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Abstract: Water is considered the greenest solvent. Nonetheless, the water solubility of natural
products is still an incredibly challenging issue. Indeed, it is nearly impossible to solubilize or to
extract many natural products properly using solely water due to their low solubility in this solvent.
To address this issue, researchers have tried for decades to tune water properties to enhance its solvent
potential in order to be able to solubilise or extract low-water solubility compounds. A few methods
involving the use of solubilisers were described in the early 2000s. Since then, and particularly in
recent years, additional methods have been described as useful to ensure the effective green extraction
but also solubilisation of natural products using water as a solvent. Notably, combinations of these
green methods unlock even higher extraction performances. This review aims to present, compare
and analyse all promising methods and their relevant combinations to extract natural products from
bioresources with water as solvent enhanced by green solubilisers and/or processes.

Keywords: green extraction; water solvents; water extraction; water solubilisation; natural products;
sustainable development goals

1. Introduction

Water is seen as the solvent of life. Indeed, it is essential for every known living
organism, and it may even be necessary for every unknown life form in the universe [1].
Within organisms, water acts as a useful solvent, supporting many vital physiological
functions. Amongst other things, this solvent is able to solubilise numerous different
molecules, it is part of various fundamental metabolic pathways and enables acid-base
neutrality and enzyme function. All these advantages can also be utilised in the laboratory
by chemists. Besides being a useful solvent, many researchers consider water as the greenest
solvent in chemistry both from an experimental and an industrial point of view [2–5].
In addition, it is clear that there has been a continuous growth in interest for water in
solubilisation and extraction since the 1980s, as shown in Figure 1.

Such an interest in using water as a solvent may be attributed to its easy accessibility
and low cost, along with its green properties (non-toxicity, renewability, safety and ease of
handling, ease of treatment and degradation, etc.).

Nevertheless, when water is used to solubilise or to extract natural products (NPs) from
actual biological resources, this solvent appears to be relatively inefficient. For instance,
the flavonoid rutin—which is theoretically quite polar according to its partition coefficient
(Kow ≈ −0.47) [6]—is only sparingly soluble in water (S ≈ 130–150 mg/L) [6,7]. To over-
come such a low efficiency in solubilising or extracting NPs, researchers have developed
different methods to enhance the water solvent potential while taking advantage of its
green qualities. By the turn of the millennium, Yalkowsky [8] had summed up the main
methods to enhance the water solvent potential primarily in order to solubilise drugs
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more efficiently. These methods consist of the following: pH range and salts, cosolvents,
surfactants, complexing ligands, inclusion complexes, stacking complexes and hydrotropes.
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Figure 1. Search results depicting the total number of publications published per year (left) and the 
cumulated number by year (right) related to solubilisation and/or extraction using water as a sol-
vent. Database: Web of Science Core Collection, time range: 1985–2022. 
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Once these initial seven methods to solubilise NPs in water were described at the 
beginning of the 2000s, additional ways to enhance the solubility of such compounds in 
water were introduced. Namely, switchable solvents were discovered in 2010 [9] followed 
by the Natural Deep Eutectic Solvents (NADES) first described in 2011 [10]. These two 
relevant solubilisation methods can easily be applied to modify water’s solvent proper-
ties. In fact, switchable solvents include switchable water and NADES can be dissolved in 
water so that the system remains an aqueous solvent. These techniques have continued to 
capture scientists’ attention to the extent that still today numerous articles are published 
with a view to extending their use and discovering and patenting new ingredients. 

At this point, a total of nine methods have been established and are largely described 
as solubilisation techniques. All these methods may also be applied to the extraction of 
NPs from biological material. Whilst a relevant solubilisation technique does not neces-
sarily constitute an efficient extraction technique—as was notably shown with the rose-
mary case study [11]—with the appropriate adjustments implemented, such techniques 
may be used for the purpose of both solubilisation and the extraction of NPs. 

If we now consider water-based extraction methods, we can enrich this set of meth-
ods with four other innovative techniques, namely the use of enzymes [12], reactive ex-
traction, in situ plant water extraction (ISPWE) [13] and subcritical water extraction (SWE) 
[14], which gives a total of thirteen water-based extraction methods. 

This review introduces the basic principle of thirteen methods to enhance the solvent 
power of water in the green extraction of NPs. These methods are then analysed, com-
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Once these initial seven methods to solubilise NPs in water were described at the
beginning of the 2000s, additional ways to enhance the solubility of such compounds in
water were introduced. Namely, switchable solvents were discovered in 2010 [9] followed
by the Natural Deep Eutectic Solvents (NADES) first described in 2011 [10]. These two
relevant solubilisation methods can easily be applied to modify water’s solvent properties.
In fact, switchable solvents include switchable water and NADES can be dissolved in water
so that the system remains an aqueous solvent. These techniques have continued to capture
scientists’ attention to the extent that still today numerous articles are published with a
view to extending their use and discovering and patenting new ingredients.

At this point, a total of nine methods have been established and are largely described
as solubilisation techniques. All these methods may also be applied to the extraction of NPs
from biological material. Whilst a relevant solubilisation technique does not necessarily
constitute an efficient extraction technique—as was notably shown with the rosemary case
study [11]—with the appropriate adjustments implemented, such techniques may be used
for the purpose of both solubilisation and the extraction of NPs.

If we now consider water-based extraction methods, we can enrich this set of methods
with four other innovative techniques, namely the use of enzymes [12], reactive extraction,
in situ plant water extraction (ISPWE) [13] and subcritical water extraction (SWE) [14],
which gives a total of thirteen water-based extraction methods.

This review introduces the basic principle of thirteen methods to enhance the solvent
power of water in the green extraction of NPs. These methods are then analysed, compared
and evaluated, with a score reflecting their green extraction global efficiency. Moreover,
the future of water-based green extraction is expected to consist of relevant combinations
of these methods to achieve higher extraction yields and greater extraction profiles. The
interest of some of these combined methods will be discussed. Finally, the potential impact
of these methods as a prospect is assessed through the prism of green extraction and the
principles of green chemistry, then linked to the corresponding Sustainable Development
Goals (SDGs) as defined by the United Nations.
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2. Relevant Methods to Enhance the Solvent Potential of Water
2.1. Method Overview

A total of thirteen methods are described in this section and illustrated in Figure 2.

Pharmaceuticals 2022, 15, 1507 3 of 25 
 

 

pared and evaluated, with a score reflecting their green extraction global efficiency. More-
over, the future of water-based green extraction is expected to consist of relevant combi-
nations of these methods to achieve higher extraction yields and greater extraction pro-
files. The interest of some of these combined methods will be discussed. Finally, the po-
tential impact of these methods as a prospect is assessed through the prism of green ex-
traction and the principles of green chemistry, then linked to the corresponding Sustain-
able Development Goals (SDGs) as defined by the United Nations. 

2. Relevant Methods to Enhance the Solvent Potential of Water 
2.1. Method Overview 

A total of thirteen methods are described in this section and illustrated in Figure 2.

