree of connectivity were
considered as ‘key targets’.

2.5. Protein–Protein Network Construction and Molecular Docking

Protein–protein interactions (PPI) are highly significant by virtue of having high
versatility, adaptability, and specificity [24–26]. Search Tool for the Retrieval of Interacting
Genes/Proteins (STRING) was used to determine the functional interactions among key
targets with a combined score of more than 0.4 [27]. The PPI network obtained from
STRING was subjected to the CytoHubba plugin of cytoscape, which was used to analyze
the core regulatory genes of the PPI network and the identification of key targets.

Furthermore, key targets were validated through molecular docking approach. The
RCSB Protein Data Bank was used to obtain the X-ray crystal structures of candidate
targets [28]. PDB is a single worldwide archive containing information related to the 3D
structures of proteins and nucleic acids. In addition, refinement of structure was completed
using Chimera [29]. Then, site finder tool from molecular operating environment (MOE)
was used to find binding pockets of target proteins [30], and PyRx software was employed
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to perform target docking among core targets and active compounds [31]. The best-docked
poses with the lowest root mean square deviation (RMSD) and binding energy were selected
for further analysis. Docking scores between core target and compounds were utilized as
key evaluation criteria to filter out potential constituents and their putative targets. For each
docked complex, the model with maximum absolute value of binding energy and highest
were considered accurate. Moreover, Chimera X [32] and discovery studio [33] were used
for visualization of interaction among active compounds and predicted proteins/targets.

2.6. ADMET Profiling

SWISS ADME online server was used to check the physiochemical properties of
compounds, including absorption, distribution, metabolism, excretion, and toxicity [34].
All those properties influence the levels of drug or kinetics of drug revelation to the tissues
and therefore influence the pharmacological activity and performance of the compound as
a medication [35]. Good-quality drug molecules should have adequate efficacy against the
therapeutic targets and indicate appropriate ADMET properties at a therapeutic dose [36].
ADMET predictor is a machine learning software that reliably predicts the best drug
candidates by passing 175 parameters, including solubility, logp, and pKa sites of CYP
metabolism [37]. Protox II tool was used for the toxicity prediction of different types of
toxicity, such as cytoxicity, mutagenicity, AMES, and carcenogenes. The workflow of the
present study is displayed in Figure 1.
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Figure 1. Graphical synopsis representing the overall strategy used in the prediction of potential
compounds and their potential targets for T2DM treatment.

3. Results
3.1. Screening of Active Compounds and Targets

After searching, filtering, and removal of the duplicates, 11 putative components
(Abrisapogenol J, Precatorine, Sophoradiol, Abrectorin, Isoorientin, Cholanoic acid, Cy-
cloartenol, Amyrin, luteolin, Skrofulein, and Abrusin) with F ≥ 30% and DL ≥ 0.18 were
selected (Table 1). F30 means that the bioavailability is 30%. Bioavailability is the rate
and extent to which the active constituent or active moiety of a drug is absorbed from a
drug product and reaches the circulation [38]. Compounds that are formulated to have
high bioavailability will be more effective, as they will help the body to absorb more of the
appropriate nutrient without having to take higher doses. Drug likeness (DL) measures
the likelihood of a chemical becoming an oral drug in terms of bioavailability. DL derived
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from structures and properties of existing drugs and drug candidates has been widely used
to filter out undesirable compounds in the early phases of drug discovery [34]. Further,
456 potential target genes of 11 active constituents were retrieved from the Swiss Target
Prediction database. After identifying the promising targets of compounds, a total of
11,563 genes affiliated with T2DM were retrieved from GeneCards and OMIM databases.
Later, the common targets of both T2DM and the compound-related genes were predicted
through a Venn diagram. A total of 397 potential anti-T2DM genes of A. precatorius were
selected and considered as key targets.

Table 1. Active compounds, their properties, and structures.

Molecule Name Molecular
Weight (MW)

Drug Likeness
(DL)

Bioavailability
(F30%) Structure PubChem ID

Abrisapogenol J 456.78 0.74 0.82
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Table 1. Cont.

Molecule Name Molecular
Weight (MW)

Drug Likeness
(DL)

Bioavailability
(F30%) Structure PubChem ID

Isoorientin 448.41 0.76 1
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Table 1. Cont.

