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Abstract: The 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors, also 

known as statins, are administered as first-line therapy for hypercholesterolemia, both as primary 

and secondary prevention. Besides the lipid-lowering effect, statins have been suggested to inhibit 

the development of cardiovascular disease through anti-inflammatory, antioxidant, vascular endo-

thelial function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. The pre-

ventive effect of statins on atherothrombotic stroke has been well established, but statins can influ-

ence other cerebrovascular diseases. This suggests that statins have many neuroprotective effects in 

addition to lowering cholesterol. Furthermore, research suggests that statins cause pro-apoptotic, 

growth-inhibitory, and pro-differentiation effects in various malignancies. Preclinical and clinical 

evidence suggests that statins inhibit tumor growth and induce apoptosis in specific cancer cell 

types. The pleiotropic effects of statins on cardiovascular and cerebrovascular diseases have been 

well established; however, the effects of statins on cancer patients have not been fully elucidated 

and are still controversial. This review discusses the recent evidence on the effects of statins on 

cardiovascular and cerebrovascular diseases and cancer. Additionally, this study describes the 

pharmacological action of statins, focusing on the aspect of ‘beyond lipid-lowering.’ 
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1. Introduction 

Statins potently inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) re-

ductase by competitively blocking the active site of the enzyme. Statins decrease choles-

terol biosynthesis and thereby reduce plasma cholesterol levels. The development of 

statins as cholesterol-lowering agents began in the mid-1970s when they were discovered 

as a fungal metabolite, with the first of these being a natural product called mevastatin 

[1]. Since this discovery, vigorous efforts have been made to develop novel statins, leading 

to the introduction of a total of eight varieties to date. Over four decades of use have led 

statins to become one of the most widely prescribed drugs globally, especially for cardio-

vascular diseases [2–8]. The association between dyslipidemia and cardiovascular disease 

has been comprehensively established. On the other hand, statins exhibit pleiotropic 
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properties that are independent of their lipid-lowering effects [9]. Independent of lipid-

lowering effect, statins have been suggested to inhibit the development of cardiovascular 

disease through anti-inflammatory, antioxidant, vascular endothelial function-improv-

ing, plaque-stabilizing, and platelet aggregation-inhibiting effects [10–15]. The preventive 

effect of statins on atherothrombotic stroke is well established, but statins can influence 

other cerebrovascular diseases. Thus, statins have many neuroprotective effects in addi-

tion to lowering cholesterol. Furthermore, research suggests that statins cause pro-apop-

totic, growth-inhibitory, and pro-differentiation effects in various malignancies [16]. Pre-

clinical and clinical evidence suggests that statins inhibit tumor growth and induce apop-

tosis in specific cancer cell types. The pleiotropic effects of statins on cardiovascular and 

cerebrovascular diseases have been well established; however, the effects of statins on 

cancer patients have not yet been fully elucidated and are still controversial. This review 

discusses the recent evidence on the effects of statins on cardiovascular and cerebrovas-

cular diseases and cancer, in addition to the pharmacological action of statins, focusing on 

the aspect of ‘beyond lipid-lowering.’ 

2. Pharmacological Action of Statins 

Cholesterol is an essential component to maintain life, serving as a basic ingredient 

for cell membranes, steroid hormones, and bile acids. It is categorized into exogenous 

cholesterol, which is ingested via food, and endogenous cholesterol, which is primarily 

synthesized in the liver, with the latter being predominant in the human body. The cho-

lesterol biosynthesis pathway involves multistage reactions, where the rate-determining 

step is the reaction to synthesize mevalonate from HMG-CoA. This rate-determining step 

is catalyzed by HMG-CoA reductase, which expression is subject to feedback control by 

intracellular cholesterol content. The homeostasis of intracellular cholesterol is main-

tained through this feedback control [17]. Statins are indispensable components for the 

treatment of dyslipidemia and the prevention of cardiovascular diseases due to their abil-

ity to suppress cholesterol biosynthesis by inhibiting HMG-CoA reductase. 

The first statin, compactin (mevastatin), was discovered by Endo et al. in 1973 within 

the culture medium of Penicillium citrinum [18]. Since this discovery, vigorous efforts have 

been made to develop novel statins, leading to the introduction of eight statin varieties to 

date. Although these statins commonly possess a structure similar to HMG-CoA, their 

cholesterol-lowering effect and pharmacokinetics differ [1]. Clinically employed statins 

include lipophilic simvastatin, atorvastatin, pitavastatin, and fluvastatin, and hydrophilic 

pravastatin and rosuvastatin. While lipophilic statins are absorbed into cells via passive 

diffusion, hydrophilic statins require organic anion transport proteins (OATPs) to become 

absorbed into the liver. Except for fluvastatin, statins serve as substrates for OATP1B1, 

which gene polymorphism is reportedly responsible for the varying pharmacokinetics of 

statins [19]. Cytochrome P450 (CYP) is involved in the metabolism of some statins, with 

simvastatin and atorvastatin primarily being metabolized by CYP3A4 and fluvastatin be-

ing metabolized by CYP2C9. However, other statins are scarcely metabolized by CYP [20]. 

Generally, statins are well-tolerated and seldomly cause serious adverse events. However, 

one noteworthy adverse reaction is myopathy, which may progress to fatal rhabdomyol-

ysis [21]. Therefore, when high statin doses are administered for treatment or when used 

concomitantly with drugs that inhibit CYPs or OATPs, caution should be exercised to 

avoid increased risks for adverse reactions. 

The cholesterol-lowering effect of statins is primarily attributed to a compensatory 

increase in the expression of low-density lipoprotein (LDL) receptor due to the suppressed 

endogenous cholesterol synthesis rather than a decrease in intracellular cholesterol bio-

synthesis. The increased LDL receptor level, in turn, promotes hepatic uptake of blood 

LDL-cholesterol (LDL-C), thereby reducing its blood concentrations. This regulation of 

the LDL receptor expression by intracellular cholesterol content is mediated by a tran-

scriptional regulatory mechanism comprising sterol regulatory element (SRE) and one of 

its binding proteins, SRE-binding protein 2 (SREBP-2) [22,23]. Sterol regulatory element-
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binding protein (SREBP)-2 forms a dimer with SREBP cleavage-activating protein (SCAP), 

which is a cholesterol sensor, on the endoplasmic reticulum membrane. Under choles-

terol-rich conditions, the SREBP-SCAP complex forms a trimer with an insulin-inducing 

gene (INSIG) and remains on the endoplasmic reticulum membrane. Conversely, when 

intracellular cholesterol content decreases, the SREBP-SCAP complex detaches from IN-

SIG and migrates to the Golgi apparatus. Subsequently, the N-terminus of SREBP-2 is 

cleaved by proteases (S1P and S2P) in the vicinity of the membrane-binding site [24]. The 

cleaved SREBP migrates into the nucleus and binds to SRE as a transcriptional factor, 

thereby promoting the transcription of various genes, including those of the LDL receptor 

and HMG-CoA reductase (Figure 1) 

 

Figure 1. Genetic effects of cholesterol on sterol synthesis and low-density lipoprotein (LDL) recep-

tor expression. 

