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Abstract: Acute myeloid leukemia (AML) is an aggressive hematological malignancy characterized by
uncontrolled proliferation of immature myeloid progenitors. Here, we report the in vitro antileukemic
effects of the sesquiterpene thioalkaloid-enriched fraction of the Nuphar lutea leaf extract (NUP) and a
purified thioalkaloid 6,6′-dihydroxythiobinupharidine (DTBN). Treatment with 0.3–10 µg/mL NUP
caused a dose- and time-dependent reduction in proliferation and viability of human AML cells
(KG-1a, HL60 and U937). This was associated with apoptosis induction manifested by annexin-
V/propidium iodide binding as well as cleavage of caspases 8, 9, and 3 as well as poly (ADP-ribose)
polymerase. Caspase-dependence of the apoptotic effect was confirmed using the pan-caspase
inhibitor Q-VD-OPH. NUP induced significant biphasic changes in the cytosolic levels of reactive
oxygen species (ROS) compared to untreated cells—a decrease at early time points (2–4 h) and an
increase after a longer incubation (24 h). ROS accumulation was accompanied by lowering the
cellular glutathione (GSH) levels. In addition, NUP treatment resulted in elevation of the cytosolic
Ca2+ (Ca2+

cyt) levels. The thiol antioxidant and glutathione precursor N-acetyl cysteine prevented
NUP-induced ROS accumulation and markedly inhibited apoptosis. A similar antiapoptotic effect
was obtained by Ca2+

cyt chelating using BAPTA. These data indicate that NUP-induced cell death is
mediated, at least in part, by the induction of oxidative stress and Ca2+

cyt accumulation. However,
a substantial apoptotic activity of pure DTBN (0.05–0.25 µg/mL), was found to be independent
of cytosolic ROS or Ca2+, suggesting that alternative mechanisms are involved in DTBN-induced
cytotoxicity. Notably, neither NUP nor DTBN treatment significantly induced cell death of normal
human peripheral blood mononuclear cells. Our results provide the basis for further investigation of
the antileukemic potential of NUP and its active constituents.

Keywords: acute myeloid leukemia (AML); water lily (Nuphar lutea) extract (NUP);
6,6′-dihydroxythiobinupharidine (DTBN); apoptosis; reactive oxygen species (ROS); oxidative stress;
intracellular calcium

1. Introduction

Acute myeloid leukemia (AML) is a highly aggressive blood cancer characterized by
enhanced clonal proliferation and impaired differentiation of myeloid progenitors. The
currently available therapy is noncurative for most patients with AML, an average 5-year
overall survival rate being about 24% [1]. Thus, it is of great significance to augment
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the existing drug armamentarium with new agents that can increase the life span of
patients with AML. Indeed, several novel targeted AML drugs and formulations of existent
drugs have recently been approved by the U.S. Food and Drug Administration (FDA) [2]
and are currently used in clinic. Still, long-term survival benefits of these drugs or their
combinations have yet to be determined [3].

Numerous studies have demonstrated anticancer effects of various phytochemicals
in preclinical models of neoplastic diseases, including hematological malignancies (re-
viewed in [4–7]). The rationale for potential therapeutic applications of these agents is
based on their pleiotropic cellular effects, including the ability to induce oxidative stress
(e.g., [8]) in various cancer cell types which results in cell growth arrest and cell death.
We (e.g., [9–11]) and others (see [6,12,13] for recent reviews) have demonstrated anticancer
effects of different plant extracts and purified phenolic compounds as well as their ability
to cooperate with one another. Particularly, we have recently reported that the polyphenol
curcumin or the phenolic acid ester methyl 4-hydroxycinnamate can synergize with the
phenolic diterpene carnosic acid to induce massive apoptosis in AML cells via sustained
accumulation of the cytosolic Ca2+ (Ca2+

cyt), without inducing oxidative stress [14,15].
A number of naturally occurring alkaloids and their derivatives are currently in use

as cancer therapeutics. Among these are the Vinca alkaloids vincristine and vinblastine
approved for lymphocytic leukemias and lymphomas [16], homoharringtonine for chronic
myeloid leukemia [17], and the cyclopamine derivative glasdegib for AML [18]. We
have previously reported a marked in vitro cytotoxicity and proapoptotic activity of the
sesquiterpene thioalkaloid-enriched fraction (termed NUP) of the methanolic extract from
the leaves of yellow water lily Nuphar lutea (L.) Sm. [19]. NUP was also shown to potentiate
the antimetastatic effect of cisplatin in the murine B16 melanoma lung metastasis model
in vivo [20]. Dimeric sesquiterpene thioalkaloids with the 6-hydroxyl group purified
from Nuphar species, e.g., 6-hydroxythiobinupharidine, 6,6′-dihydroxythiobinupharidine
(DTBN), and 6-hydroxythionuphlutine B (Supplementary Figure S1), have been shown to
exhibit strong apoptosis-inducing effects on several types of cancer cells, including AML
cell lines [19,21–23]; however, the molecular mechanisms underlying the cytotoxicity of
these compounds remain largely unknown.

In the present study, we examined the in vitro antileukemic activity of NUP in human
AML cell lines. Our data demonstrate that NUP treatment resulted in a reduction in prolif-
eration and viability of AML cells that was associated with caspase-dependent apoptosis
induction. NUP-induced cell death was mediated, at least in part, by the induction of
oxidative stress and Ca2+

cyt accumulation. However, while pure DTBN demonstrated
even a stronger apoptosis-inducing activity, this effect was found to be independent of
the cytosolic reactive oxygen species (ROS) or Ca2+. Importantly, neither NUP nor DTBN
significantly induced cell death or reduced the cell viability of normal human peripheral
blood mononuclear cells at the concentrations that killed AML cells.

