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Abstract: Most therapeutic drug monitoring (TDM) packages are based on the maximum a pos-
teriori (MAP) estimation. In this study, HMCtdm, a new TDM package, was developed using a
Hamiltonian Monte Carlo (HMC) simulation. The estimation process of HMCtdm for the drugs
amikacin, vancomycin, theophylline, and phenytoin was based on the R package Torsten. The prior
pharmacokinetic (PK) models of the drugs were derived from the Abbottbase® pharmacokinetics
systems (PKS) program. The performance of HMCtdm for each drug was assessed through internal
and external validations. The internal validation results of the HMCtdm were compared with those
of a MAP-based estimation. The developed open-source HMCtdm package is user friendly. The
validation results were reviewed and interpreted using the mean percentage error and root mean
squared error. The successful transplantation of the prior PK structures (used in PKS) was confirmed
by comparing the validation results with a MAP estimation. An open-source HMC-based TDM pack-
age was also successfully developed in this study, and its performance was evaluated. This package
can be operated by users unfamiliar with C++ and can be further developed for various applications.

Keywords: pharmacokinetic; Bayesian method; simulation; MAP; HMC

1. Introduction

An optimal drug dose is crucial for determining therapeutic success. Appropriate
drug dosing should be based on the pharmacokinetic (PK) parameters of the individual
patient and evaluated from the drug concentrations. Therapeutic drug monitoring (TDM)
uses TDM software to estimate PK parameters and predict the drug level according to the
specific dosage regimens.

Various programs have been developed for TDM, including InsightRX, PrecisePK, and
TDMx, among others. Most of these programs include one- or two-compartment PK models,
after intravenous or oral administration, for targeting the therapeutic levels of vancomycin,
aminoglycosides, theophylline, or phenytoin [1,2]. TDM software provides PK parameters
based on the Bayesian method, where prior information is obtained from PK data of the
previous reference study. Thus, despite the limited clinical data obtained from individual
patients, these informative priors can enable the estimation of PK parameters [3–5].
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The most frequently used Bayesian methodology for TDM is the maximum a posteriori
(MAP) procedure, which estimates the posterior mode using the data of an individual
patient and prior distributions [6]. Although the MAP estimation method was developed
50 years ago, it is still dominantly used in the estimation of PK parameters. Since com-
putation is relatively straightforward, the MAP is still a useful method for estimating the
posterior mode.

However, more information on the posterior distribution, including the posterior
mode, can be obtained using a full Bayesian analysis. A full Bayesian analysis is conducted
using methods, such as a Markov chain Monte Carlo (MCMC) approach, which require
numerous computations. Thus, for ease of calculation, Bayesian MCMC algorithm software–
such as WinBUGS and Jags based on Gibbs sampling and Stan based on a Hamiltonian
Monte Carlo (HMC) simulation—has been developed constantly [7–9].

The development of new algorithms and an improvement in the computational speed
has led to a full Bayesian analysis of the PK data [10]. Studies on PK analysis using a full
Bayesian estimation have been reported [11–14]. However, most studies have focused on
estimating the individual parameters after conducting a population PK analysis rather
than on a TDM study in which individual PK parameters are estimated using a Bayesian
analysis without an estimation of the population PK parameter [11,12]. Furthermore, to the
best of our knowledge, no TDM package has been developed to date using an HMC-based
MCMC algorithm.

The current study was conducted to develop HMCtdm, a new MCMC-based TDM
package, by transplanting the population PK model of an existing MAP-based package, the
Abbottbase® PK system. In addition, the package was validated using four different drugs
and blood samples withdrawn at various time points. The overview of the current study is
presented in Figure 1.

Figure 1. Overview of the current study. The process of generating simulation data for validation is
shown in the blue box. The three parts (input, estimation, and output) of the HMCtdm workflow
are distinguished by the green, black, and orange boxes, respectively. The true values generated are
compared for validation with the values predicted by HMCtdm. Abbreviations: CL, clearance; Vd,
volume of distribution; ka, first-order absorption rate constant; WT, body weight; HT, height; sCr,
serum creatinine.

2. Results

The developed package can be divided into three parts: input, estimation, and output
(Figure 1). In the input, the package requires the entry of a table containing the patient
characteristics, dosing information, and observed drug concentration. The format of the
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table is similar to that of the NONMEM software dataset. The variables that require
default inputs are as follows: individual identification number (ID), the event times of
dosing or concentration observation (time), event indicator (evid) (e.g., 0 = observation,
1 = dosing), dose administered for dosing event (amt), compartment of dosing or con-
centration observation (cmt), rate of infusion (rate), dosing interval (ii), and number of
additional doses (addl). The following R code provides example input data for amikacin,
i.e., get_sample_data(drug=“amikacin”).

In the estimation, PK parameters are estimated from input data and prior models
using Torsten based on MCMC [15]. For example, in case a user wants to estimate the
PK parameter for amikacin from the input data, data_set, the following code is input:
hmctdmrest(drug=“amikacin”, data=“data_set”). The prior PK models of the four drugs for
estimation were included in the package. Default prior information can be checked in the
package. For example, to view the prior models of amikacin, the following code is input:
get_default_prior(drug=“amikacin”).

In the output, the estimated PK parameter, concentration at the desired time, and
recommended dose are presented. The concentration at the desired time was calcu-
lated from the estimated PK parameter using mrgsolve [16]. The recommended dose
is calculated by the following code: get_recommended_dose(mode=mode, target=target, cur-
rent_dose=current_dose, current_status=current_status, . . . ), where mode is the type of target
value (e.g., Css

t, target, AUCss
τ, target, Ctarget), target is target value, current_dose is the dose

amount in the current dosage regimen, and current_status is the target value when the
current regimen is maintained. HMCtdm is provided in a repository at https://github.
com/SikSo1897/hmctdm/tree/develop (accessed on 1 November 2021). A detailed de-
scription of the input data preparation, estimation, and output production are described in
the README of the repository.