 
Figure 2. Present (from 2000 to 2020): most relevant water extraction methods for natural products 
(thirteen methods). 

Some of these methods rely on the addition of a chemical agent (organic, inorganic, 
biochemical) including pH range and salts, cosolvents, surfactants, complexing ligands, 
inclusion complexes, stacking complexes, hydrotropes, NADES and enzymes. Other 
methods are based both on the addition of a chemical agent and a physical treatment, such 
as reactive extraction and switchable solvents, whereas the two remaining methods in-
volve the suitable physical treatment of the water, namely ISPWE and SWE. 

Apart from reactive extraction, the use of enzymes, ISPWE and SWE, which are ded-
icated to the extraction of NPs, the rest of the methods can easily be applied to the solu-
bilisation of NPs as well. 

  

Figure 2. Present (from 2000 to 2020): most relevant water extraction methods for natural products
(thirteen methods).

Some of these methods rely on the addition of a chemical agent (organic, inorganic,
biochemical) including pH range and salts, cosolvents, surfactants, complexing ligands,
inclusion complexes, stacking complexes, hydrotropes, NADES and enzymes. Other
methods are based both on the addition of a chemical agent and a physical treatment, such
as reactive extraction and switchable solvents, whereas the two remaining methods involve
the suitable physical treatment of the water, namely ISPWE and SWE.

Apart from reactive extraction, the use of enzymes, ISPWE and SWE, which are
dedicated to the extraction of NPs, the rest of the methods can easily be applied to the
solubilisation of NPs as well.

2.1.1. pH Range and Salts

The use of salts or pH adjustment is largely implemented together with other methods.
Hereinafter, we describe the specific effects of these two methods to enhance the solvent
potential of water.

pH control is of major importance in understanding and monitoring water solubility
and the extractability of multiple natural products. As can be seen in the case of anthocyanin
delphinidin, the flavylium cation—which is dominant at a pH lower than 5—is the most
soluble form of delphinidin and reaches a solubility of 71 mg/L in acidic water [15].
Therefore, a suitable way to extract such a compound from a plant resource such as berries
is to use acidic water (e.g., pH = 2.3) to increase anthocyanin solubility and diffusion
through the matrix [16]. pH adjustment may be performed with acids (e.g., hydrochloric
acid) and bases (e.g., sodium or potassium hydroxide), as well as with salts (e.g., sodium
carbonate to increase the pH or ammonium chloride to reduce it).
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Salts can not only alter the pH but also monitor other water solvent properties. When
added to water, salts split into ions that modify water behaviour. In particular, specific
ion effects act on the surface charge and tension, electrostatic interactions and charge
density [17]. When applied to solubilisation or extraction, useful salts such as kosmotropic
and in particular chaotropic ones can be employed to alter interactions between water and
NPs as well as their organisation. The direct consequence of these changes may be the
increased solubility of NPs. Indeed, when a chaotropic salt is added to water, it weakens the
interactions between each water molecule and each NP, thereby strengthening water-NP
interactions to facilitate their solubilisation. This is called the salting-in effect [18]. Salts can
also destabilise biological structures such as oil bodies or membranes, which could lead to
coalescence and the release of protected NPs [19]. Finally, the use of salts could assist the
mass transfer of NPs from the biological matrix to the water solvent [17].

The use of salts is very common in pharmaceutical industries dealing with natural
products, as it is a very affordable and simple method to apply even at a very large scale for
extraction and purification purposes. Nevertheless, this method could raise sustainability
and cost-effectiveness questions if the salts used in the process have to be removed from the
final product. Indeed, such removal could imply additional costly and energy-consuming
downstream processing steps such as membrane filtrations [20]. In an ideal situation, salts
should remain in the final product not only to simplify the process but also to potentially
stabilise the extracted NP or even to enhance its properties (compared to those of the free
NP solubilised in water) [21].

2.1.2. Cosolvents

The use of cosolvents has to be the most obvious and common way to tune water
solvent properties for green extraction purposes due to its ease of implementation, which
consists of mixing water with one or more miscible solvents. Ethanol is one particularly
notable cosolvent used with water.

The addition of a cosolvent to water is predominantly in a bid to reduce its polarity so
that it behaves more like a medium- or low-polarity solvent and can therefore solubilise
more non-polar NPs. Indeed, it was shown as early as 1931 that the addition of 50% (w/w) of
ethanol to water at a temperature of 40 ◦C can reduce its polarity almost twofold (according
to the dielectric constant value of the corresponding solvent: ε ≈ 73 for pure water and
ε ≈ 45 for 50% ethanol) [22]. Apart from modifying water polarity, the addition of a
cosolvent can also influence various parameters including, although not limited to, surface
and interfacial tensions, viscosity, proticity and the ability to precipitate or crystallise a
given NP [23]. Cosolvents could be added to water such as ethanol, polyethylene glycol,
propylene glycol, glycerol and dimethyl isosorbide among others. In any case, the optimal
ratio of cosolvent added to water should be studied with care. Indeed, it is unlikely that
the best ratio to solubilise any given NP corresponds to the best ratio for its extraction. This
noteworthy tendency was clearly demonstrated in the case of rosmarinic acid solubilisation
and extraction from rosemary using aqueous ethanol [11]. The authors substantiated how
pure ethanol was the best option to solubilise rosmarinic acid whereas the best ratio of
ethanol to use in order to extract this NP was 30% (V/V).

Pharmaceutical industries are heavy users of cosolvents. For sure, this method is
employed a lot for both extraction and purification steps. Before starting the process devel-
opment and in particular its upscaling, the cosolvent has to be chosen wisely considering
many parameters, including cost, availability, toxicity, efficacy and processing ability, recy-
clability and of course the amount added to water [24]. Once the appropriate cosolvent and
its proportion are chosen, this method is quite easy to implement on an industrial scale.
The environmental impacts of the corresponding process strongly depend on the target NP
and the matrix extracted, as well as the nature of the retained cosolvent and its amount
and also the galenic desired for the final product. As a matter of fact, if the cosolvent could
remain in the final product, the process would be all the more sustainable.
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2.1.3. Surfactants

The use of surfactants is becoming a well-renowned technique in solubilisation and
extraction of NPs. It involves the addition of surfactants, which are amphiphilic organic
molecules of variable size, to water. Surfactants are surface-active molecules capable
of forming micelles once their concentration is high enough (i.e., when C > critical mi-
cellar concentration—CMC). Micelles are colloidal-form clusters composed of surfactant
molecules oriented in a way that separates hydrophobic moieties from water and exposes
hydrophilic moieties to water [25]. Each surfactant has a given CMC.