2. Results
2.1. Thioalkaloid-Enriched Fraction from the N. lutea Leaf Extract (NUP) Inhibits the Growth of
AML Cells

To determine the effects of NUP on the growth of AML cell cultures, exponentially
growing KG-1a, HL60, and U937 human AML cells were incubated with increasing con-
centrations of NUP (0.3–10 µg/mL) for 24, 48, and 72 h. Viable and dead cells were
then enumerated using the Trypan Blue exclusion assay. The data demonstrate that NUP
strongly inhibited the growth of the three cell lines tested, as indicated by the concentration-
and time-dependent reduction in the total (viable + dead) cell numbers (Figure 1a–c). This
was associated with a corresponding decrease in the numbers of viable cells (Figure 1d–f
and Table 1). Interestingly, the marked reduction in the total and viable cell numbers caused
by lower NUP concentrations (up to 1.2 µg/mL) was accompanied by only a slight increase
in cell death (Figure 1g–i), indicative of an antiproliferative rather than a cytotoxic effect.
Higher NUP concentrations (2.5–10.0 µg/mL) produced a substantial concentration- and
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time-dependent increase in the percentage of dead cells (Figure 1g–i). The KG-1a and,
particularly, the U937 cell line demonstrated the highest susceptibility to NUP-induced
cytotoxicity. For instance, the total loss of countable U937 cells was observed as early as at
48 h of incubation with 5–10 µg/mL NUP (Figure 1c,f,i). The order of the sensitivity of the
cell lines to NUP, particularly at 24 h, was U937 > HL60 > KG-1a (see Figure 1 and Table 1
for IC50 values). Generally, all three cell lines exhibited a strong reduction in both the cell
number and cell viability at 5 µg/mL and 10 µg/mL NUP.
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Figure 1. Thioalkaloid-enriched fraction from the N. lutea leaf extract (NUP) induces growth inhibition
and cytotoxicity in AML cell cultures. KG-1a HL60 and U937 cells (1.5 × 105 cells/mL) were
incubated with vehicle or NUP at the indicated concentrations for 24–72 h, followed by the Trypan
Blue exclusion assay. (a–c) Changes in the total (viable plus dead) cell numbers; (d–f) changes in the
viable cell numbers; (g–i) changes in the percentage of dead cells. The data are means ± SD of at least
3 independent experiments performed in triplicate.

Table 1. Comparison of the cytotoxic potency of NUP in KG-1a, HL60, and U937 human AML cell
lines at different time points (IC50 values).

Cell Line 24 h 48 h 72 h

KG-1a 4.06 ± 0.33 1.21 ± 0.15 0.90 ± 0.58

HL60 2.40 ± 0.14 1.03 ± 0.14 1.09 ± 0.13

U937 1.65 ± 0.15 0.97 ± 0.18 0.89 ± 0.05 1

1 The IC50 values (µg/mL) were calculated by nonlinear regression analysis of the dose-response curves for the
reduction in the number of viable cells, as shown in Supplementary Figure S1 Data are the means ± SD (n = 3).

2.2. NUP Induces Caspase-Dependent Apoptosis

To elucidate the mode of the pronounced cytotoxicity of NUP, we first performed the
annexin-V/PI binding assay in HL60 cells. As shown in Figure 2a,b, exposure of HL60 cells
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to 0.5–10 µg/mL NUP for 24 h resulted in a concentration-dependent increase in the extent
of apoptosis induction. Consistent with the cytotoxicity data (Figure 1g–i), significant
apoptotic cell death was observed at 2.5–10 µg/mL NUP. Particularly, most of the cells
were found to be annexin-V/PI double-positive, indicative of the late apoptosis phase,
while minor populations (5–15%) of early apoptotic (annexin-V-positive/PI-negative) or
supposedly necrotic (annexin-V-negative/PI-positive) cells were also detected (Figure 2b).
Detailed analysis of NUP-induced apoptosis in AML cells revealed that the appearance of
annexin-V/PI-positive cells was accompanied by caspase-3 and PARP cleavage (Figure 2c).
It was also found that NUP treatment of HL60 and U937 cells led to the activation of
both initiator caspase-8 and caspase-9 (Figure 2c), which are involved in the extrinsic and
intrinsic apoptotic pathway, respectively. To determine whether NUP induced apoptosis is
caspase-dependent, we used the pan-caspase inhibitor Q-VD-OPH and found that, while
having no effect when added alone, it dramatically reduced the apoptotic effect of NUP at
5 µg/mL and 10 µg/mL (Figure 3). Taken together, the above results indicate that NUP
treatment kills AML cells primarily by a caspase-mediated apoptosis induction.
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Figure 2. NUP induces apoptosis in AML cells. HL60 and U937 cells were treated with vehicle
or NUP at the indicated concentrations, for 24 h. (a,b) The extent of apoptosis was measured by
the annexin-V/PI assay in HL60 cells; (a) Typical flow cytometric data obtained in a representative
experiment. (b) Averaged percentages of apoptotic (early + late) cells. The data are means ± SD
of at least 3 independent experiments performed in duplicate. **, p < 0.01 and ***, p < 0.001 vs.
vehicle-treated (control) cells; (c) Western blot analysis of caspase (Cas) and PARP cleavage in HL60
and U937 cells treated with increasing concentrations of NUP, for 24 h. Representative blots of
3 independent experiments are shown.
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Figure 3. NUP-induced apoptotic effect is caspase-dependent. HL60 cells were pre-incubated with
vehicle or the pan-caspase inhibitor Q-VD-OPH (10 µM) for 1 h followed by treatment with vehicle
or NUP (5 µg/mL and 10 µg/mL) for another 24 h. The extent of apoptosis was measured by
the annexin-V/PI assay. (a) Typical flow cytometric data obtained in a representative experiment.
(b) Averaged percentages of apoptotic (early + late) cells. The data are means ± SD of 3 independent
experiments performed in duplicate. **, p < 0.01 and ***, p < 0.001, significant differences between the
indicated groups.