The internal validation for package performance was conducted using a total of 32 sce-
narios for four drugs, four sampling point sets, and two dose cases. A total of 32,000 virtual
patients were tested, i.e., 1000 for each scenario. Table 1 shows the estimation performance
calculated using MPE and RMSE for the concentration of drugs under several scenarios.
Figure 2 shows a plot of the true versus estimated values of the drug concentration. The
results of the estimated individual PK parameters for each drug are shown in Tables S1–S4
and Figures S1–S4.

Table 1. Performance of internal validation data estimation of concentration prediction.

Sampling Time

Peak Trough Peak and Trough Every 1 h

MPE (%) RMSE
(mg/L) MPE (%) RMSE

(mg/L) MPE(%) RMSE
(mg/L) MPE(%) RMSE

(mg/L)

Amikacin
Single dose 0.91 5.11 4.92 2.48 1.37 3.22 −0.32 1.35
Steady state −0.85 5.31 2.14 2.49 0.70 3.81 −0.35 1.75
Vancomycin
Single dose 2.32 4.51 6.72 2.85 2.27 3.06 0.23 2.04
Steady state 0.39 6.12 1.89 3.80 1.12 4.14 −0.11 2.49

Theophylline
Single dose −0.01 0.61 1.56 0.59 0.78 0.58 −0.03 0.40
Steady state −0.25 0.85 0.90 0.77 −0.18 0.68 −0.45 0.35
Phenytoin
Single dose 3.54 0.52 12.04 0.56 7.53 0.53 5.28 0.46
Steady state 5.28 1.60 13.91 1.52 7.24 1.18 2.27 0.58

https://github.com/SikSo1897/hmctdm/tree/develop
https://github.com/SikSo1897/hmctdm/tree/develop
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Figure 2. Graphs of estimated versus true concentration for each internal validation scenario. The
identity line is shown in red, and a trend line in blue has been drawn for each model: (A) amikacin,
(B) vancomycin, (C) theophylline, and (D) phenytoin.
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The external validation was conducted on a total of 9600 virtual patients, i.e., 300 each
for the same scenarios applied in the internal validation. Table 2 shows the performance of
the concentration estimation of the drugs for each scenario used in the external validation.
Figure 3 shows the true concentration versus the estimated concentration in the external
validation. The external validation results based on the parameter estimation for each drug
are shown in Tables S5–S8 and Figures S5–S8.

Table 2. Performance of external validation data estimation of concentration prediction.

Sampling Time

Peak Trough Peak and Trough Every 1 h

MPE (%) RMSE
(mg/L) MPE (%) RMSE

(mg/L) MPE(%) RMSE
(mg/L) MPE(%) RMSE

(mg/L)

Amikacin
Single dose 0.25 4.44 1.15 2.34 0.75 2.86 −0.07 1.62
Steady state −0.14 5.14 −0.10 2.72 1.86 3.49 0.32 1.83
Vancomycin
Single dose 21.91 6.66 6.99 2.95 5.49 3.45 −5.25 4.47
Steady state −2.72 21.19 −5.08 15.92 −0.62 13.11 3.38 6.60

Theophylline
Single dose 53.35 2.04 34.62 1.29 37.92 1.48 12.53 0.60
Steady state 37.15 2.09 19.43 1.07 21.26 1.37 6.93 0.58
Phenytoin
Single dose 34.39 0.91 14.65 0.57 21.15 0.70 8.07 0.34
Steady state −5.13 1.43 −8.01 1.44 −4.36 1.16 −1.96 0.54

A MAP estimation was applied to a total of 32,000 virtual patients using the same
scenario and data as in the internal validation. Table 3 and Figure 4 show the results of the
concentration estimation for the different drugs under each scenario in which the MAP
estimation was conducted. The estimated results of the individual parameters using the
MAP estimation are shown in Tables S9–S12 and Figures S9–S12.

Table 3. Performance of MAP estimation of concentration prediction.

Sampling Time

Peak Trough Peak and Trough Every 1 h

MPE (%) RMSE
(mg/L) MPE (%) RMSE

(mg/L) MPE(%) RMSE
(mg/L) MPE(%) RMSE

(mg/L)

Amikacin
Single dose −0.33 5.16 −4.65 2.72 −2.28 3.34 −1.16 1.38
Steady state −1.85 5.41 −2.64 2.66 −1.93 3.89 −0.84 1.77
Vancomycin
Single dose −0.15 4.53 0.22 2.82 −1.20 3.14 −1.16 2.06
Steady state −0.97 6.17 −1.79 3.94 −1.26 4.22 −0.80 2.46

Theophylline
Single dose −0.26 0.61 1.22 0.59 0.48 0.58 −0.31 0.40
Steady state −0.42 0.85 −0.11 0.78 −0.81 0.69 −0.71 0.36
Phenytoin
Single dose 4.15 0.52 11.56 0.56 7.72 0.54 5.32 0.45
Steady state 2.07 1.53 7.06 1.41 3.86 1.11 1.21 0.56
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Figure 3. Graphs of estimated versus true concentration for each external validation scenario. The
identity line is shown in red, and a trend line in blue has been drawn for each model: (A) amikacin,
(B) vancomycin, (C) theophylline, and (D) phenytoin.
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Figure 4. Graphs of estimated versus true concentration for each internal validation scenario using a
MAP estimation. The identity line is shown in red, and a trend line in blue has been drawn for each
model: (A) amikacin, (B) vancomycin, (C) theophylline, and (D) phenytoin.
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3. Discussion

HMCtdm was developed as an open-source R package for TDM with pharmacokinetic
models. This helps users unfamiliar with C++ and Stan programs to apply the TDM
workflows (which utilize Stan as a simple input) and, thereby, to estimate the parameters
and calculate the drug concentration at the desired time. As the source code of the estimated
model utilizes the ODE System of the Stan and Torsten library, there is no need to transform
the ODE into a complex closed form. HMCtdm also contains validated PK models from
the PKS. Among the various PKS drugs, PK models with different characteristics, such
as one or two compartments, were included in the package. Although the package does
not support the creation of a new PK model, its workflow is simple, and the model can be
modified into a base for creating a new model. As needed, the PK models of the source
code can be applied to new simulation studies. Since HMCtdm is based on Stan using
C++ syntax, it can be extended to other programming languages and be developed into
various types of TDM software as it can be combined with programming languages, such
as Python, shell, MATLAB, and R.