In the presence of cholesterol, which regulates the expression of the SREBP activation 

pathway and the LDL receptor gene, the SREBP-SCAP complex binds to INSIG on the 

endoplasmic reticulum membrane. When intracellular cholesterol decreases, the SREBP-

SCAP complex detaches from INSIG and migrates into the Golgi apparatus. Subse-

quently, SREBP is cleaved by Site-1 protease (S1P) and Site-2 protease (S2P). The SREBP 

that migrated into the nucleus binds to sterol regulatory element (SRE) and promotes the 

transcription of the target gene. 

The suppressive effects of statins on cardiovascular diseases have been demonstrated 

in numerous studies. Some of these studies have reported that the suppressive effects of 

statins on cardiovascular diseases are not necessarily correlated with the cholesterol-low-

ering effect; hence, it is also necessary to pay attention to the effects of statins other than 

the cholesterol-lowering effect (pleiotropic effects) [25,26]. Such pleiotropic effects include 

cardiovascular effects, such as antioxidative, antithrombotic, and functional improvement 

effects on endothelial cells, and non-cardiovascular effects, such as anti-inflammatory and 

anticarcinogenic effects. Multiple studies have indicated that pleiotropic effects of statins 

are partially attributed to the statin-mediated suppression of isoprenoid synthesis [27,28]. 

Isoprenoids are intermediates of the cholesterol biosynthesis pathway. Thus, statins sup-

press not only the synthesis of cholesterol but also that of isoprenoids. 

Isoprenoids are critical molecules in maintaining cell functions, such as electron 

transport and protein functional regulation. The activity of Rho and Ras families of low 

molecular weight G-proteins (small G-proteins) is modulated through post-translational 
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modification with isoprenoid biosynthesis intermediate metabolites, such as farnesyl py-

rophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP) [29]. The geranylgeranyl-

ation of Rho family proteins by GGPP modulates their activity by determining their intra-

cellular localization. Statins suppress Rho activation by inhibiting GGPP production, 

thereby regulating the expression of vasoactive substances, such as endothelin-1 [30], vas-

cular endothelial growth factor [30], angiotensin II receptor type-1 [31], and endothelial 

nitric oxide synthase (eNOS) [32]. Additionally, the activity of transcriptional factors, such 

as nuclear factor-kappa B, Kruppel-like factor 2, and peroxisome proliferator-activated 

receptor, is regulated as part of the expression mechanism underlying the anti-inflamma-

tory effect of statins [33–35]. Furthermore, Rac, which belongs to the Rho family of pro-

teins, is involved in the activation of nicotinamide adenine dinucleotide phosphate oxi-

dase and the production of superoxides. Therefore, the statin-mediated suppression of 

Rac activation may stabilize eNOS and decrease oxidative stress [36,37]. Meanwhile, the 

FPP-mediated farnesylation of Ras regulates Ras activation by controlling its migration 

from the cytoplasm to the cell membrane. Ras has been revealed to activate certain intra-

cellular signaling pathways, such as MAP kinase and PI3K pathways, and plays a pivotal 

role in the regulation of cell proliferation, movement, death, and other cellular phenom-

ena. Several previous reports have indicated that statin-mediated Ras suppression regu-

lates cellular proliferation and cell death, consequently leading to an antitumor effect 

[38,39]. Additionally, statins exhibit the antitumor effect by inhibiting Hippo-Yap/TAZ 

pathway, which is involved in cellular proliferation [40–42]. 

As mentioned above, statins suppress the production of intermediate metabolites of 

isoprenoid biosynthesis, such as GGPP and FPP, by inhibiting the cholesterol biosynthesis 

pathway, consequently suppressing the activation of small G-proteins. Small G-proteins 

play important roles in many systems that regulate cellular functions, and these regula-

tory effects are partially attributed to the pleiotropic effects of statins (Figure 2). 

 

Figure 2. Action of cholesterol and statins on the isoprenoid biosynthesis pathway. 

Statins, which inhibit 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reduc-

tase, suppress not only the biosynthesis of cholesterol but also that of isoprenoids. Low 

molecular weight G-proteins (small G-proteins) of the Rho and Ras families are subject to 

activation modulation through post-transcriptional modification with isoprenoid biosyn-

thesis intermediate metabolites, such as farnesyl pyrophosphate (farnesyl-PP) and 

geranylgeranyl pyrophosphate (geranylgeranyl-PP). Small G-proteins regulate cellular 

proliferation, cellular differentiation, gene expression, and cell movement, among other 
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processes. These regulatory effects are partially attributed to the pleiotropic effects of 

statins. 

There are several possible biological mechanisms that might explain the association 

between statins and cardiovascular and cerebrovascular diseases and cancer. Possible 

mechanisms of statins on cardiovascular and cerebrovascular diseases and cancer are 

listed in Table 1. 

Table 1. Possible mechanisms of statins on cardiovascular and cerebrovascular diseases and cancer. 

Lipid-lowering activities  

    Cholesterol biosynthesis ↓ [1] 

    LDL-receptors ↑ [22,23] 

Endothelial function  

    Expression and activity of Nitric oxide ↑ [32] 

    Endothelin-1 ↓ [30] 

    Angiotensin II receptor ↓ [31] 

    NF-κB activation ↓ [43] 

Anti-inflammatory effects  

    Pro-inflammatory cytokines ↓ [33–35] 

    C-reactive protein ↓ [44] 

    Adhesion molecules ↓ [45] 

    Matrix Metalloprotease ↓ [46,47] 

    NF-κB activation ↓ [43] 

Antioxidant activity  

    NADPH oxidase activity ↓ [37] 

    Reactive oxygen species production ↓ [36] 

Antithrombotic activities  

    Tissue factor expression ↓ [48] 

    Plasminogen activator inhibitor-1 expression ↓ [49] 

    Platelet activation ↓ [50] 

    Tissue-type plasminogen activator expression ↑ [49] 

Angiogenesis  

    Endothelial progenitor cells ↑ [51,52] 

    PI3 kinase activity ↑ [52] 

    Angiogenesis ↑ [53] 

(Statins have biphasic effects on angiogenesis; high-dose statins inhibit angiogenesis)  

Antitumor activity  

    Pro-apoptotic protein ↑ [54] 

    Cell proliferation ↓ [38,39] 

    Angiogenesis (High dose) ↓ [53] 

    Hippo-Yap/TAZ pathway ↓ [40–42] 

3. Statins and Cardiovascular Diseases 

An association between dyslipidemia and cardiovascular diseases has been compre-

hensively established [2–8]. Evidence on LDL-C and cardiovascular disease is more abun-

dant than other dyslipidemias. Many epidemiological studies in Europe and the United 

States, including the Framingham study, have shown that higher LDL-C levels increase 

the incidence and mortality of coronary artery disease [55]. 