2.3. Involvement of Reactive Oxygen Species in NUP-Induced Apoptosis

We have previously reported that DTBN, one of the sesquiterpene thioalkaloids pu-
rified from N. lutea, augments ROS production by differentiated neutrophil-like HL60
cells [24]. Here, we examined the effect of NUP on cytosolic ROS levels in undifferentiated
HL60 cells by flow cytometry using the oxidation-sensitive fluorescent probe DCFH-DA.
Treatment with cytotoxic NUP concentrations (2.5–10.0 µg/mL) resulted in significant
biphasic changes in ROS levels relative to those in untreated cells—a decrease at an early
time point (4 h; Figure 4a,c) followed by an increase after a longer incubation for 24 h
(Figure 4b,c). ROS accumulation observed at 24 h was accompanied by a significant
concentration-dependent decrease in the cellular GSH level (Figure 5). The effect of the
highest concentration of NUP (10 µg/mL) was similar to that of the AML chemotherapeutic
drug cytosine arabinoside (AraC; 10 µM), while exposure to the plant polyphenolic antioxi-
dant carnosic acid at 3.3 µg/mL (10 µM), used as the positive control, resulted in a marked
increase in the cellular GSH level (Figure 5). Similar to NUP, treatment with AraC for 24 h
markedly reduced cell viability (by 70–80%), whereas carnosic acid had no cytotoxic effect
whatsoever (data not shown; see also Ref. [11]). To determine whether NUP-induced cell
death is mediated by enhanced ROS generation, we incubated HL60 cells with 5 µg/mL or
10 µg/mL NUP for 24 h in the absence or presence of the thiol antioxidant and glutathione
precursor N-acetyl cysteine (NAC). As shown in Figure 6a,b, co-incubation with NAC
almost completely abrogated cytosolic ROS elevation at both 5 µg/mL and 10 µg/mL NUP
and markedly, though partially (by 30–50%), inhibited apoptosis induction in HL60 cells
(Figure 6c,d). Collectively, these data indicate that in AML cell cultures, NUP-induced cell
death is, at least in part, mediated by the induction of oxidative stress.
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ment with vehicle or indicated concentrations of NUP, for 24 h, HL60 cells were loaded with Thio-
Bright Green followed by flow cytometric analysis, as described in Materials and Methods. (a) Typ-
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levels expressed as ThioBright Green geometric mean fluorescence intensity (MFI) units. The data 
are means ± SD of 3 independent experiments performed in duplicate. *, p < 0.1 and ***, p< 0.001 vs. 
vehicle-treated (control) cells; ns, non-significant. CA, carnosic acid; AraC, 1-β-D-arabinosylcyto-
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Figure 4. NUP induces time-dependent biphasic changes in the cytosolic levels of reactive oxygen
species as well as a decrease in GSH levels after a longer treatment. Following incubation with
vehicle or indicated concentrations of NUP, HL60 cells were loaded with DCFH-DA followed by
flow cytometric analysis, as described in Materials and Methods. (a,b) Typical examples of cytosolic
ROS measurement at the indicated time points. (c) Averaged relative ROS levels expressed by DCF
geometric mean fluorescence intensity (MFI) units, as determined after 4 h and 24 h of incubation;
the data are means ± SD of 3 independent experiments performed in duplicate. **, p < 0.01 and ***,
p < 0.001 vs. vehicle-treated (control) cells; ns, non-significant.
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Figure 5. NUP induces a decrease in cellular GSH levels after a longer treatment. Following treatment
with vehicle or indicated concentrations of NUP, for 24 h, HL60 cells were loaded with ThioBright
Green followed by flow cytometric analysis, as described in Materials and Methods. (a) Typical
examples of cellular GSH measurement from a representative experiment. (b) Averaged GSH levels
expressed as ThioBright Green geometric mean fluorescence intensity (MFI) units. The data are
means ± SD of 3 independent experiments performed in duplicate. *, p < 0.1 and ***, p< 0.001 vs.
vehicle-treated (control) cells; ns, non-significant. CA, carnosic acid; AraC, 1-β-D-arabinosylcytosine.
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Figure 6. The thiol antioxidant N-acetylcysteine abrogates ROS accumulation and partially inhibits
apoptosis induction in NUP-treated cells. HL60 cells were pre-incubated with 5 µM NAC for 1 h
followed by the addition of 5 µg/mL or 10 µg/mL NUP for another 24 h. Cytosolic ROS levels and
the extent of apoptosis were then measured, as described above. (a) Typical examples of cytosolic
ROS measurement from a representative experiment. (b) Averaged ROS levels expressed as DCF
geometric mean fluorescence intensity (MFI) units. (c) Typical annexin-V/PI binding data obtained
in a representative experiment. (d) Averaged percentages of apoptotic (early + late) cells. The data
are means ± SD of 3 independent experiments performed in duplicate. **, p < 0.01 and ***, p < 0.001,
significant differences between the indicated groups.

