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Abstract: Thyroid disorders are among the most common endocrinological conditions. As the
prevalence of thyroid diseases increases annually, the exploration of thyroid disease mechanisms
and the development of treatments are also gradually improving. With the gradual advancement of
therapies, non-apoptotic programmed cell death (NAPCD) has immense potential in inflammatory
and neoplastic diseases. Autophagy, pyroptosis, ferroptosis, and immunogenic cell death are all
classical NAPCD. In this paper, we have compiled the recent mechanistic investigations of thyroid
diseases and established the considerable progress by NAPCD in thyroid diseases. Furthermore, we
have elucidated the role of various types of NAPCD in different thyroid disorders. This will help
us to better understand the pathophysiology of thyroid-related disorders and identify new targets
and mechanisms of drug resistance, which may facilitate the development of novel diagnostic and
therapeutic strategies for patients with thyroid diseases. Here, we have reviewed the advances in the
role of NAPCD in the occurrence, progression, and prognosis of thyroid diseases, and highlighted
future research prospects in this area.

Keywords: non-apoptotic programmed cell death; thyroid disease; apoptosis; ferroptosis; pyroptosis;
autophagic cell death

1. Introduction
1.1. Thyroid Disease

The thyroid gland is an endocrine organ, similar in shape to a butterfly, that secretes
thyroid hormones [1]. Thyroid disorders are a general term for disorders in which the
function, size, and structure of the thyroid gland are altered. Thyroid disorders are common
in endocrinology and include goiter, thyroiditis, thyroid nodules, thyroid cancer (TC),
hypothyroidism, and hyperthyroidism.

As the most common endocrine malignancy [2], TC incidence has increased rapidly in
the last few decades [3,4]. TC can be classified as papillary thyroid cancer (PTC), follicular
thyroid cancer (FTC), medullary thyroid cancer (MTC), and anaplastic thyroid cancer (ATC).
TC develops from two cell types: PTC, FTC and ATC originate from follicular cells that
line the colloidal follicles and are responsible for thyroid hormone biosynthesis and iodine
uptake [5,6]. Parafollicular cells (also called C cells), the origin of MTC, are another cell type
of the thyroid gland responsible for synthesizing and secreting calcitonin hormones [7–9].
Among these, PTC and FTC, which account for 90% of all cases, have a survival rate of 90%
and an overall good prognosis [9]. However, a small proportion of patients, such as those
with invasive, or metastatic types of cancer, have a poor prognosis [10,11]. In addition, as
one of the most aggressive human malignancies, the post-diagnosis median survival of
patients with ATC is approximately 3–5 months [12]. In addition to conventional surgery,
several therapies exist, such as radioactive iodine (RAI, 131I) [13] and tyrosine kinase
inhibitors (TKIs) [14]. However, these treatments have limitations, including drug and
radioactivity resistance and adverse side effects [10]. Therefore, exploring new treatments
for TC remains a current research priority in the discipline.

As a typical organ-specific autoimmune disease, autoimmune thyroiditis (AIT) is
the leading cause of hypothyroidism, with a population prevalence of approximately
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1–5% [15,16]. Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) are the two most
common autoimmune diseases [15,17]. AIT pathogenesis involves complex interactions
between genes and the environment. Although HT and GD have opposite clinical manifes-
tations, they share a common etiology of a decreased tolerance to thyroid autoantigens [18].
As a non-neoplastic disease of the thyroid, AIT has also been the focus of academic research.
The mechanistic exploration of AIT has led to a greater understanding of thyroid autoim-
munity, which in turn has allowed us to identify new therapeutic targets and facilitate the
exploration of new treatment options [19,20].

However, the factors affecting thyroid disease remain unclear. Research on the fac-
tors influencing its occurrence is of great significance for preventing and controlling
thyroid disease.

1.2. Non-Apoptotic Programmed Cell Death (NAPCD)

The Nomenclature Committee on Cell Death (NCCD) classifies cell death into pro-
grammed cell death (PCD) and accidental cell death (ACD), defining and explaining cell
death from morphological, biochemical, and functional perspectives [21,22]. ACD refers
to catastrophic cell death under natural conditions [23]. As an autonomous cell death
process, PCD involves intracellular suicide pathways controlled by strict genetic mecha-
nisms that maintain a stable internal environment, critical in response to inflammation,
infection, and injury [24]. Based on its different mechanisms [25], PCD has two major cate-
gories: apoptosis and non-apoptotic programmed cell death (NAPCD). NAPCD includes
autophagy, ferroptosis, pyroptosis, immunogenic cell death, mitochondrial catastrophe,
necroptosis, and anoikis [26]. As research on NAPCD continues to advance, we have
found that NAPCD has excellent potential in the pathogenesis and diagnosis of various
diseases, such as various malignant tumors and even in benign diseases such as hearing
impairment [22,27–30].