Molecule Name Molecular
Weight (MW)

Drug Likeness
(DL)

Bioavailability
(F30%) Structure PubChem ID

Skrofulein 314.31 0.3 0.632
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3.2. Compounds—Target Network Construction

A total of 11 satisfactory active compounds were obtained from A. precatorius. Further,
11 active compounds, 397 key targets, and their associated pathways with a maximum
number of genes were chosen for the construction of an ‘active compound–targeted genes–
connected pathway’ network diagram. Each of these active compounds corresponded to
multiple targets. This is a strong indication that many targets may induce a synergistic
effect when A. precatorius serves as an anti-type 2 diabetic agent. The degree of these
11 compounds in the compound–targeted genes–connected pathways network was then
evaluated (Table 2). As highlighted in Table 2, triterpenoids, along with flavonoids, had the
highest degree of connectivity, but the degree of both alkaloids and steroids was compara-
tively low compared to triterpenoids and flavonoids. Further, from these 11 compounds,
7 compounds were selected for docking analysis: 2 flavonoids with the highest degree
of connectivity, particularly abrectorin and abrusin; 3 triterpenoid components, namely,
abrisapogenol J, sophoradiol, and cholanoic acid; 1 alkaloid, namely, precatorine; and
1 steroid component, namely, cycloartenol.

Table 2. Degree of 11 compounds explored through network analyzer in Cytoscape.

Molecule Name Class Degree

Abrectorin Flavonoids 58
Abrusin Flavonoids 45

isoorientin Flavonoids 15
Skrofulein Flavonoids 5
Luteolin Flavonoids 4

Abrisapogenol J Triterpenoids 94
Cholanoic acid Triterpenoids 40

Sophoradiol Triterpenoids 36
Amyrin Triterpenoids 7

Precatorine Alkaloids 78
Cycloartenol Steroids 16
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3.3. PPI Network Construction

The 397 overlapped genes were submitted into the STRING database for the construc-
tion of the PPI network. In the PPI network, nodes and their associated interactions indicate
the interrelationship among multiple targets during disease development (Figure 2A).
Later, a network analyzer tool was employed for analyzing the PPI network of overlapped
genes (Figure 2C). AKT1 (182), GAPDH (171), TP53 (154), MAPK3 (142), EGFR (137),
TNFalpha (134), MAPK1 (133), SRC (129), CASP3 (124), and HSP90AA1 (113) showed
the highest degrees of overlapping (Figure 2D). The highest degree means that targeted
genes are greatly correlated with each other; hence, all these genes might be key targets.
After comparing these findings with those supplied by enrichment analysis (Table 3), four
genes, particularly AKT1, MAPK3, TNFalpha, and MAPK1, were identified as the main
anti-T2DM targets of A. precatorius and were chosen for molecular-docking experiments.
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Figure 2. Network-pharmacology-based analysis of multi-compound, multi-target, and multi-
pathway treatment for T2DM. (A) Network diagram of compounds and their targets. (B) Network
diagram of target genes–enrichment pathways. The blue octagon indicates the targets, and pink
nodes indicate the pathways. (C) Top 10 genes ranked by degree. (D) The bar plot of the PPI network.
(E) Observed expression of 10 target genes in Homo sapiens.
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Table 3. Top 10 genes ranked by degree.

Gene Name Compounds Score Pathways

AKT1 Abrectorin/isoorientin/Luteolin 182 AMPK signaling pathway, insulin resistance,
PI3K-Akt signaling pathway, insulin signaling pathway

GAPDH Abrusin 171 Metabolic pathways

TP53 Cholanoic acid 154 PI3K-Akt signaling pathway

MAPK3 Abrisapogenol J/Cycloartenol/Amyrin 142 PI3K-Akt signaling pathway, insulin signaling pathway

EGFR Abrectorin/isoorientin/Luteolin 137 PI3K-Akt signaling pathway

TNFalpha Isoorientin 134 Type II diabetes mellitus, insulin resistance

MAPK1 Precatorine/Cholanoic acid 133 Type II diabetes mellitus, insulin resistance,
insulin signaling pathway