2.4. The Role of Changes in Ca2+
cyt Levels in NUP-Induced Apoptosis

To determine whether NUP-induced apoptosis is associated with elevation of Ca2+
cyt,

we first measured steady-state Ca2+
cyt levels in HL60 cells using the fluorescent Ca2+ in-

dicator Fluo-3. Cells were incubated with NUP at 2.5 µg/mL, 5 µg/mL, or 10 µg/mL for
2 h and 4 h followed by flow cytometric analysis. The results demonstrated that NUP
treatment caused sustained Ca2+

cyt rise up to ~10-fold of the basal level in a time- and
concentration-dependent manner (Figure 7), suggesting that this effect may contribute
to NUP-induced cytotoxicity. To test this hypothesis, HL60 cells were preloaded with
the intracellular Ca2+ chelating agent BAPTA/AM (1 µM) or the inositol trisphosphate
receptor (IP3R) and store-operated calcium entry (SOCE) blocker 2-aminoethoxydiphenyl
borate (2-APB; 25 µM) followed by incubation with 2.5–10 µg/mL NUP for 24 h. Intra-
cellular Ca2+ chelation significantly attenuated apoptosis induction depending on NUP
concentration—the higher the NUP concentration applied, the stronger the antiapoptotic
effect was observed in BAPTA-loaded cells (Figure 8a,b). On the other hand, 2-APB had no
effect whatsoever on NUP-induced apoptosis (Figure 8a,b). These data suggest that the
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apoptotic effect of NUP was at least in part mediated by Ca2+
cyt rise, but likely not via the

IP3R/SOC activation.
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Figure 8. NUP-induced apoptosis is partially mediated by Ca2+
cyt rise. HL60 cells were preincubated

with BAPTA/AM (1 µM) or 2-APB (25 µM) for 1 h, followed by treatment with the indicated NUP
concentrations for 24 h. The extent of apoptosis was measured by the annexin-V/PI assay. (a) Typical
flow cytometric data from a representative experiment; (b) Averaged percentages of apoptotic
(early + late) cells. The data are means ± SD of 3 independent experiments performed in duplicate.
***, p < 0.001, significant differences between the indicated groups; ns, non-significant.

2.5. Comparison of the Proapoptotic Effects of NUP and Purified 6,6′-Dihydroxythiobinupharidine

It has been reported that dimeric sesquiterpene thioalkaloids with the 6-hydroxyl
group, such as 6-hydroxythiobinupharidine, 6,6′-dihydroxythiobinupharidine (DTBN),
and 6-hydroxythionuphlutine B, produce strong cytotoxic effects on U937 and NB4 AML
cells at concentrations of 1–10 µM [21,23]. Furthermore, DTBN was shown to rapidly
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(within 1–6 h) induce apoptosis in these cells [21,23]. As NUP contains all these and several
other dimeric sesquiterpene thioalkaloids, we directly compared the in vitro antileukemic
effects of NUP and pure DTBN using HL60 and U937 cells as models. For the cell viability
test, cells were treated with 2.5 µM and 5.0 µM NUP or DTBN, for 24 h followed by the
Trypan Blue exclusion assay. As shown in Figure 9a,b, the two agents concentration-
dependently reduced the number of viable cells in both cell lines; however, DTBN was
significantly more effective compared to NUP, particularly at the lower concentration
(2.5 µg/mL). To compare the apoptosis-inducing effects of NUP and DTBN, we determined
PARP cleavage in HL60 cells and U937 cells following 4 h of incubation using Western blot
analysis. The results indicated that DTBN was again more potent compared to NUP as
seen by a complete PARP cleavage at 2.5 µg/mL DTBN and even disappearance of the
cleaved 86-kD fragment at the higher concentration (5 µg/mL) in both HL60 and U937 cells
(Figure 9c,d).
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Unexpectedly, in contrast to NUP (Figure 4), DTBN-induced apoptosis observed 24 h 
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Figure 9. Comparison of the effects of NUP and purified 6,6′-dihydroxythiobinupharidine (DTBN) on
the number of viable cells and apoptosis induction. HL60 (a,c) and U937 (c,d) cells were treated with
NUP or DTBN (2.5 µg/mL and 5 µg/mL) followed by cell enumeration or protein expression analysis,
as indicated below. (a,b) Effects of the indicated agents on the number of viable cells following 24 h
of incubation, as determined by the Trypan Blue exclusion assay. The data are means ± SD of at least
3 independent experiments performed in triplicate; ***, p < 0.001, vs. vehicle-treated (control) cells;
(c,d) Western blot analysis of PARP cleavage following 4 h of incubation. Representative blots of
3 independent experiments are shown. DTBN, 6,6′-dihydroxythiobinupharidine.

We then explored possible roles of the cytosolic ROS and Ca2+ in DTBN-induced
apoptosis using HL60 cells as a model. Incubation with low concentrations of DTBN
(0.05–0.25 µg/mL) for 24 h resulted in a concentration-dependent induction of apoptosis
in 30–90% DTBN-treated cells, as determined by the annexin-V/PI assay (Figure 10c,d
and Figure 11). Unexpectedly, in contrast to NUP (Figure 4), DTBN-induced apoptosis
observed 24 h posttreatment was not accompanied by elevation of the cytosolic ROS levels,
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as demonstrated by measuring cellular DCF fluorescence (Figure 10a,b). On the other hand,
H2O2, used as the positive control, induced a pronounced increase in ROS levels in the
same experiments (Figure 10a). Furthermore, unlike in NUP-treated cells (Figure 6c,d),
the extent of DTBN-induced apoptosis was not significantly altered in the presence of the
antioxidant NAC (Figure 10c,d). Likewise, in contrast to NUP (Figure 8), the apoptotic
effect of DTBN was not significantly affected by the intracellular Ca2+ chelator BAPTA, and
2-APB was as inefficient as in NUP-treated cells (Figure 11a,b). These results suggest that
DTBN-induced apoptosis in HL60 cells is not mediated by the cytosolic ROS or Ca2+.
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Figure 10. 6,6′-dihydroxythiobinupharidine (DTBN)-induced apoptosis is not mediated by the
cytosolic ROS. HL60 cells were pre-incubated with or without 5 µM NAC for 1 h followed by the
addition of the indicated concentrations of DTBN for another 24 h. The extent of apoptosis and
cytosolic ROS levels were measured using the annexin-V/PI assay and the cytosolic ROS indicator
DCFH-DA, respectively. (a) Typical flow cytometric data from a representative annexin-V/PI assay.
(b) Averaged percentages of apoptotic (early + late) cells. (c) Typical examples of cytosolic ROS
measurement from a representative experiment. H2O2 (0.5 mM) was used as the positive control.
(d) Averaged ROS levels expressed as DCF geometric mean fluorescence intensity (MFI) units. The
data are means ± SD of 3 independent experiments performed in duplicate.
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Figure 11. 6,6′-dihydroxythiobinupharidine (DTBN)-induced apoptosis is not mediated by Ca2+
cyt.