Internal validation was conducted to test the performance of the HMCtdm package.
For amikacin, the prediction of the concentrations under all scenarios appeared to be
good in terms of bias (as MPE) and precision (as RMSE). Although the prediction of the
concentration was good (Table 1, Figure 2), the estimation of the individual parameters
was poor (Table S1, Figure S1). In the single-dose case, the estimate of Vnr was better in
the peak sample set than in the trough sample set. In contrast, the estimate of CLslope
was better in the trough sample set than in the peak sample set. This was due to the
differences in the information of the parameters at each time point of the concentration [17].
As the number of sampling points increased, the estimation results of CLslope and Vnr
improved, whereas those of CLnr did not. In 1000 simulations of patients, the true mean
of the product of CLnr and LBW was 2.5 mL/min, and the product of CLslope and CrCl
was 45.3 mL/min. Therefore, the influence of CLnr on the clearance (CL) is not substantial
and can be estimated regardless of the simulation scenarios. Estimated CLslope showed
better results at steady state than after a single dose, because the concentration under a
steady state is influenced more by the CL than the volume of distribution (V) [18]. Thus,
on reaching steady state, the concentration gave more information regarding the CL than
the V.

Vancomycin showed a poor overall estimation performance for the single-dose cases
(Table 1 and Table S2, Figure 2 and Figure S2). For the individual parameters (Table S2,
Figure S2), the range of the estimated value did not change as much as the true parameter.
Since the number of parameters to be estimated increases for vancomycin when compared
with that for amikacin, the information based on the concentration would be weaker than
prior information. The estimated CLslope showed better results at steady state than after a
single dose, as observed in the case of amikacin. Therefore, in comparison to single-dose
cases, an improvement in the concentration prediction performance was observed.

Theophylline was assumed to be a sustained-release drug, and ka was set to 0.27 h−1,
and thus, the estimated PK parameters were generally poor (Table S3, Figure S3). Based on
the prior PK model, the time of peak concentration was at 6.40 h with CLnr at 40 mg/h/kg
and Vnr at 0.4 L/h. As the peak sampling time was set to a 4 h in the validation, blood
samples at the true peak point were not collected, and the value of V could not be estimated.
In addition, flip–flop kinetics can be assumed in the sustained-release formulation. Because
the elimination rate depends on ka, it would be difficult to calculate using CL/V. Therefore,
although the number of input concentrations increased, the estimate could not be calculated.
The estimation of CLnr was improved under a steady state when compared with a single
case. It is assumed that as the number of input concentrations increases the correct CLnr is
estimated, thus improving the estimation of Vnr.

For the single-dose cases of phenytoin, the overall estimation performance was poor
in terms of the both the concentration and PK parameters (Table 1 and Table S4, Figure 2
and Figure S4). Although the number of input concentrations increased, the estimations of
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Vmax and km showed little change, and Vnr showed a slight improvement. The estimation
of the concentration and Vmax were substantially improved at steady state compared to
that after a single dose, and the performances of km and Vnr were biased. The PK model
of phenytoin assumes Michaelis–Menten kinetics. Therefore, owing to the relatively low
concentration in the single-dose cases (when compared with a steady state), both Vmax and
km were involved in determining CL, necessitating the information split for the estimation
of both parameters related to CL (again, when compared with a steady state). Under a
steady state, CL is determined by Vmax, which can lead to an estimation of Vmax with
more information related to CL (when compared with a single-dose case). Thus, under
a steady state, the estimation performance of Vmax was substantially improved, and the
prediction of the concentration was thus improved. Nevertheless, the estimation results of
phenytoin showed bias compared with that of other drugs, particularly in the single-dose
cases. This could be an effect of the component values of the intra-individual variability,
determined through the following equation: σ = CVassay · CPred + Sassay. In our study,
Sassay was 1.0 mg/L for phenytoin, which was higher than 0.25 mg/L for the other drugs
(Table 4). As a result, the observed concentrations of phenytoin could have a relatively high
intra-individual variability, particularly at low concentrations. The observed concentrations
used in the estimation can deviate from the true values owing to the high intra-individual
variability. Consequently, the estimation performance may have poor results from the high
Sassay, particularly under low concentrations of single-dose phenytoin cases.

As the number of blood sampling points increased, the estimation performance gen-
erally improved. However, since the estimation of all parameters was not improved by
increasing the number of blood sampling points, it is necessary for estimation to use the
proper number and time points of blood samples specified by each PK model of a drug.
Thus, an appropriate TDM strategy can be devised by referring to the validation results of
this study. For example, to determine the initial dose of vancomycin, blood can be collected
immediately at the peak point after the first administration, and the loading dose from
the second administration can be corrected. This is because sampling at the peak point
shows a better estimate of V than that at the trough. Thereafter, it can be considered to
determine the maintenance dose through blood sampling at the trough, which gives a
better estimation of CL.

After external validation, it was observed that the estimation slowly declined in
performance when compared with that of the internal validation (Table 2 and Tables S5–S8,
Figure 2 and Figures S5–S8). Since TDM uses a Bayesian estimation, the estimation result is
affected by the prior information. Therefore, the estimation of the external validation using
a PK model with a different population is more inaccurate than the internal validation
using the same model. In conclusion, it is important to select a suitable prior for a better
predictability of the individual PK parameter. Various studies about priors have been
reported to improve the TDM performance, including a study on finding a population PK
model with a better predictive performance, study applying a non-informative prior for
TDM, and study by attempting to model the selection/averaging [3–5]. If the results of
these studies are accumulated, a better prior can be applied to HMCtdm.

The overall MAP estimation results were similar to those of the MCMC estimation
(Table 3 and Tables S9–S12, Figure 3 and Figures S9–S12). All PK parameters were generated
and estimated from log-transformed normal distributions. Therefore, it was assumed that
the MAP (which calculates the posterior mode) and MCMC (which calculates the posterior
median) produced similar estimates [6,15]. Most of the estimation algorithms of the TDM
package are based on a MAP, whereas HMCtdm is based on the MCMC algorithms [19].
Unlike MAP, MCMC can estimate the variance [13,14]. In particular, HMC is considered as
the gold standard among many Monte Carlo sampling methods [12]. Therefore, further
research on the application of variance, estimated using MCMC, for clinical purposes will
be needed in the future.
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Table 4. Population pharmacokinetics of amikacin, vancomycin, theophylline, and phenytoin in
Abbottbase® PKS system.