As the most common form of NAPCD [31], autophagy refers to cellular self-digestion
mediated by lysosomal hydrolases to maintain normal intracellular and tissue homeostasis
when cells lack nutrients or are affected by inflammation [32]. Ferroptosis is also a form
of NAPCD, characterized by lipid peroxidation damage to the cell membrane and the
production of iron ion-dependent lipid reactive oxygen species [33]. Pyroptosis is a recently
proposed NAPCD-dependent activation of cellular inflammation through inflammatory
forms of regulated cell death [34]. It can lead to PCD under various conditions [35]. Im-
munogenic cell death (ICD) is a new type of NAPCD [36] that activates adaptive immune
responses in an immunoreactive environment [22]. ICD is caused by certain chemothera-
peutic agents, lytic virus, physical chemotherapy, photodynamic therapy, and radiotherapy,
which induce cell death by activating the immune system of an immunocompetent host [37].
Other types of NAPCD, such as mitotic catastrophe, necroptosis, and anoikis, have been
less reported in thyroid-related diseases [38,39].

In conclusion, NAPCD provides a new frontier in the pathogenesis and treatment
of the disease. In this paper, we have reviewed the progress of research on NAPCD in
benign and malignant thyroid diseases, including efficacy prediction, drug resistance,
therapeutic targets, and the relationship between different NAPCDs for clinical diagnosis
and treatment.

2. Autophagy and Thyroid Disease

Autophagy is the most common type of NAPCD, and as a highly conserved physio-
logical process, it removes damaged organelles and abnormal proteins through lysosomal
degradation [40]. Autophagy is implicated in various pathological and physiological
processes, including neurodegenerative diseases [41], the maintenance of intracellular
homeostasis [42], inflammation [43], and cancer [44]. Autophagy is widely believed to
have a dual effect on cells. On the one hand, it supports cell survival by adjusting the
physiologically relevant mechanisms required to support cell proliferation and survival
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and maintains a stable internal environment [45,46]. On the other hand, it regulates cell
death by regulating cellular autophagy-related mechanisms [47–49].

A comprehensive understanding of the mechanisms of autophagy in the pathogenesis
and progression of thyroid diseases will help determine the appropriate timing, effective
therapeutic targets, and provide innovative ideas for diagnosing and treating thyroid-
related diseases. We attempted to elucidate the changes in autophagy-related gene or RNA
expression, therapeutic targets, and natural substances or their extracts in TC, which help
us to better understand the autophagy mechanism in TC occurrence and its development
comprehensively (Figure 1).

Figure 1. The mechanisms of autophagy in thyroid cancer.

2.1. The Role of Genes and Autophagy in Thyroid Disease

Certain genes can significantly affect autophagy by triggering changes at the protein
or RNA level, which may promote or inhibit the development of thyroid-related diseases.
By elucidating the genes that affect the occurrence and development of thyroid-related
diseases, we have a deeper understanding of the pathogenesis of thyroid diseases, and also
laid the foundation for us to subsequently explore target molecules that can help in the
early diagnosis of diseases and the development of targeted drugs.

BRAF mutations are the most common genetic lesions in thyroid tumors, with an inci-
dence of 45% in PTC and 25% in ATC [50]. Currently, V600EBRAF mutations are considered
highly-specific diagnostic genetic markers for PTC, and V600EBRAF is closely related to the
development and metastasis of PTC [51]. V600EBRAF mutants activate marker pathways
and promote cancer progression in PTC [52] and Wilms’s tumor 1 (WT1), encoded as a
transcription factor located on chromosome 11p13 [53]. Targeting the V600EBRAF mutant is
an effective treatment for PTC, and BRAF activation of WT1 promotes the growth of PTC
and regulates autophagy and apoptosis [54].

Adenosine monophosphate-activated protein kinase (AMPK) regulates cellular
metabolism as an energy sensor by mediating the insulin pathway [55,56]. Autophagy
can be modulated through the AKT/AMPK/mTOR pathway [57,58]. Two studies have
identified the role of autophagy and the AKT/AMPK/mTOR pathway in thyroid tumors.
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Sequestosome 1 (SQSTM1), also known as p62, is a vital gene in autophagy that regulates in-
tracellular protein degradation [59]. SQSTM1 has been suggested to regulate autophagy via
the AKT/AMPK/mTOR signaling pathway to trigger autophagy and promote the growth
of papillary thyroid cancer cells [60]. Some researchers have suggested that SIRT6 can in-
hibit the glucose transporter protein 1 (GLUT1) through autophagy-mediated degradation,
thereby suppressing the Warburg effect that affects tumor growth and development [60].
Furthermore, as a histidine phosphatase, phospholysine phosphohistidine inorganic py-
rophosphate phosphatase (LHPP) is an antitumor factor [61,62]. LHPP similarly inhibits
papillary TC cell growth and migration by regulating the AKT/AMPK/mTOR signaling
pathway and triggering autophagy [57]. In addition, the sonic hedgehog (Shh) pathway
has been implicated in autophagy in TC. The Shh pathway is highly activated in various
malignancies and plays an essential role in tumor development [63]. Inhibition of the
hedgehog pathway has been suggested to activate TGF-β-activated kinase (TAK1), which
inhibits the apoptosis of thyroid tumor cells by inducing autophagy onset [64].