HL60 cells were preincubated with BAPTA/AM (1 µM) or 2-APB (25 µM) for 1 h, followed by
treatment with the indicated concentrations of DTBN for 24 h. The extent of apoptosis was measured
by the annexin-V/PI assay. (a) Typical flow cytometric data from a representative experiment;
(b) Averaged percentages of apoptotic (early + late) cells. The data are means ± SD of 3 independent
experiments performed in duplicate.

2.6. Effects of NUP and Purified 6,6′-Dihydroxythiobinupharidine on Cell Death and Viability of
Peripheral Blood Mononuclear Cells from Healthy Donors

Most phytochemicals are multitargeted and pleiotropically acting compounds which
may affect various cell types. Therefore, it was important to determine whether, similar
to AML cells, NUP and DTBN would kill normal human white blood cells in the same
concentration ranges. We thus measured the effects of these agents on cell death (by
the annexin-V/PI assay) and viability (by the ATP assay) of human peripheral blood
mononuclear cells (PBMC) isolated from healthy donors. Notably, in contrast to AML cell
cultures which displayed dramatic reductions in the live (annexin-V/PI-double negative)
cell population in response to 2.5–10.0 µg/mL NUP or 0.05–0.25 µg/mL DTBN (e.g.,
Figures 2a and 10c), no significant decrease in the percentage of live cells was observed in
PBMC cultures treated with either agent for 24 h, as compared to control (Figure 12a,b). As
shown in Figure 12a,c, incubation of PBMC samples with vehicle resulted in the appearance
of 20–25% dead cells. However, there was no significant elevation in the relative total
percentage of dead (annexin-V only-positive plus PI only-positive plus annexin-V/PI-double
positive) cells, which even tended to decrease following treatment with 10.0 µg/mL NUP
(Figure 12c). This correlated with a significant increase in PBMC viability in NUP-treated
cultures, as measured on the basis of the cellular ATP content (Figure 12d). Treatment with
DTBN did not affect PBMC viability (Figure 12d).
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negative) cells. (c) Averaged percentages of dead (annexin-V only-positive plus PI only-positive plus 
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enriched fraction of N. lutea leaf extract (NUP) [19] in comparison with those produced by 
purified 6,6’-dihydroxythiobinupharidine (DTBN). NUP was found to cause a concentra-
tion- and time-dependent inhibition of cell growth, cytotoxicity, and caspase-dependent 
apoptosis induction in AML cell cultures. Interestingly, AML cell lines representing dif-
ferent stages of myeloid maturation—KG-1a (leukemia stem-like cells), HL60 (myelo-
blastic leukemia), and U937 (myelomonocytic leukemia)—displayed differential sensitiv-
ity toward NUP-induced cytotoxicity, the least differentiated KG-1a cells being relatively 
the most resistant among the cell lines tested (Figure 1 and Table 1). This dependence on 
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Figure 12. Effects of NUP and 6,6′-dihydroxythiobinupharidine (DTBN) on cell death and viability
of normal human peripheral blood mononuclear cells (PBMC). Cells (1.5 × 105/mL) were incubated
with the indicated concentrations of NUP or DTBN for 24 h. The extent of cell death and viability was
measured by the annexin-V/PI assay and the ATP assay, respectively. (a) Typical flow cytometric data
from a representative experiment. (b) Averaged percentages of live (annexin-V/PI double-negative)
cells. (c) Averaged percentages of dead (annexin-V only-positive plus PI only-positive plus annexin-
V/PI double-positive) cells. (d) Changes in cell viability measured on the basis of a relative cellular
ATP content. The data are means ± SD of 3 independent experiments performed in duplicate (b,c) or
quadruplicate (d). *, p < 0.001, vs. vehicle-treated (control) cells.

3. Discussion

N. lutea and other Nuphar species have been widely used in traditional medicine [25–28].
Plant extracts of these species are rich in alkaloids and polyphenolic compounds which
are of potential therapeutic value. Indeed, the therapy-related actions discovered in recent
studies of N. lutea extracts and individual sesquiterpene thioalkaloids (summarized in [29])
include anti-inflammatory, antibacterial [30,31], antiviral [32], antifungal [33], antipara-
sitic [34], and anticancer [19–23] activities.