Pharmacokinetic Parameters

Drug (Model) Amikacin (1 CMT IV) Vancomycin (2 CMT IV)

Parameters Mean
(CV) Lower Upper Mean

(CV) Lower Upper

CLslope
0.815
(0.4) 0.3 1.7 0.75

(0.33) 0.3 1.7

CLnr (mL/min/kg) 0.0417
(0.25) 0.0001 0.17 0.05 (0.2) 0.01 0.2

Vnr (L/kg) 0.27 (0.3) 0.15 0.65 0.21 (0.2) 0.08 0.4

k12 (1/h) - - - 1.12
(0.25) 0.6 1.6

k21 (1/h) - - - 0.48
(0.25) 0.2 1.0

Drug (Model) Theophylline (1 CMT oral) Phenytoin (1 CMT oral)

Parameters Mean
(CV) Lower Upper Mean

(CV) Lower Upper

CLslope - - - 0.01 - -
CLnr (mL/h/kg) 40.0 (0.5) 15.0 90.0 - - -

Vnr (L/kg) 0.5 (0.2) 0.35 0.65 0.8 (0.2) 0.3 1.4
ka 0.27 - - - - -
F 1 - - 0.92 - -

Vmax (mg/kg/d) - - - 500 (0.3) 250.0 2000.0
km (mcg/mL) - - - 5.0 (0.5) 2.0 9.0

Parameter Equations

Model Linear Pharmacokinetics Nonlinear Pharmacokinetics

CL (L/h) CL = CLslope ·CrCL+CLnr · LBW CL = Vmax
km+C + CLslope · CrCL

V (L) V = Vnr · LBW V = Vnr · (TBW/70)0.6

Variability Equations

Parameters Parameter = Mean · eη1

η1 ∼ N
(
0, ω2), ω2 = ln(CV2 + 1)

Concentration
CObs = CPred + ε1

ε1 ∼ N
(
0, σ2), σ = CVassay · CPred + Sassay

CVassay = 0.15
Sassay = 0.25(mg/L)

CVassay = 0.1
Sassay = 1.0(mg/L)

Abbreviations: CMT, compartment; IV, intravenous; CV, coefficient of variance; CLslope, rate of change in drug
clearance with respect to creatinine clearance; CLnr, clearance independent of renal function; Vnr, distribution
volume independent of renal function; k12, first-order transfer rate constant from the central compartment
to peripheral compartment; k21, first-order transfer rate constant from the peripheral compartment to central
compartment; ka, first-order absorption rate constant; F, bioavailability; Vmax, maximum velocity; km, Michaelis
constant; CL, clearance; V, volume of distribution; CrCL, creatinine clearance in L/h; LBW, lean body weight in
kg; TBW, total body weight in kg; CObs, observed concentration; CPred, predicted concentration; CVassay, assay
coefficient of variation; Sassay, assay sensitivity.

Although this study focused on the development of a new TDM package and various
validations, it has certain limitations. The package can calculate the dose target values,
such as Css

t, Dose, AUCss
τ, Dose, and CDose, but does not suggest calculating the specific target

value corresponding to each drug. It allows calculating several target values through a
single estimation. For example, according to need, both the predicted target area under the
curve (AUC) of the time–concentration curve and trough concentration can be calculated
for vancomycin. Although this can increase the autonomy, the users who want to promptly
know a specific target value of a drug may find this inconvenient. In the validation, first,
interpretation of the effects of the simulation parameters, such as the inter- and intra-
individual variability, for the PK parameter and concentration in the results is limited.
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The results in our study showed that the estimation improves as the number of samples
increases. Through an external validation, it was observed that the estimation results
worsen with the different PK models between generation and estimation. However, there
is a limitation in interpreting which simulation parameter has a greater effect on the
estimation in this study. Second, phenytoin with nonlinear kinetics could not be validated
at various doses. Because the response of nonlinear kinetics drugs is sensitive to changes in
drug dose, validation of various doses is required. However, as the simulation scenario
was structured when considering the quantity of the information under the different
sampling times of each drug, a scenario with a change in dosing regimen could not be
included. Finally, all validations were based on simulations. To generate data close to
that of an actual patient, the demographics were generated using internal data, and the
dosing scenario was set by reviewing the drug approvals and dosing guidelines for each
drug. However, validation was not performed using plasma concentration data obtained
from actual patients. Therefore, further studies overcoming these limitations can help the
package improve and the individual PK parameters to achieve a better estimation.

4. Materials and Methods
4.1. Development
4.1.1. Package Development

The HMCtdm package was developed based on the R language and runs in R (version
4.1.0, Vienna, Austria) [20]. Based on the number of compartments, administration route,
and elimination kinetics, the drugs amikacin, vancomycin, theophylline, and phenytoin
were selected in the estimation package. The estimation of individual PK parameters is
based on the Bayesian method. The population PK parameter models for the priors of the
Bayesian estimation were obtained from the existing commercial program used in PKS.
Individual PK parameters are estimated using an HMC simulation, which is an algorithm
using in MCMC simulations [21,22].

4.1.2. Pharmacokinetic Model

Table 4 shows the details of the PK parameters of each drug obtained from Abbottbase®

PKS (version 1.10, Abbott Laboratories, PKS, Chicago, IL, USA). Intravenous infusion
with one- and two-compartment elimination models were applied to both amikacin and
vancomycin, and a one-compartment oral administration model was applied to both theo-
phylline and phenytoin. However, theophylline and phenytoin exhibited first-order elimi-
nation with first-order absorption and nonlinear elimination with a zero-order absorption,
respectively.