Epithelial-mesenchymal transition (EMT) appears early in the tumor metastasis pro-
cess and plays a crucial role in mediating the development of aggressive tumor phenotypes.
EMT is a multistage process in which cells lose their epithelial properties and undergo
significant changes in morphology, adhesion, and migration capacity [65]. The core features
of the EMT include decreased adhesion and increased motility [66]. Baculoviral IAP repeat-
containing 7 (BIRC7) has been suggested to promote epithelial-mesenchymal transition and
metastasis in papillary TC by inhibiting autophagy [67]. Lactate dehydrogenase A (LDHA)
is an important enzyme involved in the Warburg effect. This leads to the formation of an
acidic microenvironment in the tumor that promotes EMT and metastasis [68]. LDHA has
been suggested to regulate autophagy to promote metastasis and tumorigenesis in PTC by
inducing EMT gene transcription [68].

In addition, several other genes have been reported to influence the occurrence and
development of thyroid disease through the autophagic pathway. FOXO3 belongs to the
Forkhead Box (FOX) family of transcription factors [69]. The aberrant activation of FOXO3
has been extensively studied in cancer development and progression [70]. FOXO3 can
promote autophagy through the transcriptional activation of autophagy-related genes,
suggesting that FOXO3 can serve as a marker of autophagy [71]. The RNA binding motif
protein 47 (RBM47)/small nucleolar RNA host gene 5 (SNHG5)/FOXO3 axis inhibits PTC
cell proliferation by activating autophagy [72]. Furthermore, as another critical transcription
factor of the FOX family [73], FOXK2 was found to promote the proliferation of PTC cells
through the downregulation of autophagy [74]. BIRC7 is a newly identified member of the
IAP family that is largely absent in normal tissues but is expressed at elevated levels in
a range of tumor types [75]. The overexpression and expression of BIRC7 in tumors are
related to the increased resistance to chemotherapy and decreased patient survival [76].
BIRC7 is considered a potential new target for thyroid tumor therapy. As a regulator
of autophagy and lysosomal biogenesis, the transcription factor E3 (TFE3) belongs to
the microphthalmia/transcription factor E (MiT/TFE) family, located on the short arm
of the X chromosome 11.22 [77]. TFE3 can contribute to the invasion and metastasis
of PTC by regulating autophagy [78]. As a member of the Ca2+/calmodulin-regulated
serine/threonine kinases family, death-associated protein kinase 2 (DAPK2) is a tumor
suppressor that affects various cellular activities, including cellular immune function
and cell death. Recent studies have shown that DAPK2 can participate in autophagy
and activate NF-κB through the autophagy-dependent degradation of IκBα, affecting TC
development and progression [79].

With continuous advances in high-throughput genome sequencing technology, we
have observed that 90% of the human genome could undergo transcription [80]. However,
not all RNAs can be translated into proteins [81]. We refer to genes that do not directly
encode proteins as non-coding RNAs (ncRNAs). ncRNAs play vital roles in human disease
progression by regulating gene expression [82]. ncRNAs can contribute to mRNA degrada-
tion and protein translation failure by mediating post-transcriptional gene silencing [83].
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In addition, ncRNAs also remodel chromatin structure by altering heterochromatin forma-
tion [84], thus enhancing or repressing gene expression [83]. These regulations can affect
cellular function and help maintain homeostasis in vivo [85]. Several ncRNAs influence
the onset of thyroid-related diseases through autophagy in thyroid-related diseases.