The surfactant principle of action is to reduce surface tension. Different shapes of
micelles are described: (classic) micelles, cylindric, layers and reverse [26]. These objects are
able to solubilise non-polar NPs within their core, thus making those NPs more soluble in
water (within micelles). The obtention and stabilisation of micelles are ensured by means of
hydrophobic and hydration forces, π–π stacking interactions (in the case of aromatic-ring-
containing surfactants) and hydrogen bonding [27,28]. Some examples of commonly used
surfactants for NP solubilisation or extraction include non-ionic surfactants such as Triton
X-100, Tween 20 or Tween 80, anionic surfactants such as docusate, cationic surfactants
such as trimethyltetradecylammonium bromide, or even zwitterionic surfactants such
as lecithin (glycerophospholipid mixtures) [8]. The extraction step must be performed
using a concentration of surfactants higher than the CMC (typically around 1 to 10 mM)
so that micelles are obtained and are able to solubilise the NPs within their core. Another
useful property of micelles to exploit in green extraction processes is their cloud point.
This consists of a temperature above which micelles are disorganised and therefore no
longer water-soluble, which leads to dephasing. To purify the NPs after the extraction
step, the user should bring these elements up to cloud point temperature and then add
a centrifugation step to concentrate both the NPs and surfactants in the upper layer [26].
This extraction technique is called Cloud Point Extraction (CPE).

The study of surfactant benefits in pharmaceuticals is nothing new [8], though they
seemed to be less frequently industrially applied than salts or cosolvents. Surfactants have
shown to be clinically effective in emulsion when used in the oily phase [29], but their use
in water for pharmaceutical purposes would still be uncommon. Nevertheless, promising
results were obtained with NPs of growing importance in pharmaceuticals [30]. This
method should not be a problem to scale up considering the generally low concentrations
of surfactants involved, which also favours the sustainability of the corresponding process.

2.1.4. Complexing Ligands

Contrary to the previous methods, which are quite common in studies of solubilisation
and extraction of NP, the use of complexing ligands is still rather unusual in this field. This
method consists of adding a complexing agent readily soluble in water to create a complex
with the target compound [8]. The target compounds are typically metallic ions rather than
NPs per se, which is why this method is uncommon in green extraction. One particular
case of complexing ligands dissolved in water would be phytosomes. Phytosomes are
phyto-phospholipid complexes composed of NPs and phospholipids [31]. They have a
particle shape of variable diameter ranging from 50 nm up to 100 µm on average. Once
complexed, NPs are far more soluble in water.

A complexing ligand typically contains two or more electron-donor groups. Complex-
ation occurs as a result of ionic or covalent bonding. Once complexed, the compounds
of interest become much more soluble in water and the obtained complex may serve
as a drug delivery system [32]. Notable complexing ligands include ethylenediaminete-
traacetic acid (EDTA), ethylenediamine disuccinate, or even citric acid [33,34]. Another
unexpected complexing ligand recently reported was the NP dihydromyricetin itself, as
detailed below [35].

The only relevant pharmaceutical application of this method would be the use of
phytosome made with NP, therefore readily water-soluble. One frequently cited industrial
producer of such active pharmaceutical ingredients (API) is Indena [36]. Notably, they
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claim the clinical efficiency of their Quercefit® product (which is a phytosome made of
quercetin) for reducing COVID-19 symptoms [37]. As this particular case of complexing
ligand is quite new, it is still difficult to forecast the economic viability or sustainability of
this technique in general.

2.1.5. Inclusion Complexes

The use of inclusion complexes in the solubilisation and extraction of NPs has increased
notably since 2010. In this method, an inclusion ligand is added to water. Inclusion ligands
are amphiphilic molecules composed of a hydrophilic outer surface, which interacts with
water and leads to its solubilisation, and an inner hydrophobic cavity able to host a
hydrophobic moiety or an entire molecule [38]. An inclusion complex containing an NP
will greatly increase its solubility in water. For instance, hesperetin formed as a complex
with 2-hydroxypropyl-beta-cyclodextrin (HP-β-CD) is 400 times more soluble in water
compared to its free form [39].

Such complexes are not only able to significantly improve NP solubility but also
their stability and bioavailability. These complexes are obtained through several weak
interactions such as ion–dipole, dipole–dipole, Van der Waals, electrostatic, hydrophobic
and hydrogen bonds [39]. The most common inclusion ligands used in green extraction are
cyclodextrins (CD). Various cyclodextrins are obtained from the enzymatic degradation of
amylose, namely α-, β- and γ-CD (composed of 6, 7 and 8 glucose units, respectively) [38].
Additional CD have been developed from this ‘native CD’ basis through chemical modifi-
cations (e.g., HP-β-CD ‘modified CD’). Each CD has specific physicochemical properties,
which is why the choice of CD should be decided rationally. The molar ratio of host-guest
inclusion varies greatly from one host to another as well as from one guest to another (e.g.,
1:1, 1:2, 2:1, 2:2, etc.). Large amounts of CD are generally required to solubilise NPs. For
example, in the case of a 1:1 complexing molar ratio, 1 kg of CD is needed to solubilise 1 M
of NP.

Inclusion complexes and in particular CDs were extensively used by many pharma-
ceutical companies in a wide variety of treatments since the 1970s [40]. More or less one
hundred pharmaceutical products involving CDs were approved up to now, according to a
supplier of these inclusion agents [41]. From a practical industrial point of view, processes
based on the use of inclusion complexes are simple to implement, whatever the production
scale. Additionally, the corresponding method is globally sustainable as it does not imply
additional treatment steps. Moreover, these bio-based solubilisers will remain on the final
product to improve their bioavailability and are initially introduced by simple stirring in
water at room temperature [42].

2.1.6. Stacking Complexes

Stacking complexes have barely been used in extraction, instead constituting a sol-
ubilisation technique [8]. Nevertheless, this could serve as a powerful method to extract
NPs in a sustainable way that could favour the extract’s bioactivity. A stacking agent is
generally a small, organic and amphiphilic molecule, with at least a decent water solubil-
ity. These agents are able to create aggregates (different from micelles) with hydrophobic
molecules. The obtained stacking complexes are therefore much more soluble in water
than the isolated hydrophobic compound ever was. Stacking is the major stabilising force
involved in these complexes. More precisely, π–π interactions occur and enable the stacking
phenomenon. Such complexes appear with a given molar ratio. The ideal target NPs for
this method are π-electron donors such as compounds containing double bonds. Different
geometric configurations of π–π stacking interactions have been described: edge-to-face
stacking, offset stacking and face-to-face stacking. Given the weakness of their stabilising
interactions, stacking complexes consist of drug delivery systems with huge potential [43].

Stacking complexes are naturally occurring in vivo systems in many bioresources,
especially in plant cell walls. Indeed, these complexes are of major importance in plant
cell wall organisation and stabilisation. For instance, polysaccharides such as pectin and
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phenolic compounds such as anthocyanidins rely on these interactions [44]. In addition,
stacking complexes are responsible for the coloured appearance of many flower pigments,
which are NPs of interest such as anthocyanidins [45]. This is why this method could be
relevant for implementation in green extraction, using actual NPs as stacking agents.