The PK parameters were assumed to follow a log normal distribution. Interindividual
variability of the PK parameters was converted from the coefficient of variance into the
standard deviation. The concentrations were assumed to follow normal distribution. The
intra-individual variability of the concentration error model reflected the assay coefficients
of variation and the assay sensitivity. The lean body weight (LBW), which is a covariate of
several PK parameters, was estimated using Peck’s formula [23]. The creatinine clearance
(CrCl) was calculated using the Cockcroft–Gault LBW [24].

4.1.3. Estimation Method

The PK parameters were estimated using an HMC simulation. Model estimation based
on the HMC algorithm was conducted using Torsten (version 0.89.0; Metrum Research
Group LCC, Tariffville, CT, USA), which is a Stan-based R package that uses an ordinary
differential equation (ODE) to estimate the PK parameter [15]. For estimating the PK
parameter, four chains were initialized and run for 5000 iterations each (2500 for warmup
and 2500 as samples from the posterior). The posterior median of the individual parameters
was used as an estimate.
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4.1.4. Dose Target and Recommendation

The dose target was computed for Css
t, Dose, AUCss

τ, Dose, and CDose. The target Css
t, Dose is

the steady-state concentration at time t after administration of the amount of Dose. The
target AUCss

τ, Dose is the AUC of the time–concentration during the dosing interval τ when
the amount of Dose is administered under a steady state. The target CDose is the average
concentration under a steady state when the amount of Dose is administered. In addition,
Css

t, Dose and AUCss
τ, Dose were predicted from the individual estimated PK parameters using

mrgsolve [16], and CDose was calculated as follows:

CDose =
AUCss

τ, Dose

τ

where AUCss
τ, Dose is the dose target AUC calculated using mrgsolve, and τ is the dosing

interval.
The dose recommendation was computed for a dose that can achieve the therapeutic

target of the drug under steady state. When dose target is under steady-state concentration
at time t, which is Css

t, target, the recommended dose is calculated as follows:

Recommended Dose =
Current Dose
Css

t, current dose
× Css

t, target

where Current Dose is the currently administered dose, Css
t, current dose is the predicted steady-

state concentration at time t after administration when the Current Dose is maintained, and
Css

t, target is the target concentration at time t under steady state. In addition, Css
t, current dose is

calculated using mrgsolve, and Css
t, target is specified by the user. When the dose target is the

AUC during τ under steady state, i.e., AUCss
τ, target, the recommended dose is calculated as

follows:
Recommended Dose =

Current Dose
AUCss

τ, current dose
× AUCss

τ, target

where AUCss
τ, current dose is the predicted AUC during τ under steady state when the Current

Dose is maintained, and AUCss
τ, target is the target AUC during τ under steady state. In

addition, AUCss
τ, current dose is calculated by mrgsolve, and AUCss

τ, target is specified by the
user. When the dose target is the average concentration during τ under steady state, which
is Ctarget, the recommended dose is calculated as follows:

Recommended Dose =
Current Dose

Ccurrent dose
× Ctarget,

where Ccurrent dose is the predicted average concentration during τ under steady state when
the Current Dose is maintained, and Ctarget is the average target concentration during τ

under steady state. In addition, Ccurrent dose is calculated by dividing AUCss
τ, current dose,

computed using mrgsolve, by τ, and Ctarget is specified by the user.

4.2. Validation

The estimation performance was validated through simulation tests. The process
of generating the simulation data for validation was based on a population PK model
(Figure 1). Individual true PK parameters were generated by integrating the interindi-
vidual variability and demographic characteristics in the population PK model. The true
concentrations were calculated from the individual PK parameters under each simulation
scenario. The observed concentrations were generated by incorporating the intra-individual
variability into the true concentrations. The R package mrgsolve (version 0.11.2; Metrum
Research Group LCC, Tariffville, CT, USA) was used to generate the simulation data for
validation [16]. The PK models differed for the internal and external validation.
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Internal data from the Kyung Hee University Hospital Clinical Trial Center were used
to generate the patient demographics, and the mean ± SD for height (cm), weight (kg), and
age (years) were calculated as 165.1 ± 8.7, 65.1 ± 10.2, and 50.2 ± 17.1, respectively. Table 5
shows a simulation scenario of the drug dosage regimen and the blood sampling time
points for the test drugs. The dosage regimen was based on the drug label provided by the
Ministry of Food and Drug Safety in Korea (MFDS) [25–28]. The blood sampling time points
were referenced from the TDM guidelines of each drug [29–31]. To avoid complexities in
the validation process, the dosage regimen and timings of the blood samples were slightly
modified. To examine the various estimations, the blood sampling point was set to four
cases: peak, trough, peak and trough, and 1 h intervals, which were applied for both
single-dose and steady-state timings.

Table 5. Simulation scenario of dosage regimen and blood sampling time.

Drug Amikacin Vancomycin Theophylline Phenytoin

Dose (mg) [25–28] 500 1000 200 100
Infusion rate (mg/h) 1000 500 - 50 *
Dosing Interval (h) 8 12 12 8

Sampling time (h) [29–31]
Set 1 Peak 1 2 4 2
Set 2 Trough 8 12 12 8

Set 3 Peak and
trough 1, 8 2, 12 4, 12 2, 8

Set 4 Every 1 h 1 to 8 1 to 12 1 to 12 1 to 8
Notes: * zero-order absorption rate (mg/h) of phenytoin.

For validating the HMCtdm estimation, the simulation data of the demographic,
dosing scenario, and observed concentration were used as the input. The value estimated
by HMCtdm was compared with the true value.

4.2.1. Internal Validation PK model

The PK model of the simulated patient for internal validation was generated from the
same structure as the PKS model used for estimation (Table 4).

4.2.2. External Validation of PK model

The PK model of the simulated patients for the external validation was based on a
reported population pharmacokinetic study for each drug (Table 6) [32–35]. Articles on
population pharmacokinetic studies of Korean patients were selected for amikacin and
vancomycin, whereas in the absence of appropriate Korean adult subject studies, Japanese
articles were selected for studying theophylline and phenytoin. To simplify the model,
ka of theophylline was fixed. It was assumed that none of the patients suffered from
any underlying disease and the use of any concomitant drugs was absent. The external
validation of the PK models is shown in Table 6.