Statins are HMG-CoA reductase inhibitors that reduce cholesterol synthesis in the 

liver. By reducing intracellular cholesterol, statins increase the expression of LDL receptor 

on the surface of the liver. As a result, LDL uptake from the blood to the liver is increased, 
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and plasma levels of other ApoB-containing lipoproteins, including LDLs, chylomicrons, 

very low-density lipoproteins (VLDLs), lipoprotein (Lp)(a), and intermediate-density lip-

oproteins, are decreased. Since the 1990s, large-scale clinical trials, conducted mainly in 

Europe and the United States, have demonstrated that lipid-lowering therapy with statins 

reduces cardiovascular events. In 2005, Cholesterol Treatment Trialists’ (CTT) collabora-

tors reported that a one mmol-reduction (38.7 mg/dL) of LDL-C reduced major cardiovas-

cular events (that include non-fatal myocardial infarction (MI), coronary heart disease 

death, coronary revascularization, and stroke) by 21%, regardless of the baseline LDL-C 

value [56]. This trial is a meta-analysis of 14 RCTs comparing statins and placebo groups, 

showing the efficacy of statins for cardiovascular diseases. The drugs used in this study 

included simvastatin, lovastatin, pravastatin, fluvastatin, and atorvastatin. In many cases, 

standard statins were used. Moreover, in 2010, CTT collaborators reported that a meta-

analysis of all 26 randomized trials showed similar results to those in 2005. It showed a 

22% suppression and 10% reduction in total mortality. In addition, more intensive statin 

regimens resulted in a 15% greater reduction in major cardiovascular adverse events than 

those given in less intensive regimens. In other words, it was suggested that the hypothe-

sis ‘the lower, the better’ is correct to reduce the risk of cardiovascular events for LDL-C 

[57]. In the 2019 ESC/EAS guidelines for the management of dyslipidemias, recommenda-

tions for patients with very high risk atherosclerotic cardiovascular disease (ASCVD), di-

abetes mellitus (DM) with target organ damage, severe chronic kidney disease (CKD), a 

calculated systematic coronary risk evaluation of >10% for 10-year risk of fatal cardiovas-

cular disease (CVD), or familial hypercholesterolemia (FH) with ASCVD risk factor, are 

an LDL-C reduction of >50% from baseline and an LDL-C goal of <1.4 mmol/L (<55 

mg/dL). Then, recommendations are also for an LDL-C reduction of >50% from baseline 

and an LDL-C goal of <1.8 mmol/L (<70 mg/dL) for patients with high risk, an LDL-C goal 

of <2.6 mmol/L (<100 mg/dL) for moderate risk, and an LDL-C goal of <3.0 mmol/L (<116 

mg/dL) for low risk [58]. 

Different types of statins have different degrees of LDL-C reduction, and different 

statin doses have different rates of this reduction. High-intensity regimens are defined as 

doses of statins that reduce LDL-C by 50% on average, and medium-intensity therapy is 

defined as doses that reduce LDL-C by 30–50% [59]. However, the degree of statin-in-

duced LDL-C reduction varies from person to person and is affected by genetic back-

ground and medication compliance. Some people cannot tolerate and continue taking ap-

propriate doses, requiring a change to a non-statin agent to improve dyslipidemia. More-

over, statins improve hypertriglyceridemia and reduce triglyceride (TG) levels by 10–20% 

of baseline values. Particularly, strong statins (rosuvastatin, pitavastatin, and atorvastatin) 

have a high TG-lowering effect [60]. The mechanism of the TG-lowering effect of statins 

is unclear, but it seems that an increase in lipoprotein metabolism is involved. It is said 

that an increase in the VLDL uptake rate in hepatocytes and a decrease in VLDL produc-

tion rate are involved. The rate of VLDL decrease may depend on VLDL concentration 

before the treatment [61]. In a meta-analysis, statin dose changed the degree of high-den-

sity lipoprotein-cholesterol (HDL-C) level elevation. Statin-induced changes in HDL-C 

correlated positively and significantly with those of ApoA-I. In contrast to the relation-

ships between changes in HDL-C LDL-C, there is a clear relationship between statin-in-

duced increases in HDL-C and reductions in plasma TG[62]. In 2016, Ford and colleagues 

analyzed the data of the West of Scotland Coronary Prevention Study and verified the 

efficacy of statins for non-DM patients with a 10-year risk of ASCVD < 7.5%. With a dura-

tion of over 20 years, an 18% risk reduction of all-cause death was shown [63]. Although 

statins are effective for preventing ASCVD in adults aged 75 years and older, subgroup 

analysis of heart failure and hemodialysis patients has failed to show their effectiveness 

[57]. 

It has also been suggested that the preventive effect of statins for ASCVD may not be 

limited to lowering cholesterol. In the Jupiter trial, rosuvastatin reduced cardiovascular 

events in patients with normal LDL-C and high C-reactive protein (CRP) [44]. 
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Independent of LDL-C lowering, statins have been suggested to inhibit the development 

of cardiovascular diseases through anti-inflammatory, antioxidant, vascular endothelial 

function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects [10–

12]. 

For patients with a high risk of cardiovascular diseases, the benefits of statin therapy 

outweigh the risks. The risk of statin-induced severe muscle damage, including scrotum 

lysis, is less than 0.1%, and the risk of severe hepatotoxicity is approximately 0.001%. The 

risk of newly diagnosed statin-induced DM is about 0.2% per year of treatment, depend-

ing on the underlying risk of diabetes in a study population. Statins significantly reduce 

the risk of atherothrombotic stroke, and thus, total stroke and other adverse cardiovascu-

lar events. To date, there is no convincing evidence on a causal link between statins and 

cancer, cataracts, cognitive dysfunction, peripheral neuropathy, erectile dysfunction, or 

tendinitis [64]. 

4. Statins and Cerebrovascular Diseases 

The preventive effect of statins on atherothrombotic stroke is well established, but 

statins can influence other cerebrovascular diseases. Thus, statins have many neurological 

effects in addition to lowering cholesterol. Here, we discuss the effects of statins on cere-

brovascular disease from several aspects. 