These complexes have been studied for pharmaceutical purposes as a way to enhance
the water solubility of existing and recognised APIs since the 1950s. Although, the π–π
stacking interactions involved in the solubility enhancement of the studied drugs started
to be well described and understood in the 1970s [46]. As mentioned above, stacking
complexes appear to be theoretically suitable drug-delivery systems, nonetheless, they are
still at the research stage, and it seems that there is still no real industrial use for this method.
This is mostly due to safety concerns about the complexing agents used for pharmaceutical
goals [43]. If we now consider the perspectives for industrial developments, we could
forecast that the corresponding process would not be that difficult to implement. Indeed,
no extra energy-consuming steps would be involved, especially if the agent were to be kept
in the final products.

2.1.7. Hydrotropes

Hydrotropes are small, amphiphilic surface-active molecules similar to stacking agents.
However, contrary to stacking complexes, this method has been increasingly used in green
extraction since 2000. A critical concentration similar to the CMC (established for sur-
factants) has been defined for hydrotropes and is known as the Minimum Hydrotropic
Concentration (MHC). Above the MHC, hydrotropes form aggregates and begin to effi-
ciently solubilise the target NP. A common order of magnitude for this MHC is 1 M. Even
so, it is still unclear whether this aggregate occurs solely in the presence of the hydrophobic
NP or with the hydrotrope alone [47].

The underlying physicochemical principles of this method are the same as those
of stacking complexes. Nevertheless, the only significant difference with hydrotropes
is that they can aggregate without any specific stoichiometry [8]. Many hydrotropes
have been used successfully in green extraction, including sodium salicylate and sodium
cumene sulfonate. Hydrotropes also exhibit a cloud point, which is useful to exploit in
green extraction; this technique is called hydrotropic extraction. In short, hydrotropes are
introduced into the water at a concentration higher than the MHC (typically exceeding 1 M)
before starting the extraction process. Once the target NPs are extracted, the temperature
is increased above the hydrotropic cloud point, which makes it easier to recover the NPs
through phase separation with centrifugation for instance.

The application of hydrotropes in the pharmaceutical field is still limited to the research
stage and it seems that there is still no approved drug involving such solubiliser, as in the
case of stacking agents. Yet, it is suggested that the use of hydrotropes would be suitable
for the extraction of NPs at an industrial scale. As a matter of fact, some hydrotropes with
high-temperature stability appear to be easily reusable, thus giving way to a promising
and sustainable method [48]. In the case of hydrotropes which could not be removed from
the final product, the main concern about their use in the pharmaceutical field is their high
concentration which is needed to reach satisfying extraction yields. This concentration
range typically raises problems of toxicity and thus limits the potential applications of this
method [49].

2.1.8. NADES

Natural deep eutectic solvents (NADES) are fully organised liquids composed of
naturally occurring metabolites found in most living cells [50]. They were introduced in
2011 and were then quickly and increasingly applied in green extraction [51]. Whilst water
sometimes forms an intrinsic part of NADES as an actual component, it can also be used to
dissolve initially dry NADES to reduce their viscosity for instance. In this sense, we can
consider NADES as being an aqueous solvent whereby water represents at least half of the
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total composition. NADES are obtained by mixing different compounds at very specific
molar concentrations.

The molecular structure and stability of NADES are based on the extensive hydrogen
bonding that occurs between compounds. There are five categories of NADES according
to their composition: acid and base, neutral, neutral with acids, neutral with bases, and
amino acids containing NADES. Most NADES exhibit very low toxicity and are sometimes
even edible [50].

Aqueous NADES are extremely well suited to use in green extraction both in a lab-
oratory and on an industrial scale. As a matter of fact, their components are remarkably
low-cost, NADES are relatively easy to formulate, and they are non-toxic and highly
biodegradable. Amongst the most renowned NADES, we can count choline chloride:urea,
choline chloride:lactic acid, choline chloride:ethylene glycol, glucose:fructose:sucrose, and
malic acid:glucose [52]. Each of these NADES could easily be dissolved in at least 50%
water to make it an aqueous solvent with practical advantages such as viscosity and
cost reductions.

Regarding applications in the health industry, certain compositions of aqueous NADES
were patented by Givaudan in 2015 [53]. This method was used by the company to produce
at least two cosmetic active ingredients [54]. In 2017, another company named Gatte-
fossé launched its cosmetic active ingredient made from an aqueous NADES composed
of glycerin and fructose [55]. If we now consider strictly speaking the pharmaceutical
industrial application of this method, it might not exist yet. Nevertheless, as this method
was successively used in a related health industrial sector, it seems feasible to apply it in
pharmaceutical processes. In fact, the corresponding process is globally sustainable even
if NADES tend to be viscous. If viscosity is a problem for given applications, the water
dilution can be simply increased. Again, to remain sustainable, the process should not
include NADES removal. This purification is hard to achieve because of many NADES
properties including their generally very low vapor pressure [51].

2.1.9. Reactive Extraction

Reactive extraction is a novel concept and we first coined the term in this review.
It covers the extraction methods involving the chemical modification of the target NP(s)
by means of a reactive extractant. After the reaction, the NP becomes much more water-
soluble. The NP may be transformed back into its initial form in the final extract or could
also remain chemically modified, depending on the applied process. Very few papers
describe this kind of transformation and of course, they do so without employing the
expression reactive extraction. Most of the reactive extractants we have identified are either
salts [56] or surfactants [57].

Reactive extraction is based on the use of chaotropic salts, surfactants, or even pH ad-
justments, as well as physical modification such as a change in temperature or a processing
step inducing phase separation. All these techniques can lead to one or more modifications
of the target NP to make it more water-soluble so that extraction yields are increased.

This method features several advantages for green extraction. For instance, it could
help in reducing the number of unitary operations while using natural molecules such as
choline hydroxide as a reactive extractant [57].

Since this method is very new, there is logically no pharmaceutical industrial appli-
cation to date. Nonetheless, NP of pharmaceutical interest could be extracted thanks to
reactive extraction, such as for example hesperidin [56]. The chemicals or process involved
are cheap and simple to implement. In addition, these operations will not induce extra
energy consumption, thus enabling the green process. Overall, this method looks promising
for future developments but still suffers from a lack of scientific data and conceptualisation.

2.1.10. Enzymes

Enzymes are natural active proteins (macromolecules of a least roughly 50 amino
acids) synthetised by organisms and which act as biocatalysts. These active proteins are
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highly specific and can perform the same reactions millions of times at an exceedingly high
pace (high turnover rate). The water extraction of NPs may be greatly increased by the use
of enzymes [26].

Hydrolases and lyases are the most useful enzyme categories in green extraction.
Indeed, they catalyse the hydrolysis and other kinds of bond cleavage of many molecules
such as structural polysaccharides, proteins and lignin, thus enabling the disassembly of
plant cell walls [58]. Such plant cell wall degradation may lead to easier access of NPs for
water solvents. Moreover, the degradation itself can release phenolic compounds from the
cell wall [59].