SRC Precatorine/sophoradiol 129 Rap1 signaling pathway

CASP3 Precatorine 124 p53 signaling pathway

HSP90AA1 Abrusin 113 PI3K-Akt signaling pathway

3.4. GO and KEGG Analysis

The functional annotation and enrichment analysis revealed potential biological func-
tions of A. precatorius targets. According to GO functional analysis, A. precatorius targets
were related to protein autophosphorylation, insulin receptor substrate binding, the reg-
ulation of insulin secretion, and so forth (Figure 3). The KEGG pathway analysis was
performed to identify the significant signaling pathways linked to the anti-T2DM effect of
A. precatorius. It is noteworthy that most of the genes were involved in the following path-
ways: neuroactive ligand–receptor interactions (47), insulin resistance (22), type II diabetes
mellitus (16), and pathways in cancer (55). Finally, KEGG pathway analysis revealed that
AKT1, MAPK3, TNFalpha, and MAPK1 were significantly enriched genes (Figure 4).
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(A) GO in terms of biological processes. (B) GO in terms of molecular function. (C) GO in terms of
cellular components. (D) KEGG pathway analysis.
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3.5. Molecular Docking

Through systematic analysis of the PPI network, the top four compounds, named
MAPK1, MAPK3, TNFalpha, and AKT1, were selected for molecular docking. The crystal
structure of target proteins (MAPK1 (PDB id: 4IZ5), MAPK3 (PDB id: 2ZOQ), TNFalpha
(PDB id: 2AZ5), and AKT1 (PDB id: 3QKK)) were retrieved from PDB. Structural refinement
was completed by using the ucsf chimera tool. Energy minimization was completed at
1000 decent steps, while the non-standard residues were also removed from the receptors of
the protein to avoid clashes and incorrect configurations. Molecular docking was performed
to screen out the putative targets of constituents with the ability to lower the risk of T2DM.
Docking analysis successfully predicted the strong binding affinity between constituents
and the binding pockets of four target proteins. Docking scores, along with binding
energy, were employed as key criteria for compound screening (Table 4). Clusters having a
maximum absolute value of binding energy and highest conformation were selected. 2az5
had the maximum binding energy and RMSD with abrisapogenol J and abrusin, 2zoq has
the highest RMSD and binding energy with cycloartenol and precatorine, 3qkk has the
maximum binding energy and RMSD with abrisapogenol J and abrusin, and 4iz5 binds
stably with abrusin and cycloartenol. Hence, these results imply that active constituents
of A. precatorius bind stably with four target proteins and function as a T2DM repressor.
Moreover, Thalidomide [39], Minocycline [39], Resveratrol [40], and Ulixertinib [41] were
identified as positive control drugs of TNFalpha, MAPK3, AKT1, and MAPK1, respectively.
Molecular-docking analysis demonstrated that abrisapogenol J, abrusin, cycloartenol, and
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precatorine showed stronger binding energies with the target protein compared to positive
control drugs (Table 5). This fact revealed the validity of the present work. Additionally,
understanding the interaction between these four targets is core to deeply understanding
the mechanism of action of active constituents against T2DM. All the drug candidates
showed hydrogen bond, Pi–pi-stacked, and van der Waals interactions with the receptor
proteins, indicated with dotted lines mentioned in the additional file (Supplementary File,
Table S1). Furthermore, hydrogen bonds interactions with receptor proteins are mentioned
in Figure 5. Overall, these findings add to a new growing body of evidence suggesting
that these four proteins are putative targets of A. precatorius for the treatment of T2DM.
Moreover, the binding pockets of active constituents with the core protein will become the
focus of further study. Figure 5 represents the sketch maps of target proteins together with
their strongest binding components.
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Table 4. Binding energy and interactions of potential active compounds and their four target proteins.