Table 6. Population pharmacokinetics of amikacin, vancomycin, theophylline, and phenytoin for
external validation.

Component Equation

Amikacin [32]

Pharmacokinetic
Parameters

CL (L/h) = (1.40 + 1.42 · (CrCL/71.2)) · eη1

V (L) = 10.8 + 7.24 · (TBW/57)
Interindividual

Variability η1 ∼ N
(
0, 0.3032)

Residual errors CObs = CPred · (1 + ε1)
ε1 ∼ N

(
0, 0.3072)
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Table 6. Cont.

Component Equation

Vancomycin [33]

Pharmacokinetic
Parameters

CL (L/h) =
(

2.82 · (CrCL/72)0.836
)
· eη1

Vc (L) = 31.8
Q (L/h) = 11.7

Vp (L) = (75.4 · (TBW/60)) · eη2

Interindividual
Variability η1 ∼ N

(
0, 0.8282)and η2 ∼ N

(
0, 0.4662)

Residual errors CObs = CPred · (1 + ε1)
ε1 ∼ N

(
0, 0.2532)

Theophylline [34]

Pharmacokinetic
Parameters

ka (1/h) = 0.0773
CL/F (L/h/kg) =

(
0.0539 · 0.876eldery

)
· eη1

*

V/F (L/kg) = 0.320 · eη2

Interindividual
Variability η1 ∼ N

(
0, 0.3132)and η2 ∼ N

(
0, 0.2842)

Residual errors CObs = CPred · eε1

ε1 ∼ N
(
0, 0.1782)

Phenytoin [35]

Pharmacokinetic
Parameters

Vmax (mg/kg/d) = (9.80 · 42 ·
(
TBW/42)0.463) · (1 + η1)

km (mcg/mL) = 9.19 ·
(
1 + η2)

V (L/kg) = 1.23 ·
(
1 + η3)

Interindividual
Variability η1 ∼ N

(
0, 0.1502), η2 ∼ N

(
0, 0.3062), and η3 ∼ N

(
0, 0.4332)

Residual errors CObs = CPred · (1 + ε1)
ε1 ∼ N

(
0, 0.1812)

Notes: * elderly is a dichotomous covariate coded as elderly = 0 if age <65, and elderly = 1 if age ≥65. Abbreviations:
CL, clearance; V, volume of distribution; CObs, observed concentration; CPred, predicted concentration; Vc, central
volume of distribution; Q, intercompartmental clearance; Vp, peripheral volume of distribution; ka, first-order
absorption rate constant; Vmax, maximum velocity; km, Michaelis constant; CrCL, creatinine clearance in mL/min;
TBW, total body weight in kg.

4.2.3. Performance Evaluation

The validations of the estimations were assessed based on the mean percent error
(MPE) and root mean squared error (RMSE) of the prediction values of each simulation set
relative to the observed values, which are defined as follows:

MPE =
1
N ∑N

i=1
ESTi − TRUEi

TRUEi
× 100%,

RMSE =

√
1
N ∑N

i=1 (ESTi − TRUEi)
2,

where ESTi is the estimated value, TRUEi is the corresponding true value for individual i,
and N is the number of patients. The values quantitatively express the PK parameters and
the drug concentrations.

The estimated concentrations were calculated using estimated individual PK parame-
ters and using the time points after one dosing interval from the observed concentration
(Figure 5). The true concentration was calculated using the true PK parameters and using
the time points equal to the estimated concentration. The prediction error was not reflected
in the true concentration value for comparison. The steady-state concentrations were
calculated using the ss option of mrgsolve for all drugs except phenytoin. The steady state
of phenytoin was assumed at the 20th dose as this level could not be reached using the ss
option of mrgsolve in many cases. Therefore, for phenytoin at steady-state, the observed
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concentration at the 20th dose and the true and estimated concentrations at the 21st dose
were calculated.

Figure 5. An illustrative example of evaluated concentration of theophylline. The blue and orange
lines are the time–concentration profiles of the true and estimated values, respectively. The red dot
represents the observed concentration collected at peak time after the first dose. The blue and orange
dots represent the true and estimated concentrations calculated at the peak time after the second
dose, respectively.

For the internal validation, the MPE and RMSE of each PK parameter were calculated
directly because the generated and estimated models corresponded. The external validation
of the PK model parameters differed from that of the estimated PK model. Therefore, the
individual clearance, volume of distribution, maximum velocity, and Michaelis constant
were recalculated for calculating the MPE and RMSE during the external validation.

4.3. MAP Estimation

A MAP estimation was conducted (under the same scenario as the internal validation)
to verify whether the developed package provided an appropriate estimation of the PK
parameters. The MAP objective function is defined as

Φ = ∑i=N
i=1

(
COBSi − CESTi

)2

σ̂i
2 + ∑k=L

k=1

(
ln Pmeank − ln PESTk

)2

ω̂k
2 ,

where COBSi is the observed concentration, CESTi is the predicted concentration, and σ is
the intra-individual variability of the concentration for the i-th concentration of a total of N
measured concentrations [6]. In addition, Pmeank is the mean of population PK parameter,
PESTk is the estimated individual PK parameter, andω is the interindividual variability of
the PK parameters for the k-th parameter of a total of L parameters. The MAP estimation
was conducted using the R package mapbayr [36].

5. Conclusions

In this study, a new HMC-based TDM package was developed, and its performance
was evaluated under various simulation scenarios. The validation results were carefully re-
viewed, and the package confirmed the successful transplantation of the prior PK structures
using PKS. This open-source package was developed for users unfamiliar with the C++
programming language and can be further developed and applied for various purposes in
the future.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/ph15020127/s1, Supplementary File S1: The results for internal validation of PK parameters;
Supplementary File S2: The results for external validation of PK parameters; Supplementary File S3:
The results for internal validation of PK parameters using MAP estimation.

https://www.mdpi.com/article/10.3390/ph15020127/s1
https://www.mdpi.com/article/10.3390/ph15020127/s1


Pharmaceuticals 2022, 15, 127 16 of 17

Author Contributions: Conceptualization, S.L. and B.-H.K.; methodology, S.L., M.S. and B.-H.K.;
software, M.S., W.L. and J.H.; validation, E.S. and J.H.; formal analysis, S.L., M.S. and E.S.; investiga-
tion, S.L., M.S., W.L., E.S., J.H. and B.-H.K.; resources, J.H. and M.S.; data curation, S.L., M.S. and E.S.;
writing—original draft preparation, S.L. and M.S.; writing—review and editing, S.L. and B.-H.K.;
visualization, S.L., M.S. and W.L.; supervision, B.-H.K.; project administration, S.L. and B.-H.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: HMCtdm is provided in a repository at https://github.com/SikSo189
7/hmctdm/tree/develop (accessed on 1 January 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Drennan, P.; Doogue, M.; van Hal, S.J.; Chin, P. Bayesian therapeutic drug monitoring software: Past, present and future. Int. J.