Long non-coding RNAs (lncRNAs) are classical ncRNAs: a heterogeneous family of
RNA molecules greater than 200 nucleotides in length. They have gained widespread atten-
tion for their potential roles in organism development and disease [86]. Aberrant lncRNA
expression has been observed in various cancers [87]. LncRNAs in PTC carcinogenesis and
development play a vital role in thyroid disease development through autophagic mecha-
nisms. LncRNA SLC26A4-AS1 can inhibit PTC progression by recruiting ETS1 to promote
inositol 1,4,5-trisphosphate receptor type 1 (ITPR1)-mediated autophagy [88]. The lncRNA
distal-less homeobox 6 antisense RNA 1 (DLX6-AS1) can interact with microRNA-193b-3p
to inhibit TC progression by suppressing homeobox A1 (HOXA1) and enhancing autophagy
and apoptosis in TC cells [89]. The lncRNA TNRC6C-AS1 promotes serine/threonine ki-
nase 4 (STK4) methylation and inhibits TC cell autophagy through the hippo signaling
pathway [90]. Activating transcription factor-2 (ATF2)-inducible lncRNA growth arrest-
specific 8 (GAS8)-AS1 promotes TC cell progression by targeting miR-1343-3p/ATG7 and
miR-187-3p/ATG5 axes to promote autophagy in TC cells [91]. LncRNA RP11-476D10.1 can
enhance autophagy in PTC cells while inhibiting their proliferation through microRNA-138-
5p-dependent inhibition of LRRK2 [92]. Furthermore, SNHG9, an exosome-rich lncRNA
in PTC cells, can inhibit autophagy through the YBOX3/P21 pathway in normal thyroid
epithelial cells [93].

MicroRNAs (miRNAs) are a class of non-coding RNAs of 18–24 nucleotides in length
involved in various physiological processes. miRNAs are involved in target gene regulation
by inhibiting protein production through binding to complementary mRNAs and are tissue-
and stage-specific [94]. miRNA-524-5p inhibits the progression of PTC cells by targeting
FOXE1 and ITGA3 in the cellular autophagy and recycling pathways [95].

2.2. The Role of Inhibitors, Substances, and Autophagy in Thyroid-Related Diseases

Natural products have been used as alternative therapies for various diseases, includ-
ing inflammation and cancer. They have received attention from the academic community
because of their cost and relatively few side effects [96,97].

Curcumin is widely used in traditional medicine and is a phytochemical isolated from
the spice turmeric (Curcuma longa) [98]. Curcumin, used primarily as an adjuvant in cancer
treatment, is undergoing extensive clinical trials resulting in favorable results [99–101].
Curcumin reportedly induces autophagic death in human thyroid cancer cells [102].

ATC is the most lethal subtype of TC. Lacking of sodium iodide synthetics (NIS)
is a characteristic of the highly dedifferentiated state of ATC115. Therefore, radioactive
iodine (RAI) therapy, which relies on iodine uptake by NIS channels, cannot be applied
to ATC patients [103,104]. However, severe side effects can develop in TC patients treated
with chemotherapy, such as high blood pressure, hypocalcemia, and hypoalbuminemia
and drug resistance [105]. This means that finding new targeted drugs or exploring mul-
tidrug combinations may be a new research direction for the treatment of TC. As novel
orally targeted TKIs, apatinib can the inhibit vascular endothelial growth factor receptor 2
(VEGFR2) with high selectivity. Importantly, apatinib has shown promising efficacy in
few patients with radioiodine-refractory differentiated TC [106]. Apatinib has been shown
to inhibit proliferation and induce autophagy through the PI3K/Akt/mTOR signaling
pathway in human PTC cells [107]. Apatinib has been suggested to induce autophagy
by downregulating p-AKT and p-mTOR signaling through the AKT/mTOR pathway in
human ATC cells [108]. It has been reported that apatinib induces autophagy and apoptosis
in human ATC cells by blocking the Akt/GSK3/ANG pathway to inhibit angiogenesis
in mesenchymal TC [109]. In addition, as a natural alkaloid derived from Capsicum
spp. [110], Capsaicin (trans-8-methyl-N-vanillyl-6-nonenamide, CAP) is a natural alka-
loid [110], which inhibits the stemness of mesenchymal TC cells by activating autophagic
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lysosomal-mediated degradation of OCT4A [111]. The action of CAP on ATC helps us
explore new ATC-targeting drugs [108,112–114].

Herbal plants have a long history of clinical application in China. Prunella vulgaris L.
(PV) is a traditional herbal medicine used in ancient China to treat thyroid disorders [115].
Under environmental stress conditions, AMPK, the mammalian target of rapamycin
(mTOR), and unc-51-like autophagy-activated kinase 1 (ULK1) constitute a pathway that
can initiate cellular autophagy [116]. PV aqueous extract can inhibit the growth of papillary
thyroid carcinomas through the induction of autophagy in vitro and in vivo, possibly due
to being autophagy-mediated by the AMPK/ mTOR/ULK1 pathway [117].

In the past, the vast majority of the world’s population consumed iodized salt to
reduce iodine deficiency disorders, leaving most of the population in a state of iodine
excess [118,119]. High iodine levels may affect the occurrence of PTC through BRAF gene
mutations [120]. V600EBRAF can render PTC more susceptible to extrathyroidal infiltration
and lymph node metastasis by aberrantly activating the BRAF/MEK/ERK (MAPK) sig-
naling pathway [121]. High iodine levels are an important risk factor in the formation of
V600EBRAF mutation-associated tumors, followed by increased overexpression and activity
of BRAF kinase [122]. Studies by several authors indicate that autophagy induced by BRAF
kinase in PTC cells is involved in anti-apoptosis, and promotes proliferation and migration
at high iodine concentrations [123].