In this study, we characterized the in vitro antileukemic effects of the thioalkaloid-
enriched fraction of N. lutea leaf extract (NUP) [19] in comparison with those produced by
purified 6,6’-dihydroxythiobinupharidine (DTBN). NUP was found to cause a concentration-
and time-dependent inhibition of cell growth, cytotoxicity, and caspase-dependent apopto-
sis induction in AML cell cultures. Interestingly, AML cell lines representing different stages
of myeloid maturation—KG-1a (leukemia stem-like cells), HL60 (myeloblastic leukemia),
and U937 (myelomonocytic leukemia)—displayed differential sensitivity toward NUP-
induced cytotoxicity, the least differentiated KG-1a cells being relatively the most resistant
among the cell lines tested (Figure 1 and Table 1). This dependence on the cell maturation
status is intriguing and requires further investigation.
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Pure DTBN exhibited a much higher proapoptotic potency relative to NUP (Figure 9;
also compare Figure 2a,b and Figure 10c,d). This is consistent with the previously re-
ported data showing that DTBN and other dimeric sesquiterpene thioalkaloids with the
6-hydroxyl group, such as 6-hydroxythiobinupharidine and 6-hydroxythionuphlutine B,
induce substantial and rapid apoptotic cell death of AML cells at low concentrations [21,23].
It is possible that all these thioalkaloids as well as other phytochemical constituents of the
N. lutea methanolic extract contribute, to a varying extent, to the cytotoxic and apoptosis-
inducing effects of NUP. Importantly, in contrast to AML cells, treatment of normal human
PBMC with either NUP or DTBN did not induce cell death or reduce cell viability (Fig-
ure 12). Collectively, these data suggest that DTBN and other NUP constituents may have
selective antileukemic activities. However, more studies are required to test this suggestion
in a wide range of leukemia and normal cell types.

As studies of the molecular mechanisms underlying the cytotoxicity of Nuphar thioal-
kaloids have only recently been initiated (e.g., [35]), our primary objective was to determine
the possible roles of the intracellular ROS and Ca2+ in the induction of apoptosis by NUP
and DTBN. Various phytochemicals have been shown to induce cancer cell death through
the generation of oxidative stress mediated by the accumulation of ROS and/or suppres-
sion of cellular antioxidant defense capacity, e.g., glutathione depletion (e.g., [36,37]). In
our mechanistic experiments, we used HL60 myeloblastic leukemia cells which, as stated
above, displayed medium sensitivity to NUP compared to more primitive KG-1a cells and
more mature U937 cells (Figure 1 and Table 1). Cell treatment with NUP resulted in a time-
dependent biphasic effect on the cytosolic ROS levels—an antioxidant effect at an early time
point (4 h) and a prooxidant effect at a longer incubation (24 h). Interestingly, both types
of changes in the ROS status were associated with the induction of apoptosis, as demon-
strated by both a substantial PARP cleavage at 4 h (Figure 9c,d) and a markedly increased
annexin-V/PI binding at 24 h (Figures 2 and 3), suggesting that in NUP-treated cells, ROS
do not play a role in the initiation of apoptosis but may contribute to the apoptosis-related
cell damage at later stages. The latter effect, which is partially prevented by the thiol
antioxidant NAC (Figure 6), may be due, in part, to the glutathione-depleting action of
NUP (Figure 5).

The proapoptotic effects of different phytochemicals, such as the sesquiterpene lactone
thapsigargin that is a specific inhibitor of sarco/endoplasmic reticulum Ca2+-ATPase [38],
and plant polyphenols [39–42] on cancer cells have been associated with the alteration of
the intracellular Ca2+ homeostasis. We have recently reported that the combinations of
curcumin or methyl 4-hydroxycinnamate with carnosic acid are capable of inducing apop-
totic cell death of AML cells solely by triggering sustained Ca2+

cyt accumulation, without
inducing oxidative stress [14,15,43]. Here, we show that NUP-induced apoptosis is partially
mediated by an increase in Ca2+

cyt levels because this apoptotic effect was attenuated in
cells preloaded with the intracellular Ca2+ chelator BAPTA (Figure 11). Interestingly, in
contrast to the above combinations of plant phenolic agents [14,15], the IP3R/SOCE blocker
2-APB did not significantly modulate NUP-induced apoptosis, suggesting that in this
case the intracellular Ca2+ mobilization or the extracellular Ca2+ entry into NUP-treated
cells occurred via other routes. For instance, there is evidence that Ca2+ influx evoked by
the polyphenol gossipol in endothelial cells is mediated by the transient receptor poten-
tial cation vallinoid (TRPV) channels [44]. Another polyphenol, resveratrol, was found
to activate another type of the TRP (ankyrin 1) channels (TRPA1) in cancer-associated
fibroblasts [45].

The lack of the prooxidant action of purified DTBN (Figure 10a,b) and the inability
of NAC (Figure 10c,d) or BAPTA (Figure 11) to attenuate DTNB-induced apoptosis raises
the possibility that the partial ROS and Ca2+ dependence of the proapoptotic activity of
NUP is attributed to its other component(s), such as additional dimeric sesquiterpene
thioalkaloids or polyphenolic compounds, rather than DTBN. The possible mechanisms
of DTBN-induced apoptosis may involve its recently discovered ability to inhibit type
II topoisomerase [35], one of the major molecular targets for cytotoxic cancer therapy
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(e.g., [46]). Another recent study by our group has shown that DTBN can act as an inhibitor
of classical protein kinase C (PKC) isoenzymes [47], which may also significantly contribute
to its proapoptotic effect (e.g., [48]). In addition, we have reported that DTBN is capable
of inhibiting cathepsins (cysteine proteases) in a clear type-specific manner, cathepsin
S being the most susceptible compared to cathepsins B, L or another cysteine protease
papain [29]. Docking simulations revealed that the cysteine sulfur of the proteases was in
close proximity to the DTNB thiaspirane ring, potentially forming the necessary conditions
for a nucleophilic attack to form a disulfide bond [29]. Downregulation of cathepsin S was
previously reported to promote apoptotic cell death in hepatocellular carcinoma [49] and
glioblastoma [50] cells. Therefore, the proapoptotic activity of nupharidines may be related
to their electrophilicity and selective protein thiol targeting. Further studies are required to
pinpoint the observed antileukemic actions of NUP to specific chemical components of the
N. lutea extract, and to elucidate the precise mechanisms underlying the apoptosis-inducing
activity of DTBN and other Nuphar thioalkaloids.