4.1. Cerebral Infarction 

Statins are strongly associated with cerebrovascular diseases, especially cerebral in-

farction. Many large clinical trials have been conducted, showing the positive effect of 

statins on stroke. Representative studies include the Cholesterol Recurrent Events (CARE) 

Study [65], the Long-Term Intervention with Pravastatin Ischemic Disease (LIPID) Study 

[66], and the Heart Protection Study (HPS) [67], all showing a reduction in the incidence 

of stroke or cerebral infarction. In addition, the Stroke Prevention by Aggressive Reduc-

tion of Cholesterol (SPARCL) study [68] showed the efficacy of statins in patients with 

stroke or transient ischemic attack. These results have been attributed to the importance 

of the cholesterol-lowering effect, which is the primary effect of statins [67,69]. However, 

recent studies have shown that cholesterol reduction in stroke is not the major factor, 

highlighting the importance of pleiotropic effects [70–72]. Statins influence intracellular 

signaling, improve vascular endothelial function, inhibit thrombus formation, and exert 

anti-inflammatory and antiangiogenic effects. Statin treatment is essential for patients 

with carotid artery stenosis, as the pleiotropic effect stabilizes the carotid atherosclerotic 

plaque [73]. This finding has been confirmed by the results of the Japan Statin Treatment 

Against Recurrent Stroke (J-STARS) study, which showed that low-dose statin reduces 

the occurrence of stroke due to larger artery atherosclerosis [74]. Although statins have 

been well studied for the primary and long-term secondary prevention of stroke, their use 

in the acute phase is controversial. Large retrospective studies have shown that early re-

sumption of statins contributes to improved survival in patients using statins prior to 

stroke onset [75]. On the other hand, the benefit of statin in the acute phase of stroke was 

not clear in the Administration of Statin on Acute Ischemic Stroke Patient Trial (ASSORT) 

[76]. However, recent advances in stroke treatment have supported the usefulness of 

statins as an early intervention. A systematic review and meta-analysis of intravenous 

thrombolysis, one of the core components of early treatment, has shown that post-treat-

ment use of statins is associated with reduced intracerebral hemorrhage and mortality. 

Furthermore, in mechanical thrombectomy, preoperative and long-term postoperative 

use of statins has been suggested to reduce the risk of arterial re-occlusion [77–79]. In ad-

dition, experiments on animals have shown that statins can protect arterial intimal dam-

age after endovascular mechanical thrombectomy using stent retrievers [80]. The plei-

otropic properties of statins suggest that they provide benefits in many other aspects be-

sides post-stroke prevention. The anti-inflammatory and neuroprotective effects of statins 

can reduce the infarct volume, findings that are supported by a me-ta-analysis of stroke 
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imaging analysis. Suppressing oxygen glucose deprivation-induced activated microglial 

cells and reticulum stress by autophagy inhibition of statins are associated with the result 

[81–83]. The inhibition of aquaporin 4 (AQP4) expression by statins has also been shown 

to contribute to the reduced volume of cerebral infarction by suppressing brain edema 

[84]. In addition, recent studies have shown that the neuroinflammatory suppressive ef-

fect of statins can inhibit early and long-term epileptic seizures after stroke [85–87]. There-

fore, statin therapy should not be withdrawn in patients previously taking statins, and 

patients not previously treated with statins should start receiving statins from the early 

stage of stroke. 

4.2. Intracerebral Hemorrhage 

The effect of statins on intracerebral hemorrhage (ICH) has been controversial, as 

previous epidemiological studies have shown that hypocholesterolemia may cause in-

creasing ICH. Also, the SPARCL study showed an increased occurrence of a cerebral hem-

orrhage. This is related to the facts that cholesterol is important for maintaining the struc-

ture of blood vessels and that statins suppress platelet aggregation. However, recent stud-

ies have shown that statins do not increase the risk of hemorrhage, further suggesting 

their beneficial effects in ICH. A large meta-analysis of 42 trials revealed no apparent as-

sociation between statins and risk of ICH and showed a reduction in stroke and cerebral 

infarction [88]. Although several studies have been conducted on statin use and cerebral 

microbleeds (CMBs) formation, which are related to ICH, there is no clear association 

[89,90]. In addition, a large prospective cohort study suggested that statins might reduce 

the risk of ICH [91]. The multifaceted effects of statins may reduce brain damage in pa-

tients after ICH and improve their prognosis. Several animal studies have shown that 

statins have many neuroprotective effects, including protection of the blood–brain barrier 

(BBB), inhibition of inflammatory cytokines, anti-apoptotic effect, and reduction of brain 

edema after ICH [92–96]. Although the evidence for statin use in ICH remains unclear, the 

risks of their use have been low, and there is no need to avoid their use intensively. 

4.3. Cerebral Aneurysm and Subarachnoid Hemorrhage 

The use of statins in patients with acute subarachnoid hemorrhage has been studied 

extensively because of their potential effectiveness in treating cerebral vasospasm and de-

layed ischemic neurological deficit (DIND). However, there is still no consensus on statin 

use, and their clinical usefulness remains controversial. Several animal studies suggested 

that statins improve early brain damage and reduce cerebral vasospasm after subarach-

noid hemorrhage through their anti-inflammatory, anti-apoptotic, and AQP4 expression-

inhibitory effects [97–99]. Several clinical trials showed that statins reduce cerebral vaso-

constriction and DIND [100–103], and some meta-analyses also showed this finding [104–

106]. In contrast, there are some studies that have not shown the clear efficacy of statins 

[107,108]. The pleiotropic effect of statins may potentially prevent brain damage after sub-

arachnoid hemorrhage; thus, future large-cohort studies are desirable. In addition, recent 

research has focused on the rupture-preventive statin effects on unruptured cerebral an-

eurysms. Although several retrospective studies showed that statins reduce aneurysm 

rupture through their anti-inflammation and endothelial protective effects [109,110], the 

first prospective randomized controlled trial did not show a clear significant difference 

[111], thus requiring additional studies. 

5. Statins and Cancer 

In addition to the cholesterol-lowering effect, statins are reported to have anti-inflam-

matory and antitumor effects (statin-associated pleiotrophy). Basic research suggests that 

statins cause pro-apoptotic, growth-inhibitory, and pro-differentiation effects in various 

malignancies [16]. The statins can be more reasonable and are better tolerated than tradi-

tional chemotherapeutic agents. Statins can then be investigated as to whether they can 
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be used to prevent or treat cancer alone or in combination with other drugs. This chapter 

summarizes the pros and cons of the antitumor effect of statins (Table 2). 

Table 2. Pros and cons of statin use for patients with malignant tumors. 

Pros Cons 

Economically reasonable and well-tolerated Off-label use 

Except for hypocholesterolemia Hypercholesterolemia  

Favorable for malignancies? Carcinogenic? 