Target Proteins
(PDB ID) Compounds Binding Affinity

(kcal/mol) RMSD Interacting Residues

2az5
Abrisapogenol J −9.7335 1.45 HIS C: 15, LEU A: 36, VAL C: 17, ALA A: 38, LYS A: 11,

ASP A: 10, ASN A: 39, ILE A: 155, TYR C: 151

Abrusin −9.5991 2.02 HIS C: 15, LEU A: 36, VAL A: 13, LEU C: 36, ASP A: 100,
GLN C: 150

2zoq
Cycloartenol −12.529 1.32 GLY A: 102, ASP A: 123, LYS A: 181, ARG A: 104,

HIS B: 195

Precatorine −12.527 1.32 GLY A: 102, ASP A: 123, LYS A: 181, ARG A: 104,
HIS B: 195

3qkk
Abrisapogenol J −13.22 0.84 LEU A: 295, LEU A: 181,PHE A: 161, LYS A: 158, PHE

A: 442, VAL A: 164, GLU A: 278, GLU A: 234, ARG C: 4

Abrusin −14.91 1.93 LEU A: 181,LYS A: 179, ASP A: 292, THR A: 291,
SER C: 7, LYS A: 276, ARG C: 4

4iz5
Abrusin −13.41 1.32 SER F: 70, SER F: 25, ALA F: 26, GLY C: 182, LYS F: 28,

GLU F: 29, THR C: 181

Cycloartenol −11.716 1.92 GLN C: 66, ASP F: 30

Table 5. Binding energy and interactions of control drugs.

Target Protein Control Drug PubChem ID Binding Energy RMSD

TNFalpha Thalidomide 5426 −6.9 1.3

MAPK3 Minocycline 54675783 −6.7 1.9

AKT1 Resveratrol 445154 −5.9 1.8

MAPK1 Ulixertinib 11719003 −6.2 3.48

3.6. ADMET Profiling

ADMET analysis is a challenging process in drug discovery. This is achieved through
SwissADME database and showed that selected compounds have good pharmacokinetic
properties. ADMET profiling of all those top selected drug candidates shows that there
is no side effect of pharmacokinetic properties of all potential compounds (Table 6). The
associated ADMET properties of the potential compounds for different models, such as P-
glycoprotein substrates, BBB penetration, and gastrointestinal absorption, showed positive
results that strongly support the compounds’ ability to function as a drug candidate. All the
compounds showed non-toxic behavior, although different types of toxicity were measured
for all compounds, and none of the compounds showed toxic behavior.

Table 6. ADMET profiling of compounds.

Compounds Abrisapogenol J Abrusin Precatorine Cycloartenol

GI absorption Low Low High High

BBB permeant No No No No

P-gp substrate No No No No

CYP1A2 inhibitor No No No No

CYP2C19 inhibitor No No No No

CYP2C9 inhibitor No No No No

CYP2D6 inhibitor No No No No
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Table 6. Cont.

Compounds Abrisapogenol J Abrusin Precatorine Cycloartenol

Toxicity

Reverse Mutation
Assay AMES Test Non-Toxic Non-Toxic Non-Toxic Non-Toxic

Carcinogens No No No No

Cytotoxicity Non-Cytotoxic Non-Cytotoxic Non-Cytotoxic Non-Cytotoxic

Mutagenicity No No No No

4. Discussion

Type 2 diabetes mellitus is a multifactorial chronic metabolic condition characterized
by relative insulin deficiency, hyperglycemia, and insulin resistance [42]. All around the
globe, the rate of patients with diabetes mellitus has reached an unimaginable level, and
80 percent of those with the disease reside in low- and middle-income countries [43]. Met-
formin, Repaglinide, Sitagliptin, Glimepiride, Pioglitazone, Sitagliptin, and Acarbose [44]
are generally prescribed for T2DM patients, but all these oral anti-diabetic medicines have
been linked to major side effects. As a result, the search for new medications has grown
more focused. In this context, a high-potency source of phytoconstituents with health
advantages could be a promising T2DM treatment candidate.

Medicinal plants are considered a natural pool and an infinite source of medicinal
agents due to the presence of naturally occurring compounds [45,46]. Natural products
and their derivatives make up nearly half of all clinically used pharmaceuticals, and due to
their structural variety, multi-target action, and low toxic side effects, they have been a hot
topic in recent years as a research trend and possible source for targeted drugs. Over the
past dozen years, high-throughput techniques have proposed a strong arm in screening the
pharmacological efficacy of herbal medicines in drug discovery [47,48]. The discovery of
potentially bioactive compounds that cease the pathophysiology of disorders and diseases
will be considered a thunderbolt of this present epoch.