Most of the enzymes used in green extraction are obtained from fungus and bacteria
strains. The following enzymes have been successfully used for NP extraction from plant
sources: cellulases, pectinesterase, polygalacturonase, rhamnogalacturonan hydrolase,
alpha-amylase, peptidase, trypsin, papain and more [59]. Typically, one or more of these
enzyme categories are added into water and the plant matrix is extracted through stirred
maceration, with pH and temperature adjustments to fit enzyme needs. Even more compli-
cated NPs to extract such as some polyunsaturated fatty acids can be isolated using this
method by adding a cold-pressing step to the process [60].

No application was identified in pharmaceuticals using enzymes during the extraction
step. Nevertheless, there were many promising lab-scale results related to the extraction of
NP as explained above. Furthermore, active ingredients for dietary supplements and cos-
metics are currently produced by at least one company. Indeed, Biolie which is specialised
in enzymatic extraction already launched three active ingredients for dietary supplements
and more or less a dozen for cosmetics using this method [61]. Even if this method is not
the easiest to optimise nor to scale up, it would be possible to produce pharmaceuticals
using enzymes which are efficient green biocatalysts.

2.1.11. ISPWE

In situ plant water extraction involves physical treatments capable of extracting plant
water in situ, along with NPs. This extraction method does not require the addition of
any solvents, as the water contained in the plant is sufficient. The two main technologies
required to achieve this solvent-free extraction were identified as microwaves and Pulsed
Electric Fields (PEF). The mass transfer of NPs from the wet matrix to the exterior is greatly
enhanced by these treatments.

In the case of Solvent-Free Microwave Extraction (SFME), both heat and mass transfers
occur in the same direction so that NPs are efficiently extracted by water in situ. Contrary to
most processes that involve conventional heating (i.e., surface heating), microwaves ensure
that selective volume heating is applied to the matrix (from its core to the exterior) [61].
As for PEF, which is a non-thermal process, the in situ water extraction relies on the
irreversible electroporation of the matrix cells. This kind of extensive cell membrane or
wall destruction happens if the potential difference between the two electrodes is high
enough (E >> Ecritical) [62].

In green extraction, this method could efficiently be applied to any matrix with a
high-water content (wet sample) for it to serve as a solvent. Such physical treatments
are exceptionally fast and typically last just a few minutes. These processes are also low
energy-consuming [63].

To the best of our knowledge, there was no industrial application of ISPWE for phar-
maceutical purposes yet. We could forecast that the use of SFME or PEF for pharmaceutical
production is quite far from being widely adopted. Indeed, these simple treatments lead
to raw complex extracts, which will then require many purification steps involving other
technologies to reach levels of purity matching pharmaceutical needs. ISPWE is more
suitable for the obtention of raw products as close as possible to the material of origin.
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2.1.12. Switchable Solvents

Switchable solvents are green solvents that are readily tuneable in a reversible way
using the appropriate trigger, for instance, through reactions with CO2. Other acids such
as hydrochloric acid could serve as a trigger, but generally, CO2 is preferred because of its
advantages (ease of handling related to its gaseous state, generally non-toxic, available and
inexpensive). Amongst the developed switchable solvents, switchable water appears to
be an excellent water-based solubilisation and extraction method to target non-polar NPs.
Switchable water is obtained by adding a base soluble into the water, such as N,N,N’,N’-
tetramethylbutane-1,4-diamine [64]. This base enables ‘the switch,’ which consists of the
addition or depletion of CO2 to monitor the ionic strength of the aqueous solution. At the
end of the process, it is possible to remove the base from the water solution to make it clean
and safe once again.

Bases such as amines or polyamines may be used to obtain switchable water. In
the absence of CO2, the aqueous solution has a low ionic strength because of the amine.
If CO2 is added to the solution, the base is protonated once or more depending on its
protonatable sites, giving the aqueous solvent a sudden, strong ionic strength [65]. In a
typical green extraction protocol involving switchable water, a base is introduced into
the water before adding the matrix containing the NPs. Depending on the solubility of
the target compounds, that switchable water is either carbonated or uncarbonated. CO2
bubbling can be used to achieve the classic 1 atm loading capacity of interest for switchable
water. Depending on the process, once the NPs have been extracted, CO2 pressure may be
adjusted to monitor their solubility. Finally, the base can easily be recovered from the water
after the complete removal of CO2.

It would appear that there is currently no industrial application of switchable water in
the pharmaceutical field. This method is still at a research level, nonetheless, promising
results of NPs extraction were obtained thanks to it. In particular, it was shown that the base
involved in obtaining ‘the switch’ is highly recyclable at the end of lab-scale processes [66].
This suggests that the corresponding potential industrial process could be sustainable.

2.1.13. SWE

Subcritical water extraction is a particular physical state of water approaching its
critical point. More precisely, SWE is typically obtained and used at a temperature between
100 to 200 ◦C and maintained at a pressure of up to 22.1 MPa, enabling it to stay in liquid
form rather than becoming a gas [67]. Compared to water used at an ambient temperature
and pressure, SWE is a less polar solvent that behaves more like methanol and is, therefore,
able to solubilise and extract less polar NPs that ambient water could not.

In terms of physicochemical properties, SWE shows a reduced dielectric constant
approaching those of acetonitrile or methanol. Its viscosity and surface tension are also
decreased, which enables a deeper penetration of the liquid into the matrix used for
extraction. Finally, the density and the diffusion rate of SWE are lower than in the case
of ambient water, which leads to an enhanced mass transfer of the dissolved ions and
molecules [68].

SWE is generally far more efficient and convenient than extraction with water at
ambient temperatures or hot water without pressure control, especially because of the
speed of the corresponding process [59]. Moreover, after the extraction step, SWE once
again becomes ambient water and the non-polar compounds may spontaneously form
a separate phase in which they are easy to recover since the compounds that were once
soluble in SWE are no more.

There has not been an application of SWE in pharmaceuticals to date. Nevertheless,
this technique is actually used by at least two major industries to produce active ingredients
for the nutraceutical and cosmetic markets. These are Lubrizol [69] and Sensient [70,71].
The corresponding extracts are rich in bioactive NPs and have complex compositions. That
is why we can hypothesise that it rather meets the needs of nutraceutical and cosmetics
industries, more than pharmaceutical ones which are generally looking for high-purity
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molecules. In any case, SWE appears to be a green and sustainable technique efficient for
the extraction of NP and is already mature enough for some markets of the health industry.

2.2. Successful Cases of Green Extraction Using Each Method

Each method described in the previous subsection has been applied to the green ex-
traction of NPs multiple times and revealed interesting results. Successful cases illustrating
the advantage of each method are detailed in Table 1.

Table 1. Presentation of a successful case of green extraction for each method.

Method Matrix Target NP(s) Experimental Conditions
Results

(Compared to the
Control)

Refs.

pH and salts
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°C, pH = 5 (acetate buffer 
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nase alone and in combi-
nation. 