In addition, some specific inhibitors, or biochemicals, may also affect thyroid-related
diseases through the autophagic pathway. Di-isonylphthalate (DINP) has a wide range of
applications in artificial leather and coated fabrics [124]. It has been suggested that DINP
exacerbates autoimmune thyroid disease in Wistar rats by inhibiting autophagy via the
activation of the Akt/mTOR pathway [125]. Furthermore, some researchers have suggested
that the adenosine 5’-monophosphate-activated protein kinase-dependent mTOR pathway
is involved in Flavokawain BLHPP (FKB)-induced autophagy in TC cells [126].

2.3. Role of Drug Resistance and Autophagy in Thyroid Disease

Drug resistance is a classic theme in cancer therapy, and its development may be based
on multiple mechanisms [127–129]. Autophagy, however, is a new cause of drug resistance
in tumors that has been proposed in recent years [130–134]. Many therapeutic regimens
induce cytoprotective autophagy, rendering cancer cells less sensitive to these drugs. Our
exploration of the mechanisms of autophagy helps us uncover new targets, which may
lead to breakthroughs in drug resistance to anticancer therapies [135].

The presence of V600EBRAF mutations is strongly associated with rapid TC progression,
extrathyroidal infiltration, lymph node metastasis, and tumor recurrence [50,136]. Several
V600EBRAF inhibitors (BRAFi), such as vemurafenib and dabrafenib, have been marketed for
approval. Targeting V600EBRAF therapies have resulted in benefits to many patients [137].
However, a significant proportion of patients still develop resistance to BRAFi and progress
to more advanced diseases. Melanoma is considered one of the most aggressive forms
of skin cancer and the use of BRAF inhibitors, such as vemurafenib and dabrafenib, is
revolutionizing the treatment of melanoma. Unfortunately, the duration of response to
these drugs is limited due to the development of acquired resistance [138]. V600EBRAF in TC
cells inhibition has been shown to induce cytoprotective autophagy via the AMPK-ULK1
pathway [139]. This provides a deeper insight into the mechanisms of resistance to BRAFi.

3. Ferroptosis and Thyroid Disease

Ferroptosis is a type of NAPCD that relies on the continuous accumulation of lipid
peroxides in the cell membrane, which ultimately leads to cell death [140]. The ferrop-
tosis pathway is responsible for reducing lipid peroxides, mediated by the inactivation
of glutathione peroxidase 4 (GPX4) [140]. In recent years, a growing number of studies
have shown that ferroptosis is strongly related to cancer development and progression and
opens up new possibilities for cancer therapy [141]. Targeting ferroptosis is an emerging
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anticancer strategy [142]. In previous studies from our team, we found that ferroptosis
plays an important role in thyroid tumors [143].

A recent study examined several genes associated with ferroptosis that may influence
immune infiltration and progression of TC, including the arachidonic acid 5-lipoxygenase-
activating protein (ALOX5AP), B-cell CLL/lymphoma 3 (BCL3), and apolipoprotein E
(APOE) [144]. Ferroptosis-associated ALOX5AP, BCL3, and APOE gene polymorphisms
have been associated with TC risk [145]. These results help to better understand the rela-
tionship between TC susceptibility and genetic polymorphisms of ferroptosis-related genes.

As an essential dietary vitamin derived from fruits and vegetables, vitamin C can
protect healthy cells from oxidative damage and act as a scavenger of free radicals in
the body [146]. Vitamin C has been shown to induce ferroptosis in mesenchymal TC
cells through ferritin phage activation [147]. This suggests that finding genes related to
ferroptosis or autophagy may provide new targets for ATC therapy.

4. Pyroptosis and Thyroid Disease

Pyroptosis is a NAPCD that has only recently begun to attract the attention of scien-
tists. Pyroptosis is believed to exist principally as a defense against pathogens by triggering
an antimicrobial response through the release of immunogenic cellular content, including
damage-associated molecular patterns (DAMPs) and inflammatory cytokines, which can
lead to programmed cell death in various contexts [148,149]. Unlike other NAPCDs, cellular
pyroptosis has a complex effect on the microenvironment. On the one hand, pyroptosis
can affect the tumor immune microenvironment by affecting immune cells; on the other
hand, many inflammatory factors are released during pyroptosis as normal cells are stim-
ulated [150,151]. Pyroptosis was initially thought to be a primitive immune response to
pathogens or their products and occurs in dendritic cells, monocytes, macrophages, and T
cells [152]. The characteristic cell death pattern of pyroptosis also includes cell swelling,
plasma membrane damage, and massive cytoplasmic leakage, particularly of IL-1β [153].
It has been reported that pyroptosis usually results from the activation of inflammatory
cystathionase, resulting in gasdermin D protein hydrolysis cleavage [154].