Pharmacokinet. 2018, 3, 109. [CrossRef]
2. Fuchs, A.; Csajka, C.; Thoma, Y.; Buclin, T.; Widmer, N. Benchmarking therapeutic drug monitoring software: A review of

available computer tools. Clin. Pharmacokinet. 2013, 52, 9–22. [CrossRef]
3. Broeker, A.; Nardecchia, M.; Klinker, K.; Derendorf, H.; Day, R.; Marriott, D.; Carland, J.; Stocker, S.; Wicha, S. Towards precision

dosing of vancomycin: A systematic evaluation of pharmacometric models for Bayesian forecasting. Clin. Microbiol. Infect. 2019,
25, 1286.e1–1286.e7. [CrossRef] [PubMed]

4. Hughes, J.H.; Keizer, R.J. A hybrid machine learning/pharmacokinetic approach outperforms maximum a posteriori Bayesian
estimation by selectively flattening model priors. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1150–1160. [CrossRef] [PubMed]

5. Uster, D.W.; Stocker, S.L.; Carland, J.E.; Brett, J.; Marriott, D.J.; Day, R.O.; Wicha, S.G. A model averaging/selection approach
improves the predictive performance of model-informed precision dosing: Vancomycin as a case study. Clin. Pharmacol. Ther.
2021, 109, 175–183. [CrossRef]

6. Sheiner, L.B.; Beal, S.; Rosenberg, B.; Marathe, V.V. Forecasting individual pharmacokinetics. Clin. Pharmacol. Ther. 1979, 26,
294–305. [CrossRef] [PubMed]

7. Lunn, D.J.; Thomas, A.; Best, N.; Spiegelhalter, D. WinBUGS-a Bayesian modelling framework: Concepts, structure, and
extensibility. Stat. Comput. 2000, 10, 325–337. [CrossRef]

8. Plummer, M. JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. In Proceedings of the 3rd
International Workshop on Distributed Statistical Computing, Vienna, Austria, 20–23 March 2003; pp. 1–10.

9. Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan:
A probabilistic programming language. J. Stat. Softw. 2017, 76, 1–32. [CrossRef]

10. Gillespie, B.; Johnston, C. Introduction to Bayesian pharmacometric data analysis using NONMEM®. In Proceedings of the
ACoP10, Orlando, FL, USA, 20–23 October 2019.

11. Jayachandran, D.; Laínez-Aguirre, J.; Rundell, A.; Vik, T.; Hannemann, R.; Reklaitis, G.; Ramkrishna, D. Model-based individu-
alized treatment of chemotherapeutics: Bayesian population modeling and dose optimization. PLoS ONE 2015, 10, e0133244.
[CrossRef]

12. Pananos, A.D.; Lizotte, D.J. Comparisons between Hamiltonian Monte Carlo and maximum a posteriori for a Bayesian model for
Apixaban induction dose & dose personalization. In Proceedings of the Machine Learning for Healthcare Conference, Virtual
Meeting, 7–8 August 2020; pp. 397–417.

13. Maier, C.; Hartung, N.; de Wiljes, J.; Kloft, C.; Huisinga, W. Bayesian data assimilation to support informed decision making in
individualized chemotherapy. CPT Pharmacomet. Syst. Pharmacol. 2020, 9, 153–164. [CrossRef]

14. Wakefield, J. Bayesian individualization via sampling-based methods. J. Pharmacokinet. Biopharm. 1996, 24, 103–131. [CrossRef]
[PubMed]

15. Torsten. Torsten: Library of C++ Functions that Support Applications of Stan in Pharmacometrics; Metrum Research Group LLC:
Tariffville, CT, USA, 2015.

16. Baron, K.T.; Hindmarsh, A.; Petzold, L.; Gillespie, B.; Margossian, C.; Pastoor, D. Mrgsolve: Simulate from ODE-Based Population
PK/PD and Systems Pharmacology Models; Metrum Research Group LLC: Tariffville, CT, USA, 2019.

17. D’Argenio, D.Z. Optimal sampling times for pharmacokinetic experiments. J. Pharmacokinet. Biopharm. 1981, 9, 739–756.
[CrossRef] [PubMed]

18. Guo, T.; van Hest, R.M.; Fleuren, L.M.; Roggeveen, L.F.; Bosman, R.J.; van der Voort, P.H.; Girbes, A.R.; Mathot, R.A.; van Hasselt,
J.G.; Elbers, P.W. Why we should sample sparsely and aim for a higher target: Lessons from model-based therapeutic drug
monitoring of vancomycin in intensive care patients. Br. J. Clin. Pharmacol. 2021, 87, 1234–1242. [CrossRef]

https://github.com/SikSo1897/hmctdm/tree/develop
https://github.com/SikSo1897/hmctdm/tree/develop
http://doi.org/10.4155/ipk-2018-0005
http://doi.org/10.1007/s40262-012-0020-y
http://doi.org/10.1016/j.cmi.2019.02.029
http://www.ncbi.nlm.nih.gov/pubmed/30872102
http://doi.org/10.1002/psp4.12684
http://www.ncbi.nlm.nih.gov/pubmed/34270885
http://doi.org/10.1002/cpt.2065
http://doi.org/10.1002/cpt1979263294
http://www.ncbi.nlm.nih.gov/pubmed/466923
http://doi.org/10.1023/A:1008929526011
http://doi.org/10.18637/jss.v076.i01
http://doi.org/10.1371/journal.pone.0133244
http://doi.org/10.1002/psp4.12492
http://doi.org/10.1007/BF02353512
http://www.ncbi.nlm.nih.gov/pubmed/8827585
http://doi.org/10.1007/BF01070904
http://www.ncbi.nlm.nih.gov/pubmed/7341758
http://doi.org/10.1111/bcp.14498


Pharmaceuticals 2022, 15, 127 17 of 17

19. Mould, D.; D’haens, G.; Upton, R. Clinical decision support tools: The evolution of a revolution. Clin. Pharmacol. Ther. 2016, 99,
405–418. [CrossRef] [PubMed]

20. The R Development Core Team. R: A Language and Environment for Statistical Computing; Version 4.1.0.; R Foundation for Statistical
Computing: Vienna, Austria, 2021.