Control: same treatment 
with water  

Individually, cellu-
lase and tannase 
greatly enhanced 

extraction yields of 
gallic acid, p-cou-
maric acid, and to-
tal phenolic com-
pounds (from 2 to 
8 times) compared 

to control. 
Combination of 

both enzymes cate-
gories is beneficial. 

[77] 

ISPWE 

 

Lettuce (Lettuce sa-
tiva) 

 

Phenolic compounds 
(e.g., quercetin)  

 

20 min SFME at 250–300 
W (lab and pilot scale, 4 

and 150 L reactors respec-
tively) 

Conventional extraction: 5 
min ultra-homogenisation 
(4000 rpm) at room tem-

perature with 80% ethanol 
(Matrix/Solvent = 1/10 

w/V) 

Quercetin and lute-
olin at least 5 times 
more concentrated 
in SFME extracts 

(lab and pilot 
scales) compared 

to conventional ex-
tracts. 

[78] 

Switchable sol-
vents  Pure compounds 

in water (solubili-
sation tests) 

Various NPs (e.g., ben-
zoic acid and capsaicin) 

 

 

Switchable water obtained 
with N,N,N’,N’-tetra-

methylbutane-1,4-diamine 
(1:5 base:water V:V ≈ 0.9 

M) with or without CO2 (1 
atm of air or CO2) 

Control: pure water (1 atm 
of air) 

Capsaicin and ben-
zoic acid far more 
soluble in switcha-
ble water than in 

control (877 and 73 
times respectively) 

[64] 

SWE 

 

Pseuderanthemum 
palatiferum (Nees) 
Radlk. leaf pow-

der  

 

Phenolic compounds, 
flavonoids and saponins. 

 

15 min SWE at 130 to 190 
°C, 80 bar 

Matrix/Solvent = 1/70 w/V 
Conventional solvent and 

extraction procedures:  
19 h stirred maceration 
with methanol at 25 °C 
(Matrix/Solvent = 1/100 

w/V) 
7 h Soxhlet reflux with 

70% ethanol (Matrix/Sol-
vent = 1/100 w/V) 

30 min stirred maceration 
with hot water at 80 °C 
(Matrix/Solvent = 1/25 

w/V) 

SWE most efficient 
and fastest method 

SWE extracts far 
richer in NPs, ex-
hibit 2 to 20 times 
more antioxidant 
activity, as well as 
more antimicrobial 
power (inhibition 
zone) compared to 
conventional ex-

tracts 

[79] 

Now that every method has been briefly explained, the following section will focus 
on analysing them. Each method will also be compared and rated to help the reader 
choose between all possibilities depending on their needs. 

Syrah grape (Vitis
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Pharmaceuticals 2022, 15, 1507 14 of 25 
 

 

Enzymes  

 

Syrah grape (Vitis 
vinifera ‘Syrah’) 

pomace  

 

Phenolic compounds 
(e.g., p-coumaric acid) 

 

1 h stirred maceration (or-
bital shaker, 125 rpm) at 45 
°C, pH = 5 (acetate buffer 

at 50 mM) 
using cellulase and tan-

nase alone and in combi-
nation. 

Control: same treatment 
with water  

Individually, cellu-
lase and tannase 
greatly enhanced 

extraction yields of 
gallic acid, p-cou-
maric acid, and to-
tal phenolic com-
pounds (from 2 to 
8 times) compared 

to control. 
Combination of 

both enzymes cate-
gories is beneficial. 

[77] 

ISPWE 

 

Lettuce (Lettuce sa-
tiva) 

 

Phenolic compounds 
(e.g., quercetin)  

 

20 min SFME at 250–300 
W (lab and pilot scale, 4 

and 150 L reactors respec-
tively) 

Conventional extraction: 5 
min ultra-homogenisation 
(4000 rpm) at room tem-

perature with 80% ethanol 
(Matrix/Solvent = 1/10 

w/V) 

Quercetin and lute-
olin at least 5 times 
more concentrated 
in SFME extracts 

(lab and pilot 
scales) compared 

to conventional ex-
tracts. 

[78] 

Switchable sol-
vents  Pure compounds 

in water (solubili-
sation tests) 

Various NPs (e.g., ben-
zoic acid and capsaicin) 

 

 

Switchable water obtained 
with N,N,N’,N’-tetra-

methylbutane-1,4-diamine 
(1:5 base:water V:V ≈ 0.9 

M) with or without CO2 (1 
atm of air or CO2) 

Control: pure water (1 atm 
of air) 

Capsaicin and ben-
zoic acid far more 
soluble in switcha-
ble water than in 

control (877 and 73 
times respectively) 

[64] 

SWE 

 

Pseuderanthemum 
palatiferum (Nees) 
Radlk. leaf pow-

der  

 

Phenolic compounds, 
flavonoids and saponins. 

 

15 min SWE at 130 to 190 
°C, 80 bar 

Matrix/Solvent = 1/70 w/V 
Conventional solvent and 

extraction procedures:  
19 h stirred maceration 
with methanol at 25 °C 
(Matrix/Solvent = 1/100 

w/V) 
7 h Soxhlet reflux with 

70% ethanol (Matrix/Sol-
vent = 1/100 w/V) 

30 min stirred maceration 
with hot water at 80 °C 
(Matrix/Solvent = 1/25 

w/V) 

SWE most efficient 
and fastest method 

SWE extracts far 
richer in NPs, ex-
hibit 2 to 20 times 
more antioxidant 
activity, as well as 
more antimicrobial 
power (inhibition 
zone) compared to 
conventional ex-

tracts 

[79] 

Now that every method has been briefly explained, the following section will focus 
on analysing them. Each method will also be compared and rated to help the reader 
choose between all possibilities depending on their needs. 

Phenolic compounds (e.g.,
p-coumaric acid)

Pharmaceuticals 2022, 15, 1507 14 of 25 
 

 

Enzymes  

 

Syrah grape (Vitis 
vinifera ‘Syrah’) 

pomace  

 

Phenolic compounds 
(e.g., p-coumaric acid) 

 

1 h stirred maceration (or-
bital shaker, 125 rpm) at 45 
°C, pH = 5 (acetate buffer 

at 50 mM) 
using cellulase and tan-

nase alone and in combi-
nation. 

Control: same treatment 
with water  

Individually, cellu-
lase and tannase 
greatly enhanced 

extraction yields of 
gallic acid, p-cou-
maric acid, and to-
tal phenolic com-
pounds (from 2 to 
8 times) compared 

to control. 
Combination of 

both enzymes cate-
gories is beneficial. 

[77] 

ISPWE 

 

Lettuce (Lettuce sa-
tiva) 

 

Phenolic compounds 
(e.g., quercetin)  

 

20 min SFME at 250–300 
W (lab and pilot scale, 4 

and 150 L reactors respec-
tively) 

Conventional extraction: 5 
min ultra-homogenisation 
(4000 rpm) at room tem-

perature with 80% ethanol 
(Matrix/Solvent = 1/10 

w/V) 

Quercetin and lute-
olin at least 5 times 
more concentrated 
in SFME extracts 

(lab and pilot 
scales) compared 

to conventional ex-
tracts. 