Melittin, an isolated water-soluble peptide derived from honeybee venom, is used
to alleviate chronic inflammation [155]. Apatinib, in the presence of melittin, induces
recruitment and activation of inflammatory vesicles and leads to pyroptosis and enhanced
antitumor effects of apatinib [156]. This suggests that apatinib in mesenchymal or invasive
TC shows promising therapeutic benefits. Furthermore, low-dose apatinib synergistically
achieves comparable therapeutic potential with melittin, thereby reducing adverse events.
The positive feedback modulation may improve the therapeutic efficacy of antiangiogenic
targeted agents, offering new prospects for targeted therapy [156].

AIT is a classic, organ-specific autoimmune disease. Epidemiological investigations
have shown that environmental triggers and genetic susceptibility contribute to decreased
tolerance and disease progression [157]. Cytokine secretion and release from thyroid follicu-
lar cells are mediated by enhanced AIM2, NLRC4, and NLRP1, and NLRP3 inflammasomes
are related to autoimmune thyroiditis [158].

Hashimoto’s thyroiditis (HT) is a chronic form of autoimmune thyroiditis. The main
manifestations of HT are autoimmune hypothyroidism and lymphocyte infiltration of the
thyroid tissue [15]. Excessive iodine intake is a major risk factor for HT [159]. In the NOD-
H-2h4 mouse model (spontaneous autoimmune thyroiditis model) [160], excessive iodine
induces thyroid follicular cell scorch death and the production of unbalanced reactive
oxygen species (ROS) in a mouse model, thereby inducing autoimmune thyroiditis via
ROS [161]. This reveals a new cellular mechanism of abnormal cell scorching death in HT,
thus contributing to our understanding of the mechanisms involved in the occurrence of
scorching death and providing further insight into the HT mechanism.

Subacute thyroiditis (SAT) is a self-limiting inflammatory thyroid disease [162]. SAT is
caused by the destruction of thyroid follicles, leading to the leakage of stored colloids, which
results in thyrotoxicosis and elevated sedimentation rate with discomfort and fever [163].
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For many years, SAT has been a rare disease that has been treated with NSAIDs or corticos-
teroids [164]. In recent years, there has been hope to devise a novel approach to analgesia,
antiviral therapy, inflammation reduction, and the use of hormones without hormone
dependence. Lidocaine is the original antiarrhythmic drug [165]. Some researchers have
suggested that lidocaine treats subacute thyroiditis by inhibiting the pyroptosis pathway to
inhibit adenovirus-induced apoptosis of thyroid follicular epithelial cells [166].

5. Other Non-Apoptotic Cell Death Mechanisms and Thyroid Disease

ICD is another NAPCD induced by certain chemotherapeutic agents, lytic viruses,
physical chemotherapy, photodynamic therapy, and radiation therapy [37].

The coatomer protein complex zeta 1 (COPZ1) is involved in the retrograde transport
of proteins in the endoplasmic reticulum Golgi secretory pathway [167] and lipid homeosta-
sis [168]. COPZ1-deficiency cells have been found to initiate IFN/viral mimicry responses,
and ICD, in turn, exacerbates inflammation and cell death. The link between ICD and
the type-I interferon pathway is well established [169]. COPZ1 deficiency triggers type-I
IFN responses and immunogenic cell death in thyroid tumor cells [170]. Immunotherapy,
represented by immune checkpoint blockade, has changed the cancer treatment paradigm.
The immune co-inhibitory receptor (CIR) and its corresponding ligands are essential com-
ponents of the tumor microenvironment [171]. T-cell immunoglobulin and mucin-domain
containing-3 (TIM-3), T-cell immunoglobulin and ITIM domain (TIGIT), lymphocyte acti-
vation gene-3 (LAG-3), cytotoxic T-lymphocyte antigen 4 (CTLA-4), and Protein-1 (PD-1)
are considered to be the major immune CIRs and the most promising immunotherapeutic
targets in cancer therapy [172].

MTC is a relatively rare malignant neuroendocrine tumor that exhibits aggressive
clinical progression [173]. In a large cohort study of MTC, positive TIGIT, LAG-3, CTLA-4,
PD-1, and TIM-3 expression was detected in 6 (3.0 %), 6 (3.0 %), 25 (12.5 %), 27 (13.5 %),
and 96 (48.0%) patients, respectively, with a positive correlation between TIM-3, PD-1,
and CTLA-4 expression. This suggests that TIM-3, CTLA-4 positivity, and PD1/PD-L1
co-positivity may be potential immune features related to structural tumor recurrence [174].