Many observational studies Biases  

Statins improve cardiovascular outcomes Lipid-lowering drugs may not necessarily improve all causes of death 

5.1. Effective Molecular Markers 

Some authors discussed how to detect statin-vulnerable tumors. Statin-vulnerable 

molecular features include mesenchymal cell state, sensitizing molecular mechanisms, 

such as p53 mutation, t(4;14) translocation, and impaired SREBP-mediated feedback re-

sponse [112], mevalonate pathway genes, the Yes-associated protein (YAP)/ transcrip-

tional coactivator with PDZ-binding motif (TAZ) transcriptional regulators [113], and can-

cer stem cell maintenance among others [114–116]. 

5.2. Clinical Studies 

Clinical studies of statin use for patients with malignant tumors are summarized in 

Table 3. 

Table 3. Clinical studies of statin use for patients with malignant tumors. 

Authors, Year 

Stu

dy 

type 

Patients Evaluation Comparison Outcome Results 

Garwood, 

2010 [117] 
II 

High grade ER- 

negative breast 

cancer 

High dose 

fluvastatin 

Low dose 

fluvastatin 

Ki-67 

index, 

caspase 3 

cleavage 

Fluvastatin increases apoptosis and 

decreases proliferation of cancer cells. 

Feldt, 2015 

[118] 
II 

Invasive breast 

cancer 
Atorvastatin None 

p27, cyclin 

D1 

Atorvastatin induces anti-proliferative 

effects through up-regulation of tumor 

suppressor p27 and down-regulation of 

cyclin D1.  

Alarfi, 2020 

[119] 

II 

RCT 

Metastatic 

breast cancer 

Simvastatin, 

carboplatin, 

vinorelbine 

Carboplatin, 

vinorelbine 
ORR, OS 

The chemo-sensitizing effect was 

investigated, but simvastatin did not 

improve ORR, and OS. 

Yulian, 2021 

[120] 

II 

RCT 

Advanced 

breast cancer 

Simvastatin, 

FU, ADM, CPA 
FU, ADM, CPA ORR, OS 

Simvastatin increased pathlogical ORR 

but did not improve OS. 

Kornblau, 

2007 [121] 
I 

New AML and 

recurrent AML 

Pravastatin, 

idarubicin, 

cytarabine 

Historical 

control 
ORR 

Pravastatin idarubicin, and high-dose 

cytarabine induce CR in 11 new 

patients and 9 salvage patients. 

Advani, 2014 

[122] 
II Relapsed AML 

Pravastatin, 

idarubicin, 

cytarabine 

Historical 

control 
ORR 

Idarubicin, cytarabine, and pravastatin 

improve the ORR. 

Advani, 2018 

[123] 

II  

RCT 
New AML 

Pravastatin, 

idarubicin, 

cytarabine 

Idarubicin, 

cytarabine 
ORR 

Pravastatin did not meet the 

prespecified efficacy criteria in newly 

diagnosed 24 AML patients. 
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Schmidmaier, 

2007 [124] 
II 

Multiple 

myeloma, 

treated with 

two cycles of 

bortezomib or 

bendamustine 

Simvastatin 

plus additional 

2 cycles of 

bortezomib or 

bendamustine 

Additional 2 

cycles of 

bortezomib or 

bendamustine 

Chemothe

rapy 

resistance 

Simvastatin reduces chemotherapy 

resistance in 6 patients with refractory 

MM compared to 10 patients treated 

with chemotherapy alone. 

Hus, 2011 

[125] 

II 

RCT 

Relapsed or 

refractory 

multiple 

myeloma 

Lovastatin, 

thalidomide, 

dexamethasone 

Thalidomide, 

dexamethasone 
OS, PFS Lovastatin prolongs OS and PFS. 

Alexandre, 

2020 [126] 

II  

RCT 

Esophageal 

cancer 

Esophagectomy  

with 

simvastatin 

Esophagectomy  

without 

simvastatin 

OS, PFS 

The one-year simvastatin 

administration for patients with 

esophageal cancer who had undergone 

esophagectomy did not conclude the 

survival outcomes. 

Kim, 2001 

[127] 
II 

Advanced 

gastric cancer 

Lovastatin, 

ubiquinone 
None 

ORR, 

toxicity 

Lovastatin with ubiquinone was 

ineffective. NO ORR improvement was 

observed. 

Konings, 2010 

[128] 

II  

RCT 

Advanced 

gastric 

carcinoma 

Pravastatin, 

epirubicin, 

cisplatin, 

capecitabine 

Epirubicin,  

cisplatin, 

capecitabine 

OS, PFS 
Pravastatin did not improve OS and 

PFS. 

Kim, 2014 

[129] 

III 

RCT 

Metastatic 

gastric or EC 

junction 

adenocarcinom

a 

Simvastatin, 

capecitabine, 

cisplatin 

Capecitabine, 

cisplatin 
PFS 

Simvastatin did not increase PFS 

compared with chemotherapy alone.  

Lim, 2015 

[130] 

III 

RCT 

Metastatic 

colorectal 

cancer 

Simvastatin,  

FOLFIRI or 

XELIRI 

FOLFIRI or 

XELIRI 
OS, PFS 

Simvastatin plus chemotherapy did not 

increase OS and PFS compared with 

chemotherapy alone. 

Jouve, 2019 

[131] 
RCT 

Advanced 

hepatocellular 

carcinoma 

Pravastatin, 

sorafenib 
Sorafenib 

OS, PFS, 

TTP 

Sorafenib plus pravastatin did not 

improve TTP, PFS, and OS compared 

with sorafenib alone. 

Blanc, 2021 

[132] 

II 

RCT 

Advanced 

hepatocellular 

carcinoma 

Pravastatin, 

sorafenib 

Sorafenib alone 

or pravastatin 

alone. 

OS PFS 

Sorafenib or pravastatin did not 

improve outcomes. Sorafenib is 

potentially effective. 

Riano, 2020 

[133] 

II 

RCT 

Advanced 

hepatocellular 

carcinoma 

Pravastatin, 

sorafenib 
Sorafenib OS, TTP 

Sorafenib plus pravastatin did not 

improve TTP compared with sorafenib 

alone. 

Kawata, 2001 

[134] 
RCT 

Advanced 

hepatocellular 

carcinoma 

Pravastatin, 

embolization, 

FU 

Embolization, 

FU 
OS 

Transcatheter arterial embolization 

followed by fluorouracil and 

pravastatin prolongs OS compared 

with the standard therapy alone. 

Hong, 2014 

[135] 

II 

RCT 

Advanced 

pancreatic 

cancer 

Simvastatin, 

gemcitabine 
Gemcitabine TTP 

Gemcitabine plus simvastatin did not 

decrease TTP compared with 

gemcitabine alone. 