[78] 

Switchable sol-
vents  Pure compounds 

in water (solubili-
sation tests) 

Various NPs (e.g., ben-
zoic acid and capsaicin) 

 

 

Switchable water obtained 
with N,N,N’,N’-tetra-

methylbutane-1,4-diamine 
(1:5 base:water V:V ≈ 0.9 

M) with or without CO2 (1 
atm of air or CO2) 

Control: pure water (1 atm 
of air) 

Capsaicin and ben-
zoic acid far more 
soluble in switcha-
ble water than in 

control (877 and 73 
times respectively) 

[64] 

SWE 

 

Pseuderanthemum 
palatiferum (Nees) 
Radlk. leaf pow-

der  

 

Phenolic compounds, 
flavonoids and saponins. 

 

15 min SWE at 130 to 190 
°C, 80 bar 

Matrix/Solvent = 1/70 w/V 
Conventional solvent and 

extraction procedures:  
19 h stirred maceration 
with methanol at 25 °C 
(Matrix/Solvent = 1/100 

w/V) 
7 h Soxhlet reflux with 

70% ethanol (Matrix/Sol-
vent = 1/100 w/V) 

30 min stirred maceration 
with hot water at 80 °C 
(Matrix/Solvent = 1/25 

w/V) 

SWE most efficient 
and fastest method 

SWE extracts far 
richer in NPs, ex-
hibit 2 to 20 times 
more antioxidant 
activity, as well as 
more antimicrobial 
power (inhibition 
zone) compared to 
conventional ex-

tracts 

[79] 

Now that every method has been briefly explained, the following section will focus 
on analysing them. Each method will also be compared and rated to help the reader 
choose between all possibilities depending on their needs. 

1 h stirred maceration
(orbital shaker, 125 rpm) at

45 ◦C, pH = 5 (acetate
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fastest method

SWE extracts far richer
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20 times more
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well as more
antimicrobial power
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conventional extracts

[79]

Now that every method has been briefly explained, the following section will focus on
analysing them. Each method will also be compared and rated to help the reader choose
between all possibilities depending on their needs.

2.3. Method Analysis, Comparison and Rating

In Table 2, these methods are described and then compared in terms of relevant criteria
for both academic researchers and people in the industry. These criteria consist of the
investment cost to implement the method, the ease of the corresponding operation, the
hydropathy of target NPs and the processing time, as well as the main pros and cons.

The rating captions and details are shown in Figure 3 and each criterion rating is
depicted in Table 3.
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Table 2. Present (from 2000 to 2020): Practical comparison and rating of these techniques.

Method pH and Salts Cosolvents Surfactants Complexing
Ligands

Inclusion
Complexes

Stacking
Complexes Hydrotropes NADES Reactive

Extraction Enzymes ISPWE Switchable
Solvent SWE

System
description

Addition of
salts to
increase

solubility

Addition of
solvent(s) to
tune water

polarity,
proticity and

viscosity

Addition of
surfactants to

create
micelles

Addition of a
complexing

agent to
capture the

target
compound

Addition of
an inclusion
agent to host

the target
compound

Addition of a
stacking
agent to
increase

solubility

Addition of
organic or

natural agent
to increase
solubility

Addition of
natural, small

organic
molecules at

specific molar
ratio

Addition of
salts to

extract and si-
multaneously
transform the

target
compound

Addition of
enzymes in
water under

specific
conditions to
denature the

matrix

Physical
treatments to
extract plant
metabolites

using its own
water content

Addition of
organic bases
and CO2 to

switch water
behaviour

Water at a
high

temperature
and pressure
to keep it in
liquid state

Investment Low Low Low to
medium Low Medium Medium to

high
Low to

medium Low Low Medium High Low to
medium High

Ease of
operation High High Medium Medium High Medium High Medium Low to

medium Low Medium to
high Medium Medium

Hydropathy
of target NPs

Hydrophilic
and lipophilic

Hydrophilic
to mildly
lipophilic

Hydrophilic
to mildly
lipophilic

Hydrophilic
and lipophilic

(with
phytosomes)

Hydrophilic
to relatively

lipophilic

Hydrophilic
and lipophilic

Hydrophilic
to mildly
lipophilic

Hydrophilic
to relatively

lipophilic

Hydrophilic
and lipophilic

Hydrophilic
and lipophilic

Hydrophilic
to mild

lipophilic

Hydrophilic
and lipophilic

Hydrophilic
to mildly
lipophilic

Extraction
time Medium Medium to

high Medium Medium to
high Medium Medium Low Medium Medium to

high High Low Medium to
high Medium

Main disad-
vantages

Very specific
(precise

conditions
necessary)

Limited
concentration
authorised in

food
products,

obligation to
remove it

Surfactant
removal

Lack of data
in plant

extraction

Difficult to
combine with

other
methods

Lack of data
in plant

extraction

High
concentration

of
hydrotropes

needed

Patented use
Lack of data

in plant
extraction

Enzyme
price, precise

conditions
necessary

Not
particularly
tuneable or

easy to
implement

Still needs
toxic organic
agents (albeit

in small
quantities)

Not suitable
for ther-

mosensitive
molecules,

high pressure

Main
advantages

Useful
method

mainly if
used in

combination
with others,
intensifica-

tion
techniques

Cosolvents
could be part
of next steps

in
formulation

Simultaneous
extraction of

polar and
apolar

molecules

Extremely
target-

specific,
potential

drug delivery
system

(enhanced
stability),

could be part
of next steps

in
formulation

Extremely
target-

specific,
potential

drug delivery
system

(enhanced
stability),

could be part
of next steps

in
formulation

Extremely
target-

specific,
could be part
of next steps

in
formulation

Hydrotropes
could be part
of next steps

in
formulation

Biomimetic
(natural,

GRAS)tuneable
quantity of

water added,
enables inten-

sification

Highly
efficient

while using
very low-cost

agents

Matrix
pretreatment

No solvent
needed and

short
treatment

Ease of
recovery of

both product
and

extractant
and

specifically
designed to

facilitate
industrial im-
plementation

Tuneable
solvent
power
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Table 3. Details about the rating given to every criterion of each method.