6. Summary

Thyroid disorders, a hot spot among endocrine-related diseases, have been exten-
sively studied in recent years. We have observed that NAPCD has excellent potential
for diagnosing and managing thyroid diseases. In our study, we have reviewed recently
published studies related to NAPCD and thyroid-related diseases to further elucidate the
relationship between autophagy, ferroptosis, pyroptosis, ICD, and the development and
progression of thyroid-related diseases (Table 1). These studies have laid the theoretical
foundation for clarifying the mechanisms of disease development, searching for new ther-
apeutic agents, identifying drug resistance mechanisms, and exploring targets. With the
continuous exploration of the role of NAPCD in diseases, we have a better understanding
of benign and malignant thyroid diseases. NAPCD plays a distinct role in the pathogenesis
of thyroid tumors. Its use to effectively inhibit cancer cell proliferation and achieve precise
treatment of thyroid-related diseases deserves further study by the academic community.
In addition, we found that NAPCD may be associated with tumor drug resistance, which
may help provide a new research direction for us to explore the mechanism of reversing
drug resistance. Furthermore, elucidating the role of NAPCD in thyroid disease will help
us explore novel drugs and targets. Consequently, exploring the underlying mechanisms
in thyroid tumors and inflammation-related diseases has helped us better understand the
self-mechanisms of NAPCD.



Pharmaceuticals 2022, 15, 1565 9 of 18

Table 1. The characteristic summary of NAPCD in thyroid cancer.

Drugs or
Inducers Disease Key Factor Pathway

In Vivo/In Vitro
Experimental
Validation

Reference

autophagy genes V600EBRAF papillary thyroid
cancer WT1

AKT/mTOR
pathway, ERK/P65

pathway

In vivo and in
virto [57]

SQSTM1/p62 papillary thyroid
cancer LC3-II AMPK/AKT/mTOR

pathway
In vivo and in

virto [63]

V600EBRAF papillary thyroid
cancer

LKB1-AMPK-
ULK1

pathway

In vivo and in
virto [113]

SIRT6 papillary thyroid
cancer GLUT1 Warburg effect In vivo and in

virto [63]

BIRC7 papillary thyroid
cancer

ATG5,
BECN1 EMT In vivo and in

virto [70]

GANT61 anaplastic
thyroid cancer

LC3-II, p62,
TAK1, JNK,

AMPK
Shh pathway In vitro [67]

LDHA papillary thyroid
cancer H3K27, FX11 EMT In vivo and in

virto [71]

FOXK2 papillary thyroid
cancer

ULK1, VPS34,
FOXO3 In vitro [78]

RBM47 papillary thyroid
cancer LC3-II, p62 SNHG5/FOXO3

pathway
In vivo and in

virto [76]

TFE3 papillary thyroid
cancer

P62, LC3,
CTSL, CTSB In vitro [82]

DAPK2 papillary thyroid
cancer NF-Kb, I-κBα In vivo and in

virto [83]

compounds Capsaicin anaplastic
thyroid cancer TRPV1 In vitro [46]

Prunella
vulgaris L.

papillary thyroid
cancer

LC3-II,
beclin-1, p62

AMPK/mTOR/ULK1
pathway

In vivo and in
virto [49]

Apatinib papillary thyroid
cancer ATG5 PI3K/Akt/mTOR

pathway
In vivo and in

virto [101]

Apatinib anaplastic
thyroid cancer SC79 AKT/mTOR

pathway
In vivo and in

virto [103]

Iodine papillary thyroid
cancer V600EBRAF BRAF/MEK/ERK

(MAPK) pathway In vitro [108]

DINP autoimmune
thyroid disease IL-17 Akt/mTOR

pathway In vivo [112]

Flavokawain
B thyroid cancer p-AMPK,

αThr172
AMPK/mTOR

pathway In vitro [113]

Curcumin papillary thyroid
cancer

LC3-II,
beclin-1, p62

AMPK/AKT/mTOR
pathway In vitro [41]

LHPP papillary thyroid
cancer

AMPK/AKT/mTOR
pathway

In vivo and in
virto [60]

ncRNA
lncRNA

SLC26A4-
AS1

papillary thyroid
cancer ITPR1, ETS1 In vitro [92]
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Table 1. Cont.