Seckl, 2017 

[136] 

III 

RCT 

Small cell lung 

cancer 

Pravastatin, 

etoposide plus 

cisplatin or 

carboplatin 

Etoposide plus 

cisplatin or 

carboplatin 

OS, PFS 
Pravastatin did not offer additional 

benefits. 
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Lee, 2017 

[137] 

II 

RCT 

Lung cancer 

(NSCLC, non- 

adenocarcinom

as) 

Simvastatin, 

afatinib 
Afatinib ORR 

Simvastatin did not improve response 

rates. compared with afatinib alone in 

patients with non-adenocarcinomas 

Han, 2011 

[138] 

II 

RCT 

Lung cancer 

(NSCLC) 

Simvastatin, 

gefitinib 
Gefitinib PFS, ORR 

No outcome improvement was 

observed. Simvastatin increases 

response rates and PFS only in patients 

with EGFR wild type non-

adenocarcinoma. 

ADM, Adriamycin; AML, acute myeloid leukemia; CPA, cyclophosphamide; CR, complete remis-

sion; EC, esophageal-gastric; EGFR, epidermal growth factor receptor; ER, estrogen receptor; 

FOLFIRI, Leucovorin, 5-FU, and irinotecan; FU, fluorouracil; NSCLC, non-small cell lung cancer; 

ORR, objective response rate; OS, overall survival; PFS, progression free survival; RCT, random-

ized clinical trial; TTP, time to progression; XELIRI, capecitabine and irinotecan; I, phase I; II, 

phase II; III, phase III. 

5.3. Clinical studies 

5.3.1. Breast Cancer: One of the Promising Scenarios 

Metabolic syndrome, including hypercholesterolemia, can harm the prognosis of 

breast cancer patients [139]. Although meta-analyses did not necessarily demonstrate the 

antitumor effect of statins against breast cancer [140], some nationwide cohort studies 

supported the protective effect of statins regarding breast cancer-related incidence and 

mortality [141,142]. Eliminating the possibility of immortal time bias and selection bias 

(see Limitations below), Nowakowska et al. have reported that statins used for triple-neg-

ative breast cancer (TNBC) improve overall survival (OS) in stage I to III patients [143]. 

Estrogen receptor (ER)-negative breast cancer cells are sensitive to statin exposure [144]. 

An increase of mesenchymal cell marker, vimentin, or decrease of the epithelial marker, 

E-cadherin, is sensitive to statins [145,146]. It is speculated that epithelial–mesenchymal 

transition-inducing cells are highly sensitive to statin treatment, which may suppress the 

metastatic potential of breast cancer [112,147]. In a phase II study, fluvastatin reduced 

proliferation and increased apoptosis in women with ER-negative high-grade breast can-

cer [117]. High-dose atorvastatin induces anti-proliferative effects through up-regulation 

of tumor suppressor p27 (cyclin-dependent kinase 1B) and down-regulation of oncogene 

cyclin D1 in phase II study of 42 patients with breast cancer [118]. 

There are several phase II randomized clinical trials (RCTs) that have investigated 

statin use in cancer. The chemo-sensitizing effect was investigated in 82 metastatic breast 

cancer patients, but carboplatin and vinorelbine plus simvastatin did not improve objec-

tive response rate (ORR), toxicity, and OS compared with carboplatin and vinorelbine 

alone. High-sensitivity CRP (hsCRP) and lactate dehydrogenase (LDH) are described as 

prognostic factors in breast cancer patients [119]. A trend for better activity and tolerabil-

ity is observed in 66 patients with locally advanced breast cancer; however, fluorouracil, 

adriamycin, and cyclophosphamide (FAC) plus simvastatin did not statistically improve 

ORR and OS compared with FAC alone. Human epidermal growth factor receptor-related 

2 (HER2) expression is the factor related to therapeutic response in that study [120]. How-

ever, the study populations were not stratified with molecular markers. Statin safety has 

been partially warranted concerning skin toxicity and cardiotoxicity protection in RCTs 

on breast cancer patients [148–150]. Therefore, statin administration is a promising ap-

proach for tumors with effective molecular markers and without sufficient treatment op-

tions, such as ER-negative breast cancer and TNBC. Statins have also been speculated to 

be effective against ER-positive breast cancer for other reasons [113]. Several phase III 

prospective RCTs can be searched at clinicaltrials.gov, accessed on 24 December, 2021. 
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5.3.2. Leukemia 

A meta-analysis suggested the preventive effect of statins for leukemia and non-

Hodgkin lymphoma [151]. In a phase I study, idarubicin and high-dose cytarabine plus 

pravastatin were administered in 15 newly diagnosed and 22 salvage patients with acute 

myeloid leukemia (AML) harboring unfavorable or intermediate prognosis cytogenetics. 

Compared with an historical group, complete remission was obtained in 11 of 15 new 

patients and 9 of 22 salvage patients. These are encouraging response rates [121]. In a 

phase II trial, idarubicin, cytarabine, and pravastatin improved the response rate com-

pared with historical control in relapsed AML [122]. However, the chemotherapy plus 

pravastatin regimen did not meet the prespecified efficacy criteria in 24 patients with 

newly diagnosed AML [123]. 

5.3.3. Multiple Myeloma 

Meta-analyses suggested the preventive effect of statins for multiple myeloma 

[152,153]. A pilot phase II trial revealed that six patients with refractory multiple myeloma 

to whom simvastatin was administered showed a reduction of chemotherapy resistance 

compared to 10 patients without simvastatin use [124]. Lovastatin plus thalidomide–dex-

amethasone prolonged OS and progression-free survival (PFS) compared to thalidomide–

dexamethasone alone in a phase II study [125]. 

5.3.4. Esophageal Cancer 

Meta-analysis findings suggested the pleiotropic effect of statins in esophageal can-

cer [154,155]. An RCT supported the feasibility of the one-year simvastatin administration 

for patients with esophageal cancer who had undergone esophagectomy but did not con-

clude the survival outcomes [126]. Statins may also have a protective effect for acute lung 

injury after esophagectomy [156]. 

5.3.5. Gastric Cancer 

Meta-analysis findings presented statin-associated pleiotropy in gastric cancer [157–

159]. The effect of statins revealed the same tendency even when the effect of Helicobacter 

eradication was considered [160]. In several phase II or III RCTs, lovastatin with ubiqui-

none was ineffective for patients with advanced gastric adenocarcinoma [127], epirubicin, 

cisplatin, and capecitabine plus pravastatin did not improve PFS at six months compared 

with the chemotherapy alone [128], and capecitabine and cisplatin plus simvastatin did 

not increase PFS compared with capecitabine and cisplatin alone in advanced gastric can-

cer [129]. Statins were reported to increase the eradication rate of Helicobacter pylori in 

RCTs, which is favorable for gastric cancer prevention [161,162]. 