3.1. Materials

Intracellular glutathione (GSH) Assay Kit was from ImmunoChemistry Technologies
(Bloomington, MN, USA), and Quinoline-Val-Asp-Difluorophenoxymethylketone (Q-VD-
OPH) was from Cayman Chemical (Ann Arbor, MI, USA). 6,6′-dihydroxythiobinupharidine
(DTBN), propidium iodide (PI), N-acetyl-L-cysteine, 1-β-D-arabinosylcytosine (AraC),
and 2-aminoethoxydiphenyl borate (2-APB) were from Merck-Sigma-Aldrich (Rehovot,
Israel). Annexin-V-APC was obtained from BioLegend (San Diego, CA, USA). 2′,7′-
dichlorofluorescein-diacetate (DCFH-DA) and bis-(o-aminophenoxy)-ethane-N,N,N’,N’-
tetraacetic acid, tetra(acetoxymethyl)-ester (BAPTA) were purchased from Santa Cruz
Biotechnology (Dallas, TX, USA). Hank’s buffered salt solution (HBSS), Ca2+/Mg2+-free
phosphate buffered saline (PBS), penicillin, streptomycin, and HEPES buffer were pur-
chased from Biological Industries (Beth Haemek, Israel). RPMI 1640 medium and heat-
inactivated fetal bovine serum (FBS) were purchased from Gibco-Invitrogen (Carlsbad,
CA, USA).

3.2. Preparation of Nuphar lutea Extract and Its Fractions Containing Sesquiterpene Thioalkaloids

N. lutea extract was prepared and fractionated as detailed previously [19,32]. Briefly,
floating and submerged leaves of N. lutea were collected, oven dried, and extracted with
methanol. The extract was dried by evaporation and the residue was fractionated on a
silica gel column using chloroform/ethyl-acetate/diethylamine (20:1:1, v/v/v) as a solvent.
Fractions were monitored using a previously generated L428 Hodgkin’s lymphoma cell line
stably expressing the NF-κB-luciferase reporter construct [19,32]. Fractions producing the
strongest inhibitory effects on NF-κB reporter activity were pooled, dried, re-dissolved in
DMSO at the concentration of 10 mg/mL, and stored at −20 ◦C. This pool is termed “NUP”
and its preparation was standardized previously [19,32]. NUP samples were analyzed by
one-dimensional and two-dimensional NMR spectroscopy. The 1H and 13C NMR spectra
indicated the presence of several dimeric sesquiterpene thioalkaloids as the major NUP
constituents (see Ref. [19] and Supplemental Figure S1 and Table S2 therein as well as
Ref. [32] and Figure 6 therein).

3.3. Cell Culture and Enumeration

AML cell lines—HL60 (CCL-240), U937 (CRL-1593.2), and KG-1a (CCL-246.1)—were
obtained from the American Type Culture Collection (Rockville, MD, USA). Cells were
cultured in RPMI 1640 medium supplemented with 10% FBS, penicillin (100 U/mL),
streptomycin (0.1 mg/mL), and 10 mM HEPES (pH = 7.4) at 37 ◦C in a 5% CO2 environment.
For cell counting, HL60, U937, and KG-1a cells (4–8 × 104/mL) were plated in 24-well
plates and incubated with increasing concentrations of NUP for 24–72 h. The number of
live and dead cells was determined on the basis of the trypan blue exclusion assay by
counting in Vi-Cell XR cell viability analyzer (Beckman Coulter, Fullerton, CA, USA).
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Samples of peripheral blood were collected with informed consent from healthy adult
donors upon the approval No. 0328-16-SOR by the institutional Helsinki committee (Soroka
University Medical Center, Beer Sheva, Israel). Peripheral blood mononuclear blood cells
(PBMCs) were isolated as described previously [14,15] using Histopaque-1077 gradient
centrifugation and stored in liquid N2. Immediately before experiment, cell samples were
unfrozen, washed in RPMI supplemented with 20% BSA, 10 mM HEPES (pH = 7.4), 2 mM
L-glutamine, 100 U/mL penicillin, 0.1 mg/mL streptomycin, 0.01 µg/mL insulin, 5 µg/mL
holo-transferrin, and were then incubated at 1.5 × 105 cells/mL with test agents in the
same medium, for 24 h at 37 ◦C in a 5% CO2 environment. Cells were collected and
analyzed by the annexin-V/propidium iodide binding assay (see Section 3.4 below) and
cell viability assay [43]. Briefly, cell viability was determined on the basis of changes in
cellular ATP levels using the CellTiter-Glo Luminescent Cell Viability Assay kit (Promega,
Madison, WI) according to the manufacturer’s instructions. Following treatment with
test agents, cell suspension was incubated with ATP assay buffer at room temperature for
10 min. Luminescence was then measured in quadruplicate using a SpectraMax Paradigm
(Molecular Devices Co., Sunnyvale, CA, USA) plate reader.