Drugs or
Inducers Disease Key Factor Pathway

In Vivo/In Vitro
Experimental
Validation

Reference

lncRNA
DLX6- AS1

papillary thyroid
cancer microRNA-193b-3p, HOXA1 In vivo and in

virto [93]

lncRNA
TNRC6C-

AS1

papillary thyroid
cancer STK4 Hippo pathway In vivo and in

virto [94]

lncRNA
GAS8-AS1

papillary thyroid
cancer ATF2

miR-187-
3p/ATG5,
miR-1343-
3p/ATG7

In vivo and in
virto [95]

lncRNA
RP11-

476D10.1

papillary thyroid
cancer

microRNA-
138-5p,
LRRK2

In vitro [96]

lncRNA
SNHG9

papillary thyroid
cancer SNHG9 YBOX3/P21

pathway In vitro [97]

MicroRNA-
524-5p

papillary thyroid
cancer

FOXE1,
ITGA3 In vitro [99]

Ferroptosis genes APOE thyroid cancer In vivo [126]

BCL3 thyroid cancer In vivo [126]

ALOX5AP thyroid cancer In vivo [126]

compounds Vitamin C anaplastic
thyroid cancer GPX4 In vitro [128]

ncRNA Circ_0067934 thyroid cancer miR-545-
3p/SLC7A11 In vitro [130]

Pyroptosis genes NLRP3 autoimmune
thyroiditis In vivo [137]

NLRP1 autoimmune
thyroiditis In vivo [137]

NLRC4 autoimmune
thyroiditis In vivo [137]

AIM2 autoimmune
thyroiditis In vivo [137]

compounds Iodine hashimoto’s
thyroiditis ROS In vivo [141]

lidocaine subacute
thyroiditis In vitro [146]

Melittin anaplastic
thyroid cancer apatinib In vitro [135]

Immunogenic
cell death

genes COPZ1 papillary thyroid
cancer type I IFN In vitro [151]

TIM-3
medullary

thyroid
carcinoma

In vivo [155]



Pharmaceuticals 2022, 15, 1565 11 of 18

Table 1. Cont.

Drugs or
Inducers Disease Key Factor Pathway

In Vivo/In Vitro
Experimental
Validation

Reference

PD-1
medullary

thyroid
carcinoma

In vivo [155]

CTLA-4
medullary

thyroid
carcinoma

In vivo [155]

LAG-3
medullary

thyroid
carcinoma

In vivo [155]

TIGIT
medullary

thyroid
carcinoma

In vivo [155]
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non-apoptotic programmed cell death (NAPCD); thyroid cancer (TC); papillary thyroid cancer (PTC);
follicular thyroid cancer (FTC); medullary thyroid cancer (MTC); radioactive iodine (RAI, 131I);
tyrosine kinase inhibitors (TKIs); autoimmune thyroiditis (AIT); Graves’ disease (GD); Hashimoto’s
thyroiditis (HT); programmed cell death (PCD); accidental cell death (ACD); immunogenic cell death
(ICD); Wilms’s tumor 1 (WT1)2; Sequestosome 1 (SQSTM1); glucose transporter protein 1 (GLUT1);
phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP); sonic hedgehog
(Shh); TGF-β-activated kinase (TAK1); Epithelial-mesenchymal transition (EMT); Baculoviral IAP
repeat-containing 7 (BIRC7); Lactate dehydrogenase A (LDHA); Forkhead Box (FOX); RNA binding
motif protein 47 (RBM47); small nucleolar RNA host gene 5 (SNHG5); transcription factor E3 (TFE3);
microphthalmia/transcription factor E (MiT/TFE); death-associated protein kinase 2 (DAPK2); non-
coding RNAs (ncRNAs); long non-coding RNAs (lncRNAs); distal-less homeobox 6 antisense RNA 1
(DLX6-AS1); homeobox A1 (HOXA1); serine/threonine kinase 4 (STK4); Activating transcription
factor-2 (ATF2); growth arrest-specific 8 (GAS8); microRNAs (miRNAs); Prunella vulgaris L. (PV);
adenosine monophos-phate-activated protein kinase (AMPK); unc-51-like autoph-agy-activated
kinase 1 (ULK1); sodium iodide synthetics (NIS); radioactive iodine (RAI); vascular endothelial
growth factor receptor 2 (VEGFR2); Di-isonylphthalate (DINP); Flavokawain BLHPP (FKB); glu-
tathione peroxidase 4 (GPX4); arachidonic acid 5-lipoxygenase-activating protein (ALOX5AP); B-cell
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CLL/lymphoma 3 (BCL3); apolipoprotein E (APOE); damage-associated molecular patterns (DAMPs);
Hashimoto’s thyroiditis (HT); reactive oxygen species (ROS); Subacute thyroiditis (SAT); coatomer
protein complex zeta 1 (COPZ1); T-cell immunoglobulin and mucin-domain containing-3 (TIM-3);
T-cell immunoglobulin and ITIM domain (TIGIT); lymphocyte activation gene-3 (LAG-3); cytotoxic
T-lymphocyte antigen 4 (CTLA-4); Protein-1 (PD-1).
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