A. precatorius is a medicinal herb abundantly found across Afro-Asian regions of the
world. This plant has therapeutic properties used to treat a variety of ailments. Various
parts of the plant, such as seeds, roots, and leaves, are utilized for a variety of medical
purposes. Flavonoids, glycosides, triterpenoids, abrin, and alkaloids are the main compo-
nents of A. precatorius [8,49,50]. The conventional usage of A. precatorius in the treatment
and management of diabetes mellitus has been emphasized in various reports [51,52].
Of note, compounds of A. precatorius revealed efficacy in treating breast cancer [53] and
diabetes mellitus [54]. This study is a touchstone for the initial screening of bioactive
compounds of A. precatorius as well as a new therapeutic concept for further exploration on
mechanisms of A. precatorius for T2DM treatment. In our line of work, screening results
represented that triterpenoids, flavonoids, steroids, and alkaloids were the main bioactive
compound of A. precatorius, which played a decisive role in the development of T2DM by
affecting AKT1, MAPK3, TNFalpha, and MAPK1 genes. Furthermore, molecular docking
also confirmed our findings that stable binding forces exist between core compounds and
key targets. By constructing a model of ‘herb-active compounds–targets–pathways’, we
discovered that abrectorin, abrusin, abrisapogenol J, sophoradiol, cholanoic acid, preca-
torine, and cycloartenol had a strong association in the network, indicating that it has
anti-diabetic properties. Moreover, molecular docking also strengthened our findings by
successfully validating the interaction that exists between highly active constituents and
their putative targets. Finally, the associated ADMET properties of potential compounds for
different models, such as P-glycoprotein substrates, BBB penetration, and gastrointestinal
absorption, showed positive results that strongly support the compounds’ suitability as
drug candidates.
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According to GO functional analysis, the anti-diabetic targets of A. precatorius were
mainly involved in insulin receptor substrate binding, protein autophosphorylation, insulin
receptor substrate binding, and the regulation of insulin secretion. KEGG pathway studies
revealed that targets were concentrated in diabetes-related pathways. In addition to
being enriched in diabetes-related pathways, anti-diabetic targets were also involved in
other pathways that are intimately tied with T2DM, such as neuroactive ligand–receptor
interaction, the AMPK signaling pathway, the PI3K-Akt signaling pathway, and pathways
in cancer.

In the current analysis, we discovered many target genes participating in various
metabolic pathways. By targeting the genes that cause disturbance in metabolic pathways,
the pathophysiology of disease can be halted. A few of studies strengthened our findings,
such as one that showed that most people suffering from T2DM are insulin resistant just
because of glucose toxicity [55]. It is noteworthy that two of our key targets, namely,
AKT1 and MAPK1, are mainly involved in insulin-resistant pathways. AKT1 or Akt
serine/threonine kinase 1 regulates glucose metabolism [56]. This gives clear evidence
to the concept that the dysregulation of AKT1 signaling pathways may be affiliated with
an increased risk of T2DM. In the wake of the worldwide increase in T2DM, the central
theme of research is to better understand the signaling pathways affecting this disease.
Our analysis proposed that AKT1, MAPK1, and MAPK3 are directly involved in insulin
signaling pathways. Hence, variation in these genes may cause disturbance in the associated
pathways, which in turn leads to a disease state. Beyond this, the targeted genes of active
constituents are also enriched in various inflammatory conditions such as rheumatoid
arthritis, which seems to indicate that it can act on various anti-inflammatory cytokines
and exert an effect on T2DM.