3.4. Assessment of Apoptosis by Annexin-V and Propidium Iodide Staining

HL60 cells were washed with PBS and were incubated with 50 µg/mL annexin-V-APC
and 10 µg/mL propidium iodide in binding buffer at room temperature in the dark, for
15 min, and analyzed in a Gallios flow cytometer (Beckman Coulter, Miami, FL, USA), as
described previously [14,15]. Ten thousand events were acquired for each sample and the
data were analyzed using the Kaluza Analysis Software version 2.1.1 (Beckman Coulter).
Annexin-V-positive/PI-negative cells were considered to be early apoptotic, cells positive
for both annexin-V and PI to be late apoptotic, and annexin-V-negative but PI positive cells
to be necrotic. The total apoptosis was calculated as the sum of the percentages of early
and late apoptotic cells.

3.5. Preparation of Whole Cell Lysates and Western Blot Analysis

HL60 and U937 cells (2 × 106) were plated in 6-well plates, incubated with NUP
for 24 h and lysed in a buffer containing 1% (v/v) Triton X-100 at 4 ◦C, as described
previously [14,15]. Equal amounts of protein (30 µg) were separated by SDS-PAGE and
electroblotted into nitrocellulose membrane. The membranes were blocked with 5% nonfat
milk in Tris-buffered saline containing 0.5% Tween 20 (TBST) for 2 h and incubated with
the primary antibodies overnight at 4 ◦C. The following primary antibodies were used:
caspase-3 (Santa Cruz Biotechnology; cat. # sc-7148, 1:500), cleaved caspase-3 (Cell Signaling
Technology; cat. # 9661; 1:500), caspase-8 (Cell Signaling Technology; cat. # 9746; 1:500),
caspase-9 (Cell Signaling Technology; cat. # 9502; 1:500), poly(ADP-ribose) polymerase
(PARP) (Enzo Life Sciences; cat. # BML-SA253, 1:2000). Blots were washed and incubated
with horse-radish peroxidase-conjugated anti-rabbit (ImmunoResearch Laboratories, West
Grove, PA, USA) or anti-mouse (GE Healthcare, Pittsburg, PA, USA) secondary antibodies.
The protein bands were visualized using the Western Lightning™ Chemiluminescence
Reagent Plus (PerkinElmer Life Sciences, Inc., Boston, MA, USA).

3.6. Determination of Intracellular Levels of Reactive Oxygen Species (ROS)

The intracellular ROS levels were determined using the oxidation-sensitive fluorescent
indicator DCFH-DA. Intracellular ROS oxidize this probe to a highly fluorescent compound
2′,7′-dichlorofluorescein (DCF). Following different treatments, cells (5 × 105) were har-
vested, washed with HBSS containing 10 mM HEPES (pH = 7.4) and loaded with 5µM
DCFH-DA, for 15 min at 37 ◦C in a shaking water bath [11]. Cells were washed and resus-
pended in HBSS followed by flow cytometric analysis. For a positive control, untreated
cells loaded with DCFH-DA were washed and incubated with 0.5 mM H2O2 for 30 min
under the same conditions. The fluorescence intensity was measured in a Gallios flow
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cytometer. For each analysis, 10,000 events were recorded. The data were analyzed using
Kaluza Analysis Software version 2.1.1.

3.7. Determination of Intracellular Glutathione (GSH) Levels

GSH levels were determined in HL60 cells using the Intracellular GSH Assay kit. Cells
(5 × 105) were harvested, washed with HBSS containing 10 mM HEPES (pH = 7.4), and
loaded with 5 µM ThioBright Green for 30 min in accordance with the manufacturer’s
recommended protocol. Cells were then washed and resuspended with HBSS containing
10 mM HEPES. The fluorescence intensity was measured in a Gallios flow cytometer. For
each analysis, 10,000 events were recorded. The data were analyzed using Kaluza Analysis
software version 2.1.1.

3.8. Measurements of Steady-State Cytosolic Ca2+ Levels

HL60 cells (3–4 × 105/mL) were treated with test compounds for 2 h and 4 h, washed,
and resuspended in Ca2+-supplemented (2 mM) Ringer’s solution containing 2.35 µM
Fluo-3/AM, as described previously [14]. Cells were then incubated in the dark for 30 min
at room temperature, washed, and resuspended in Ca2+-free Ringer’s solution. The fluores-
cence intensity was measured in a Gallios flow cytometer (Beckman Coulter, Miami, FL,
USA). For each analysis, 10,000 events were recorded. Data were processed using Kaluza
Analysis Software version 2.1.1 (Beckman Coulter).

3.9. Statistical Analysis

All experiments were conducted at least three times. The data are presented as means
± SD. The significance of the differences between different experimental groups was
estimated by unpaired, two-tailed Student’s t-test. p < 0.05 was considered statistically
significant. All statistical analyses were performed with the GraphPad Prism 7.0 program
(GraphPad Software, San Diego, CA, USA).

4. Conclusions

In conclusion, our study demonstrates that both the thioalkaloid-enriched NUP and
its purified component DTNB are capable of inducing massive apoptotic cell death of
AML cells, but not of normal human white blood cells. NUP-induced apoptosis was
found to be mediated, at least in part, by the induction of oxidative stress and Ca2+

cyt
accumulation, whereas the proapoptotic effect of DTBN appears to mainly involve ROS-
and Ca2+-independent cellular regulatory pathways. Further studies are required to elu-
cidate the molecular mechanisms underlying the observed antileukemic actions of NUP
and DTBN.

N. lutea extracts and purified nupharidine compounds have been shown to exert a
wide array of biological effects. They have potentially useful applications in medicine,
including cancer, that need to be further explored and validated in translational studies to
determine their therapeutic windows. Knowing more about the mechanism(s) of action of
N. lutea constituents, including nupharidines, may lead to the synthesis of their molecular
analogs with improved anticancer activity for the use as single agents or in combination
with other treatment modalities.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph15040410/s1, Figure S1: Chemical structures of several dimeric sesquiterpene thioalka-
loids found in NUP.
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