Method pH and Salts Cosolvents Surfactants Complexing
Ligands

Inclusion
Complexes

Stacking
Complexes Hydrotropes NADES Reactive

Extraction Enzymes ISPWE Switchable
Solvent SWE

Investment 5 5 4 5 3 2 4 5 5 3 1 4 1
Ease of operation 5 5 3 3 5 3 5 3 2 1 4 3 3
Solubility of the

target compounds 5 3 3 5 4 5 4 4 5 5 3 5 3

Extraction time 3 2 3 2 3 3 5 3 2 1 5 2 3
Main disadvantages 2 2 2 3 3 3 2 4 3 2 2 2 2

Main advantages 2 3 4 4 5 3 4 5 5 4 5 5 4
Average score 3.7 3.3 3.2 3.7 3.8 3.2 4.0 4.0 3.7 2.7 3.3 3.5 2.7

Equivalent letter B B B B B B A A B C B B C
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According to this analysis, hydrotropes and NADES are the most globally efficient
methods to enhance the solvent potential of water (grade A). The use of hydrotropes is
quite easy, very low-cost, and fast, which makes it a cost-effective method to implement
globally. As for NADES, their naturality, low cost and ease of dissolubility in water explain
their top grade. Nine other methods were given an average grade of B. Finally, the use
of enzymes and SWE was given the worst grade (C). In the case of SWE, this grade is
attributed to the extremely high investment costs (mainly in the industry) as well as the
partial thermal degradation of the target NPs and other products. With regard to the
use of enzymes, the difficulty of operation and high extraction time resulted in this C
grade. Although both these methods remain relevant to tune water solvent potential, they
should be thoroughly studied and optimised for the desired applications. Of course, whilst
this overall result could help the reader in choosing the appropriate method, important
adjustments and the compliance of the method with target NPs are fundamental criteria to
maximise extraction yields.

3. Future of Water-Based Extraction: Combined Methods at 2 or 3 Levels

Combinations of methods are useful for two main reasons. Firstly, combinations
can lead to an increase in the solubility and extractability of the target NPs. Secondly,
combinations can also reduce the intrinsic toxicity of a chemical agent used in a single
method, by reducing its concentration. Some agents from one method may be combined
with another agent from the same method, which is the case for pH range and salts,
cosolvents, surfactants, inclusion complexes, stacking complexes and hydrotropes. Other
chemicals are particularly well suited for combining with another method, as is the case
with pH range and salts, inclusion complexes, stacking complexes and hydrotropes [8].
In Figure 4, we report useful examples of combinations found in the literature to reach
outstanding extraction yields.

As an outstanding first case study of a two-method combination, the reader should
consider Sed et al.’s publication [80]. Here, the team working with Prof. Jessop (who
discovered switchable solvents) combined the use of NADES with a switchable solvent.
The extraction yields of protein, carbohydrates and lipids obtained from microalgae were
excellent while using almost only natural ingredients. According to the author, this was
the most benign switchable solvent system ever developed.

Chen et al.’s relevant proof of concept involving the combination of three methods is
also relevant for further reading [81]. In this article, the authors adjusted the pH using salts
in addition to the use of a sugar-based cosolvent before combining it with the well-known
surfactant Span 20 to efficiently extract the oil contained in shelled walnuts. With these
water modifications, the oil recovery yield exceeded 90%.
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We strongly believe that these sorts of multi-method combinations could be the future
of the water-based green extraction of natural products for two main reasons; firstly,
because of the higher yields potentially obtained and also because of the reduced toxicity
induced by the excipients thereby introduced in lower quantities compared to their use in
single methods.

4. Contribution of These Methods in Terms of Sustainability: Consolidating the SDGs

The principles of green chemistry defined by Anastas, Warner and Zimmerman have
raised significant attention since their introduction, notably because they represent a
precise way to tackle climate change [82,83]. The principles of green extraction introduced
by Chemat et al. [84] are strongly related to these principles of green chemistry, although
they are much more adapted to the extraction of natural products. In this respect, the
principles of green extraction are relevant for addressing global challenges and threats as
well. Indeed, the use of water for solubilisation and the extraction of natural products not
only meets the vast majority of both the principles of green chemistry and green extraction
but also fits with 11 out of the 17 SDGs. These correlations are depicted in Figure 5.

Here, we provide some practical examples to consolidate numerous SDGs through
the use of water in the green extraction context, whether in a single laboratory or on an
industrial scale. (SDG 2) Zero Hunger: water is a very low-cost and easily accessible
solvent that enables food production through the extraction of nutritional compounds
from bioresources; (SDG 3) Good Health and Well-being: replacing toxic and harmful
solvents with water is a good idea to protect both the extract producer and the final product
consumers; (SDG 6) Clean Water and Sanitation: some of the methods described here could
be used to extract pollutant from water and thereby recover fresh water that is safe to drink
and to use for domestic purposes; (SDG 7) Affordable and Clean Energy: the majority
of these techniques require very low energy input, meaning that the overall demand
could be reduced; (SDG 8) Decent Work and Economic Growth: water-based processes
could guarantee safe work free from exposure to harmful chemicals (thereby replaced)



Pharmaceuticals 2022, 15, 1507 18 of 22

for employees in a production facility and such processes could also facilitate economic
growth, as they do not require the acquisition of expansive products or technology; (SDG 9)
Industry, Innovation and Infrastructure: water-based processes could be innovative and
lead to new, clean label products; (SDG 11) Sustainable Cities and Communities: no harmful
chemicals are involved in water-based processes so the effluents do not harm nearby towns
or cities; (SDG 12) Responsible Consumption and Production: water-based processing is an
obvious way to ensure the clean production of environmentally friendly products; (SDG 13)
Climate Action: reducing the use of harmful chemicals is a relevant way to limit greenhouse
gas emissions and their overall impact; (SDG 14) Life Below Water: wastewater derived
from water-based processes will not be difficult to treat and will limit the corresponding
aquatic contamination, (SGD 15) Life on Land: the reduction in greenhouse gas emissions
induced by the use of water-based processes protects life on land.
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to the use of water as a solvent for solubilisation and the extraction of natural products. SDG 2: Zero
Hunger; SDG 3 Good Health and Well-being; SDG 6: Clean Water and Sanitation; SDG 7: Affordable
and Clean Energy; SDG 8: Decent Work and Economic Growth; SDG 9: Industry, Innovation and
Infrastructure; SDG 11: Sustainable Cities and Communities; SDG 12: Responsible Consumption and
Production; SDG 13: Climate Action; SDG 14: Life Below Water; SDG 15: Life on Land.

5. Conclusions

In this review, we first introduced the seven traditional solubilisation methods for
using water as the primary solvent. Next, we presented a more in-depth description
of the thirteen most relevant and popular water-based solubilisation and NP extraction
methods. We also presented the eventual application(s) of each method in pharmaceutical
industries. These methods were then analysed and compared. As a result, it could be
easy to choose one or a few methods to prioritise for their desired application. In this way,
the use of hydrotropes and NADES should be considered as turnkey solutions to tune
the solvent potential of water. Subsequently, we presented the advantages of combining
some of these methods, which can lead to a reduction in the solvent’s intrinsic toxicity
while unlocking higher extraction yields. We forecast that these combinations of methods
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will be increasingly adopted by both academic and industrial researchers because of their
ever-growing potential. We then postulated that these methods could help in meeting
global challenges; more precisely, having a positive impact on 11 out of the 17 SDGs.
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