According to the ‘compounds–targets network’, we screened seven compounds and
four genes for a docking experiment. Furthermore, docking results verified our findings
and showed that abrisapogenol J, abrusin, cycloartenol, and precatorine bind stably with the
active pockets of target genes, which spotlight that these compounds can be considered for
the treatment of T2DM by inhibiting AKT1, MAPK3, TNFalpha, and MAPK1 genes. In the
light of network pharmacology, the current study elaborates on the active compounds, their
potential targets, and associated pathways to treat T2DM, hence providing a theoretical
basis for additional experimental research. Bearing in mind the limitations of network
pharmacology, the basic pharmacological mechanisms for the treatment of T2DM is only
achieved by mining data. Network pharmacology presently relies on different databases
for bioactive mining. Databases, though curated, may show discrepancies due to numerous
sources of information and experimental data. A way to navigate around this problem
is to make use of modern, high-throughput chemical identification techniques such as
ultra-performance liquid chromatography–electrospray mass spectroscopy [57]. Despite
the fact that we have presented some interesting data, additional studies and clinical trials
are needed to explore the potential of A. precatorius to validate their medicinal usages.

5. Conclusions

This research establishes the latest scientific foundation for determining the efficacy of
multi-component, multi-target compound formulas, together with exploring more thera-
peutic targets for T2DM. In this study, we incorporated a network pharmacology approach
with molecular docking in order to uncover the molecular mechanisms of A. precatorius
for the treatment of T2DM. Further, our findings propose that AKT1, MAPK3, TNFalpha,
and MAPK1 genes are promising and viable therapeutic targets to reduce the incidence of
T2DM, thereby exerting potential therapeutic effects in T2DM. However, this study also has
certain limitations, as pharmacological and clinical research still need to further validate
our findings. This approach introduces a groundwork for further research on the protective
mechanisms of A. precatorius for T2DM and applications of network pharmacology in
drug discovery.



Pharmaceuticals 2022, 15, 414 15 of 17

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15040414/s1, Supplementary File, Table S1: Interaction analysis
of docked complexes.

Author Contributions: Author Contributions: Conceptualization, S.A.; Data curation, F.N., A.R.
and M.H.S.; Formal analysis, S.A., F.N. and M.K.O.; Methodology, F.N., A.R. and A.A.-H. Project
administration, S.A.; Supervision, S.A.; Validation, H.A. and M.H.S.; Funding acquisition, M.K.O.;
Writing—original draft, F.N.; Writing—review and editing, M.K.O., A.A.-H., S.A., U.A.A. and H.A.
All authors have read and agreed to the published version of the manuscript.

Funding: There is no funding for this study.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is contained within the article and Supplementary Materials.

Acknowledgments: The authors extend their appreciation to the researchers supporting project
number (RSP-2021/219), King Saud University, Riyadh, Saudi Arabia.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Tuei, V.C.; Maiyoh, G.K.; Ha, C.E. Type 2 diabetes mellitus and obesity in sub-Saharan Africa. Diabetes/Metab. Res. Rev. 2010, 26,

433–445. [CrossRef] [PubMed]
2. Forouhi, N.G.; Wareham, N.J. The EPIC-InterAct Study: A study of the interplay between genetic and lifestyle behavioral factors

on the risk of type 2 diabetes in European populations. Curr. Nutr. Rep. 2014, 3, 355–363. [CrossRef] [PubMed]
3. Vermeire, E.I.; Wens, J.; Van Royen, P.; Biot, Y.; Hearnshaw, H.; Lindenmeyer, A. Interventions for improving adherence to

treatment recommendations in people with type 2 diabetes mellitus. Cochrane Database Syst. Rev. 2005, 2, CD003638. [CrossRef]
[PubMed]

4. Whiting, D.R.; Guariguata, L.; Weil, C.; Shaw, J. IDF diabetes atlas: Global estimates of the prevalence of diabetes for 2011 and
2030. Diabetes Res. Clin. Pract. 2011, 94, 311–321. [CrossRef]

5. Olokoba, A.B.; Obateru, O.A.; Olokoba, L.B. Type 2 diabetes mellitus: A review of current trends. Oman Med. J. 2012, 27, 269.
[CrossRef]

6. Mukherjee, A.; Morales-Scheihing, D.; Butler, P.C.; Soto, C. Type 2 diabetes as a protein misfolding disease. Trends Mol. Med. 2015,
21, 439–449. [CrossRef]

7. Zhao, W.-Q.; Townsend, M. Insulin resistance and amyloidogenesis as common molecular foundation for type 2 diabetes and
Alzheimer’s disease. Biochim. Biophys. Acta (BBA)-Mol. Basis Dis. 2009, 1792, 482–496. [CrossRef]