21. Betancourt, M. A conceptual introduction to Hamiltonian Monte Carlo. arXiv 2017, arXiv:1701.02434. Available online: https:
//arxiv.org/abs/1701.02434 (accessed on 1 November 2021).

22. Neal, R.M. Monte Carlo Implementation. In Bayesian Learning for Neural Networks; Springer: New York, NY, USA, 1996; pp. 55–98.
23. Lenert, L.; Peck, C.C.; Brown, W.D. One-Compartment Forecaster Reference Materials; Technical Report No. 10, Appendix 1, 114–115;

Division of Clinical Pharmacology Uniformed Services of the Health Sciences: Bethesda, MD, USA, 1982.
24. Cockcroft, D.W.; Gault, H. Prediction of creatinine clearance from serum creatinine. Nephron 1976, 16, 31–41. [CrossRef]
25. Anonymous. Amikacin Inj.; package insert; Dongkwang Pharmaceutical Co., LTD.: Seoul, Korea, 2017.
26. Anonymous. Vancomycin HCl Injection; package insert; HK Inno. N Co.: Seoul, Korea, 2020.
27. Anonymous. TEHOLAN-B®; package insert; Alvogen Korea Co.: Seoul, Korea, 2017.
28. Anonymous. Hydantoin Tab; package insert; Whan in Pharmaceutical Co., Ltd.: Seoul, Korea, 2019.
29. Gilbert, D.N.; Chamber, H.F.; Saag, M.S.; Pavia, A.T. The Sanford Guide to Antimicrobial Therapy 2020, 50th ed.; Antimicrobial

Therapy, Incorporated: Sperryville, VA, USA, 2020; pp. 114–130.
30. Rybak, M.J.; Le, J.; Lodise, T.P.; Levine, D.P.; Bradley, J.S.; Liu, C.; Mueller, B.A.; Pai, M.P.; Wong-Beringer, A.; Rotschafer, J.C.

Therapeutic monitoring of vancomycin for serious methicillin-resistant Staphylococcus aureus infections: A revised consensus
guideline and review by the American Society of Health-System Pharmacists, the Infectious Diseases Society of America, the
Pediatric Infectious Diseases Society, and the Society of Infectious Diseases Pharmacists. Clin. Infect. Dis. 2020, 71, 1361–1364.

31. Malson, G. Therapeutic Drug Monitoring—Medicines Formulary; Version 7; Wirral University Teaching Hospital: Birkenhead, UK,
2013.

32. Jang, S.; Lee, Y.; Park, M.; Song, Y.; Kim, J.; Kim, H.; Ahn, B.; Park, K. Population pharmacokinetics of amikacin in a Korean
clinical population. Int. J. Clin. Pharmacol. Ther. 2011, 49, 371–381. [CrossRef]

33. Bae, S.H.; Yim, D.-S.; Lee, H.; Park, A.-R.; Kwon, J.-E.; Sumiko, H.; Han, S. Application of Pharmacometrics in Pharmacotherapy:
Open-Source Software for Vancomycin Therapeutic Drug Management. Pharmaceutics 2019, 11, 224. [CrossRef]

34. Tanigawara, Y.; Komada, F.; Shimizu, T.; Iwakawa, S.; Iwai, T.; Maekawa, H.; Hori, R.; Okumura, K. Population pharmacokinetics
of theophylline. III. Premarketing study for a once-daily administered preparation. Biol. Pharm. Bull. 1995, 18, 1590–1598.
[CrossRef]

35. Odani, A.; Hashimoto, Y.; Takayanagi, K.; Otsuki, Y.; Koue, T.; Takano, M.; Yasuhara, M.; Hattori, H.; Furusho, K.; Inui, K.
Population pharmacokinetics of phenytoin in Japanese patients with epilepsy: Analysis with a dose-dependent clearance model.
Biol. Pharm. Bull. 1996, 19, 444–448. [CrossRef] [PubMed]

36. Le Louedec, F.; Puisset, F.; Thomas, F.; Chatelut, É.; White-Koning, M. Easy and reliable maximum a posteriori Bayesian estimation
of pharmacokinetic parameters with the open-source R package mapbayr. CPT Pharmacomet. Syst. Pharmacol. 2021, 10, 1208–1220.
[CrossRef] [PubMed]

http://doi.org/10.1002/cpt.334
http://www.ncbi.nlm.nih.gov/pubmed/26785109
https://arxiv.org/abs/1701.02434
https://arxiv.org/abs/1701.02434
http://doi.org/10.1159/000180580
http://doi.org/10.5414/CP201520
http://doi.org/10.3390/pharmaceutics11050224
http://doi.org/10.1248/bpb.18.1590
http://doi.org/10.1248/bpb.19.444
http://www.ncbi.nlm.nih.gov/pubmed/8924916
http://doi.org/10.1002/psp4.12689
http://www.ncbi.nlm.nih.gov/pubmed/34342170

	Introduction 
	Results 
	Discussion 
	Materials and Methods 
	Development 
	Package Development 
	Pharmacokinetic Model 
	Estimation Method 
	Dose Target and Recommendation 

	Validation 
	Internal Validation PK model 
	External Validation of PK model 
	Performance Evaluation 

	MAP Estimation 

	Conclusions 
	References