5.3.6. Colorectal Cancer 

Epidemiological studies suggested the pleiotropic effect of statins on colorectal can-

cer [163,164]. A retrospective cohort study revealed that preoperative statin therapy dis-

plays a strong association with reduced postoperative mortality following surgical resec-

tion for rectal cancer [165]. On the other hand, statin use at the time of diagnosis was not 

associated with increased PFS and OS in KRAS-mutant patients treated with chemother-

apy and bevacizumab plus cetuximab [166]. In a prospective observational study, statin 

use during and after adjuvant chemotherapy was not associated with improved OS in 

patients with stage III colon cancer after curative resection, regardless of KRAS mutation 

status [167]. Leucovorin, 5-fluorouracil, irinotecan (FOLFIRI)/capecitabine, and irinotecan 

(XELIRI) plus simvastatin did not increase OS and PFS compared with FOLFIRI/XELIRI 

alone in metastatic colorectal cancer in a phase III RCT [130]. Simvastatin effect on long-

course fluoropyrimidine-based preventive chemoradiotherapy is being studied in a phase 

II RCT [168]. The preventive effect of statins on colorectal cancer has also been investi-

gated, but no consensus has been reached yet [169]. 
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5.3.7. Hepatocellular Carcinoma 

A meta-analysis described statin-associated pleiotropy in hepatocellular carcinoma 

[170–172]. There are several phase II or III RCTs that studied this effect. Sorafenib plus 

pravastatin did not improve time to progression (TTP), PFS, and OS compared with so-

rafenib alone [131,132], but improved TTP in another study [133]. In a study of transcath-

eter arterial embolization followed by fluorouracil, the addition of pravastatin prolonged 

OS compared with the standard therapy alone in advanced hepatocellular carcinoma 

[134]. The use of atorvastatin for preventing hepatocellular carcinoma recurrence after cu-

rative treatment is being investigated in an RCT (NCT03024684). 

5.3.8. Pancreatic Cancer 

Epidemiological studies have suggested the pleiotropic effect of statins on pancreatic 

cancer [46,173]. However, gemcitabine plus simvastatin did not decrease TTP compared 

with gemcitabine alone in advanced pancreatic cancer [135]. 

5.3.9. Lung Cancer 

Although meta-analysis did not demonstrate statin-associated pleiotropy against 

lung cancer [174] among lipid-lowering medication users in a nationwide study, adher-

ence was inversely associated with reduced cancer-specific mortality in lung cancer [175]. 

An exploratory analysis of the Canakinumab Anti-inflammatory Thrombosis Outcome 

Study, in which a monoclonal antibody targeting interleukin-1-beta was studied primarily 

to reduce major adverse cardiovascular events, indicated that the drug is associated with 

a significant reduction of lung malignancy [176]. Recent epidemiological studies have also 

suggested that the addition of statins to tyrosine kinase inhibitors (TKI) targeting epider-

mal growth factor receptor (EGFR) may be effective [177,178]. Statins were associated with 

better clinical outcomes in malignant pleural mesothelioma and advanced non-small-cell 

lung cancer patients treated with programmed cell death-1 (PD-1) inhibitors in a retro-

spective study [179]. Standard chemotherapy plus pravastatin did not offer additional 

benefit compared with chemotherapy alone in patients with small-cell lung cancer [136]. 

Afatinib plus simvastatin did not improve response rates compared with afatinib alone in 

patients with non-adenocarcinomas [137], but gefitinib plus simvastatin were reported to 

demonstrate higher tumor response rates and longer PFS compared to gefitinib alone in 

patients with EGFR wild type non-adenocarcinomas [138]. 

5.3.10. Renal Cell Carcinoma 

Although a meta-analysis did not demonstrate pleiotropy of statins in renal cell car-

cinoma [180], the hypothesis has not been conclusive [181,182]. Statins were reported to 

be favorable for patients treated with sunitinib or immune checkpoint inhibitors [183,184]. 

The association between statin use and a reduced risk of progression and OS has been 

inconsistent in RCTs with patients with localized or locally advanced renal cell carcinoma 

after surgery [185,186]. 

5.3.11. Bladder Cancer 

Although meta-analysis findings did not demonstrate the pleiotropic effect of statin 

in bladder cancer [187], the hypothesis has not been conclusive [188]. A large population-

based study revealed that statin users have better OS than nonusers with non-muscle-

invasive bladder cancer but did not have a chemo-preventive effect [189]. The chemo-

preventive effect of statin in bladder cancer remains to be investigated [190]. 

5.3.12. Prostate Cancer 

Serum cholesterol levels and metabolic syndrome may be potential risk factors for 

prostate cancer, but this suggestion remains inconclusive [191–193]. Many studies de-

scribed the possibility of statin-associated pleiotropy in prostate cancer [187,194]. 
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However, in a retrospective analysis, statin administration improved biochemical PFS but 

did not prolong OS in patients with prostatic cancer who had undergone radical prosta-

tectomy [195]. A brachytherapy investigation suggested that statins, especially atorvas-

tatin, may improve most clinical presentations with a nonsignificant improvement in 8-

year biochemical PFS [196]. Postoperative treatment with atorvastatin might have contrib-

uted to the earlier recovery of erectile function after nerve-sparing radical retropubic pros-

tatectomy [197]. The chemo-preventive effect of statin in prostate cancer remains to be 

investigated [198,199]. An RCT was designed to assess the potential synergies of metfor-

min and atorvastatin for prostate cancer but has been terminated due to the low incidence 

of eligible patients [200]. 

5.3.13. Malignant Melanoma 

Some observational studies and secondary analysis indicated statin advantages in 

melanoma [201–203]. However, a meta-analysis of 20 RCTs of statins and fibrates for heart 

disease prevention found a favorable but not statistically significant effect for malignant 

melanoma [204]. In a randomized phase II clinical trial, a 6-month course of lovastatin for 

clinically atypical nevi did not induce favorable changes compared with placebo [205]. 

5.4. Limitations 

There are some limitations to this study. 

5.4.1. Drawbacks of Epidemiological Studies 

Epidemiological studies are useful and important, but the potential for selection bias 

and immortal time bias must be considered [206,207]. No matter how well-designed epi-

demiological studies are, one is unable to explain all potential sources of confounding 

factors and bias, and confounding factors cannot always be removed from cohort obser-

vational studies. 

5.4.2. Off-Label Use 

In many observational and retrospective clinical studies, at least nominally, statins 

were prescribed for the primary prevention for patients with hypercholesterolemia or sec-

ondary prevention of coronary artery disease, stroke, and any other cardiovascular dis-

eases. Therefore, such statin administration was for off-label use for malignancies. 

5.4.3. Natural History: Is Hypocholesterolemia or Hypercholesterolemia Harmful to Ma-

lignancies? 