8. Garaniya, N.; Bapodra, A. Ethno botanical and Phytophrmacological potential of Abrus precatorius L.: A review. Asian Pac. J. Trop.
Biomed. 2014, 4, S27–S34. [CrossRef]

9. Ghosal, S.; Dutta, S. Alkaloids of Abrus precatorius. Phytochemistry 1971, 10, 195–198. [CrossRef]
10. Sujit, K.; Tanusri, B.; Sourav, P.; Jadupati, M.; Amites, G.; Amitava, G. Pharmacognostical studies and chromatographic evaluation

of the different extracts of Abrus precatorius Linn. Int. J. Pharm. Res. Dev. 2012, 4, 225–233.
11. Chang, H.-M.; Chiang, T.-C.; Mak, T.C. Isolation and structure elucidation of abruslactone a: A new oleanene-type triterpene

from the roots and vines of Abrus precatorius L. J. Chem. Soc. Chem. Commun. 1982, 20, 1197–1198. [CrossRef]
12. Dong, Y.; Hao, L.; Fang, K.; Han, X.-X.; Yu, H.; Zhang, J.-J.; Cai, L.-J.; Fan, T.; Zhang, W.-D.; Pang, K. A network pharmacology

perspective for deciphering potential mechanisms of action of Solanum nigrum L. in bladder cancer. BMC Complement. Med. Ther.
2021, 21, 45. [CrossRef] [PubMed]

13. Chandran, U.; Mehendale, N.; Patil, S.; Chaguturu, R.; Patwardhan, B. Network pharmacology. In Innovative Approaches in Drug
Discovery; Elsevier: Amsterdam, The Netherlands, 2017; pp. 127–164.

14. Li, H.; Zhao, L.; Zhang, B.; Jiang, Y.; Wang, X.; Guo, Y.; Liu, H.; Li, S.; Tong, X. A network pharmacology approach to determine
active compounds and action mechanisms of ge-gen-qin-lian decoction for treatment of type 2 diabetes. Evid.-Based Complement.
Altern. Med. 2014, 2014, 495840. [CrossRef] [PubMed]

15. Shao, L.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat.
Med. 2013, 11, 110–120.

16. Mohanraj, K.; Karthikeyan, B.S.; Vivek-Ananth, R.; Chand, R.; Aparna, S.; Mangalapandi, P.; Samal, A. IMPPAT: A curated
database of Indian medicinal plants, phytochemistry and therapeutics. Sci. Rep. 2018, 8, 4329. [CrossRef]

17. Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y. TCMSP: A database of systems pharmacology
for drug discovery from herbal medicines. J. Cheminform. 2014, 6, 13. [CrossRef]

18. Nakamura, K.; Shimura, N.; Otabe, Y.; Hirai-Morita, A.; Nakamura, Y.; Ono, N.; Ul-Amin, M.A.; Kanaya, S. KNApSAcK-3D: A
three-dimensional structure database of plant metabolites. Plant Cell Physiol. 2013, 54, e4. [CrossRef]

https://www.mdpi.com/article/10.3390/ph15040414/s1
https://www.mdpi.com/article/10.3390/ph15040414/s1
http://doi.org/10.1002/dmrr.1106
http://www.ncbi.nlm.nih.gov/pubmed/20641142
http://doi.org/10.1007/s13668-014-0098-y
http://www.ncbi.nlm.nih.gov/pubmed/25383255
http://doi.org/10.1002/14651858.CD003638.pub2
http://www.ncbi.nlm.nih.gov/pubmed/15846672
http://doi.org/10.1016/j.diabres.2011.10.029
http://doi.org/10.5001/omj.2012.68
http://doi.org/10.1016/j.molmed.2015.04.005
http://doi.org/10.1016/j.bbadis.2008.10.014
http://doi.org/10.12980/APJTB.4.2014C1069
http://doi.org/10.1016/S0031-9422(00)90270-X
http://doi.org/10.1039/c39820001197
http://doi.org/10.1186/s12906-021-03215-3
http://www.ncbi.nlm.nih.gov/pubmed/33494738
http://doi.org/10.1155/2014/495840
http://www.ncbi.nlm.nih.gov/pubmed/24527048
http://doi.org/10.1038/s41598-018-22631-z
http://doi.org/10.1186/1758-2946-6-13
http://doi.org/10.1093/pcp/pcs186