The Framingham study reported that after the age of 50 years, there is no increased 

overall mortality with either high or low serum cholesterol levels, and the association of 

mortality with cholesterol values might be confounded by the diseases predisposing to 

death [208]. Both hypocholesterolemia and hypercholesterolemia are reported to be harm-

ful to malignancies or all-cause mortality [209–211]. The population with mildly or mod-

erately high blood cholesterol levels (from 211 to 251 mg/100 mL, for example) tends to 

have a better prognosis [211]. This tendency is also observed in a statin-administered 

group [212]. Patients with coronary artery disease or statin-eligible hypercholesterolemia 

have a high incidence of cancer [213,214]. In a meta-analysis of stroke recurrence, although 

metabolic syndrome was associated with all-cause mortality, the role of its components, 

such as hypercholesterolemia, in predicting all-cause mortality was not statistically sig-

nificant [215]. Additionally, about 40% of untreated patients with FH, who were carriers 

of the V408M mutation or Afrikaner-2 mutation in exon 9 of the LDL receptor gene, reached 

a normal life span. At the end of the 19th century, the standardized mortality ratio of this 

population was lower than that of the general population [216]. Therefore, although the 

results of previous studies remain inconsistent, hypocholesterolemia and hypercholester-

olemia probably seem to be correlated with tumors. Some cancers are reported to induce 
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hypocholesterolemia [217], but others are not [218]. However, the causal relationships re-

main unknown, and further studies are needed. It should be noted that the population 

with mild to moderate hypercholesterolemia tends to have a favorable prognosis for the 

incidence and/or mortality of cancer and/or all-cause mortality. 

5.4.4. Do statins and Lipid-Lowering Drugs Have Carcinogenicity? 

A possibility of the carcinogenic effect of statins has been described in some observa-

tional studies on breast cancer [219], lymphoid malignancies [220], prostate cancer [221], 

bladder cancer [222], any malignancies [223], cancer in elderly patients [224,225], and in a 

meta-analysis or commentaries [212,226,227]. However, other studies found no such effect 

[228–230]. Newman and Hulley summarized that clofibrates and statins cause cancer in 

rodents, in some cases at levels of animal exposure close to those prescribed to humans, 

compared to a few antihypertensive drugs. However, this result of animal experiments 

could be directly extrapolated to humans, and evidence of carcinogenicity of lipid-lower-

ing drugs from clinical trials in humans is inconclusive because of inconsistent results and 

insufficient duration of follow-up [231]. Recently, the Improved Reduction of Outcomes: 

Vytorin Efficacy International Trial (IMPROVE-IT) has demonstrated that ezetimibe, a 

non-statin drug inhibiting the intestinal absorption of cholesterol by targeting Nieman–

Pick C1-Like 1 transmembrane protein, added to simvastatin improved the outcome of 

the patients with coronary artery disease [232]. However, the Simvastatin and Ezetimibe 

in Aortic Stenosis (SEAS) trial in patients with aortic valve stenosis showed an unexpected 

increase in cancer incidence during a median follow-up of 52.2 months [233]. Post-hoc 

analysis of the IMPROVE-IT group and the SEAS registry-based observational study after 

21 months follow-up did not show an increase in cancer incidence and mortality, respec-

tively [234,235]. The simvastatin implication remains to be clarified. The presence or ab-

sence of a harmful effect of ezetimibe on cancer is currently controversial. 

As discussed above, the administration of lipid-lowering drugs may be just a con-

founding factor, and long-term survivors with mild to moderate hypercholesterolemia 

may tend to develop tumors. In short, long-term clinical trials and careful surveillance is 

still needed to determine whether cholesterol-lowering drugs cause cancer in humans 

[231]. 

5.4.5. Do statins and/or Lipid-Lowering Drugs Improve the True Endpoint, All-Cause 

Mortality? 

Historically, clofibrates reduced the risk of myocardial infarction but tended to in-

crease cancer, although not significantly, and failed to reduce all-cause mortality [227]. 

Recently, in the first randomized controlled study, evolocumab, proprotein convertase 

subtilisin-kexin type 9 (PCSK9) inhibitor, has significantly improved the recurrence of car-

diovascular disease but without significant difference in all-cause mortality [236,237]. 

Statins have been reported to improve all-cause mortality in a large-scale meta-analysis; 

however, their effect on cardiovascular disease has been the best factor, and they do not 

always improve cancer survival [57]. Even if cancer survival is improved, statins may not 

necessarily improve OS compared with medical advice alone [238]. 

5.5. Perspective 

Therefore, it is indispensable to verify the antitumor effect of statins in prospective 

controlled RCTs to clarify their true effect, as frequently pointed out by the authors of 

many basic, observational, and clinical studies. Their effect appears promising to stratify 

with molecular markers and treat in the direction of precision medicine, especially for 

tumors with few treatment options [112]. 
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6. Conclusions 

This review described the pharmacological action of statins, focusing on the aspect 

of ‘beyond lipid-lowering.’ Furthermore, we discussed the recent evidence on the effects 

of statins on cardiovascular and cerebrovascular diseases and cancer. Statins suppress the 

production of intermediate metabolites of isoprenoid biosynthesis, such as GGPP and 

FPP, by inhibiting the cholesterol biosynthesis pathway, consequently suppressing the 

activation of small G-proteins. Small G-proteins play important roles in many systems 

that regulate cellular functions, and these regulatory effects are partially attributed to the 

pleiotropic effects of statins. The preventive effect of statins on cardiovascular diseases 

and atherothrombotic stroke is well established, and is mainly due to cholesterol lower-

ing. However, statins may have other effects that are unrelated to cholesterol-lowering, 

on cerebrovascular diseases. Statins have been suggested to inhibit the development of 

cardiovascular diseases through anti-inflammatory, antioxidant, vascular endothelial 

function-improving, plaque-stabilizing, and platelet aggregation-inhibiting effects. Sev-

eral studies have shown that statins have many neuroprotective effects, including protec-

tion of the BBB, inhibition of inflammatory cytokines, an anti-apoptotic effect, and reduc-

tion of brain edema. Basic research suggests that statins cause pro-apoptotic, growth-in-

hibitory, and pro-differentiation effects in various malignancies [16]. If they are effective 

against tumors, the statins can be more reasonable and are better tolerated than traditional 

chemotherapeutic agents. Statins can then be investigated for their use in the prevention 

or treatment of cancer alone or in combination with other drugs. It is indispensable to 

verify the antitumor effect of statins in prospective controlled RCTs to clarify their true 

effect, as frequently pointed out by the authors of many basic, observational, and clinical 

studies. Although many animal models and non-randomized data on the pleiotropic ef-

fects of statins seems promising and the therapeutic efficacy of statins on cardiovascular 

and cerebrovascular diseases is being established, proper long term clinical trials and re-

sults are necessary to evaluate their therapeutic efficacy on cancer. It is also crucially im-

portant from the perspective of drug repositioning [239]. 
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