Pharmaceuticals 2022, 15, 414 16 of 17

19. Gfeller, D.; Grosdidier, A.; Wirth, M.; Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: A web server for target prediction
of bioactive small molecules. Nucleic Acids Res. 2014, 42, W32–W38. [CrossRef]

20. Szklarczyk, D.; Santos, A.; Von Mering, C.; Jensen, L.J.; Bork, P.; Kuhn, M. STITCH 5: Augmenting protein–chemical interaction
networks with tissue and affinity data. Nucleic Acids Res. 2016, 44, D380–D384. [CrossRef]

21. Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H. GeneCards
Version 3: The human gene integrator. Database 2010, 2010, baq020. [CrossRef]

22. Boutet, E.; Lieberherr, D.; Tognolli, M.; Schneider, M.; Bairoch, A. Uniprotkb/swiss-prot. In Plant Bioinformatics; Springer:
Berlin/Heidelberg, Germany, 2007; pp. 89–112.

23. Sherman, B.T.; Tan, Q.; Collins, J.R.; Alvord, W.G.; Roayaei, J.; Stephens, R.; Baseler, M.W.; Lane, H.C.; Lempicki, R.A. The DAVID
Gene Functional Classification Tool: A novel biological module-centric algorithm to functionally analyze large gene lists. Genome
Biol. 2007, 8, R183.

24. Noor, F.; Saleem, M.H.; Aslam, M.F.; Ahmad, A.; Aslam, S. Construction of miRNA-mRNA network for the identification of key
biological markers and their associated pathways in IgA nephropathy by employing the integrated bioinformatics analysis. Saudi
J. Biol. Sci. 2021, 28, 4938–4945. [CrossRef] [PubMed]

25. Sufyan, M.; Ashfaq, U.A.; Ahmad, S.; Noor, F.; Saleem, M.H.; Aslam, M.F.; El-Serehy, H.A.; Aslam, S. Identifying key genes and
screening therapeutic agents associated with diabetes mellitus and HCV-related hepatocellular carcinoma by bioinformatics
analysis. Saudi J. Biol. Sci. 2021, 28, 5518–5525. [CrossRef] [PubMed]

26. Noor, F.; Ashfaq, U.A.; Javed, M.R.; Saleem, M.H.; Ahmad, A.; Aslam, M.F.; Aslam, S. Comprehensive computational analysis
reveals human respiratory syncytial virus encoded microRNA and host specific target genes associated with antiviral immune
responses and protein binding. J. King Saud Univ.-Sci. 2021, 33, 101562. [CrossRef]

27. Mering, C.v.; Huynen, M.; Jaeggi, D.; Schmidt, S.; Bork, P.; Snel, B. STRING: A database of predicted functional associations
between proteins. Nucleic Acids Res. 2003, 31, 258–261. [CrossRef]

28. Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank.
Nucleic Acids Res. 2000, 28, 235–242. [CrossRef]

29. Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—A visualiza-
tion system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [CrossRef]

30. Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): Application of QSAR and
molecular docking to drug discovery. Curr. Top. Med. Chem. 2008, 8, 1555–1572. [CrossRef]

31. Dallakyan, S.; Olson, A.J. Small-molecule library screening by docking with PyRx. In Chemical Biology; Springer:
Berlin/Heidelberg, Germany, 2015; pp. 243–250.

32. Goddard, T.D.; Huang, C.C.; Meng, E.C.; Pettersen, E.F.; Couch, G.S.; Morris, J.H.; Ferrin, T.E. UCSF ChimeraX: Meeting modern
challenges in visualization and analysis. Protein Sci. 2018, 27, 14–25. [CrossRef]

33. Discovery Studio. Accelrys [2.1]San Diego, CA, USA. 2008. Available online: https://discover.3ds.com/discovery-studio-
visualizer (accessed on 30 November 2021).

34. Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal
chemistry friendliness of small molecules. Sci. Rep. 2017, 7, 42717. [CrossRef]
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