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Abstract: Although the past epidemic of Zika virus (ZIKV) resulted in severe neurological conse-
quences for infected infants and adults, there are still no approved drugs to treat ZIKV infection.
In this study, we applied computational approaches to screen an in-house database of 77 natural
and semi-synthetic compounds against ZIKV NS5 RNA-dependent RNA-polymerase (NS5 RdRp),
an essential protein for viral RNA elongation during the replication process. For this purpose, we
integrated computational approaches such as binding-site conservation, chemical space analysis
and molecular docking. As a result, we prioritized nine virtual hits for experimental evaluation.
Enzymatic assays confirmed that pedalitin and quercetin inhibited ZIKV NS5 RdRp with IC50 values
of 4.1 and 0.5 µM, respectively. Moreover, pedalitin also displayed antiviral activity on ZIKV infection
with an EC50 of 19.28 µM cell-based assays, with low toxicity in Vero cells (CC50 = 83.66 µM) and
selectivity index of 4.34. These results demonstrate the potential of the natural compounds pedal-
itin and quercetin as candidates for structural optimization studies towards the discovery of new
anti-ZIKV drug candidates.

Keywords: Zika virus; antiviral; polymerase; docking; drug discovery; NS5 RdRp protein; flavonoid;
pedalitin; quercetin; non-nucleoside inhibitor

1. Introduction

Zika Virus (ZIKV) is an arthropod-borne flavivirus that circulates globally and caused
a worldwide concern due to its exponential spread in the Americas in 2015–2016 [1] and its
association with severe congenital effects in pregnant women infected with the virus. The
congenital ZIKV syndrome is characterized by neurological and neuropsychomotor com-
plications, ophthalmological and hearing problems, craniofacial disproportion, epilepsy,
cerebral palsy and microcephaly [2]. In adults, ZIKV can cause the Guillain-Barre syn-
drome [3]. Recently, researchers suggested that ZIKV strains with enhanced transmissibility
and pathogenicity can reemerge [4].

ZIKV is constituted by a single-strand negative RNA which encodes three structural
proteins, membrane (M), envelope (E) and capsid protein (C), arranged on a lipidic mem-

Pharmaceuticals 2022, 15, 1493. https://doi.org/10.3390/ph15121493 https://www.mdpi.com/journal/pharmaceuticals

https://doi.org/10.3390/ph15121493
https://doi.org/10.3390/ph15121493
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0001-6894-9077
https://orcid.org/0000-0003-0878-9029
https://orcid.org/0000-0003-1798-8994
https://orcid.org/0000-0001-9654-0957
https://orcid.org/0000-0001-7750-4045
https://orcid.org/0000-0002-2663-5173
https://orcid.org/0000-0002-1309-8743
https://orcid.org/0000-0002-7187-0818
https://orcid.org/0000-0003-2719-0302
https://orcid.org/0000-0002-6348-7923
https://orcid.org/0000-0003-0101-1492
https://doi.org/10.3390/ph15121493
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph15121493?type=check_update&version=1


Pharmaceuticals 2022, 15, 1493 2 of 17

brane, and seven non-structural (NS) proteins: NS1, NS2A, NS2B, NS3, NS4A, NS4B and
NS5 [5]. Among the NS proteins, the NS5 RNA-dependent RNA-polymerase (RdRp) is an
essential protein, catalyzing the replication of viral RNA from the RNA template [6], and
has been considered a promising target for ZIKV drug discovery.

The nucleoside and nucleotide inhibitors (NI) of RdRp bind to the catalytic and RNA
binding sites [7], whereas the non-nucleosides inhibitors (NNI) bind to the N-pocket
(allosteric site) [8]. The NI antiviral drug sofosbuvir has been successfully used against
Hepatitis C virus (HCV) and depends on the activation by host kinases [9]. Sofosbuvir was
also tested against ZIKV RdRp presenting an IC50 value of 0.38 ± 0.03 µM [10].

Computer-Assisted Drug Design (CADD) [11] techniques rationally promote the dis-
covery, prioritization and optimization of drug candidates, using computational resources,
such as databases, algorithms, programs and web servers. Compared to experimental
approaches, such as high-throughput screening (HTS), computational techniques have
been shown to be faster and presented higher success rates [12].

The present study aimed to discover new potential ZIKV NS5 RdRp inhibitors guided
by computational and experimental approaches. DENV and ZIKV NS5 RdRp primary
and tertiary sequences share high similarities. Due to this fact, DENV NS5 RdRp known
inhibitors were used to search for new potential ZIKV NS5 RdRp hits. Docking calcu-
lations were performed to prioritize virtual hits, and enzymatic assays validated these
computational predictions, showing that pedalitin and quercetin, two natural compounds,
inhibited ZIKV NS5 RdRp. Moreover, both hits presented anti-ZIKV activity in in vitro
antiviral assays, with low cytotoxicity. These results demonstrate that integrated in silico
and in vitro approaches can be used to accelerate the discovery of new ZIKV antiviral
candidates.

2. Results and Discussion

A general workflow of the computational and experimental steps applied in this study
is presented in Figure 1.
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Figure 1. General workflow applied in this work to identify of ZIKV NS5 RdRp inhibitors: (1) con-
servation analysis of ZIKV NS5 RdRp; (2) collection of compounds with experimental data against
DENV and ZIKV RdRp in the PubChem database; (3) similarity analysis between known RdRp
inhibitors and in-house collection of untested compounds available on the Laboratory of Antibiotics
and Chemotherapeutics (LAC); (4) molecular docking of prioritized compounds at the ZIKV NS5
RdRp N-pocket binding site; (5) enzymatic and (6) cellular assays.
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2.1. Binding Site Conservation Analysis

The binding-site conservation can provide an invaluable resource to understanding
the affinity and binding mode of small molecules between homologs. In theory, proteins
sharing a high similarity have the probability of sharing the same ligands [13]. Here, we
employed the ConSurf analysis [14–16] to predict the evolutionary conservation profile
of ZIKV RdRp amino acids based on the phylogenetic relations between homologous
sequences such as DENV RdRp. All the polymerases resemble a right hand, with the
three main regions (Figure 2a): fingers (residues 321–488 and 542–608), palm (residues
489–541 and 609–714), and thumb (residues 715–903). The RdRp domain is composed of
three binding sites: the RNA site, the N-pocket (allosteric site) and the catalytic binding
site [7,8,17]. The RNA site is a tunnel that single-stranded RNA enters and serves as a
template for the formation of double-stranded RNA. The N-pocket is a tunnel through
which the nucleotides enter. At this site, the initiation loop regulates template RNA binding
and nucleotide entry. Finally, the catalytic site performs double-stranded RNA catalysis [18].
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Figure 2. Structural analysis of RdRp proteins from ZIKV (PDB ID: 6LD4) and DENV (PDB ID: 5I3Q).
(a) Cartoon backbone diagram showing the front, side and back views of ZIKV RdRp. The fingers,
thumb and palm domains are colored in magenta, cyan and green, respectively. (b) ConSurf analysis
of ZIKV RdRp and corresponding N-pocket site. The magenta color indicates high conservation while
white and turquoise colors indicate average and very low conservation, respectively. (c) Structural
overlap of ZIKV and DENV N-pocket sites. ZIKV and DENV residues are colored in cyan and
gray, respectively.

Although the DENV and ZIKV RdRp proteins show 64.59% of sequential identity,
the evolutionary analysis of viral RdRps shows that ZIKV N-pocket is highly conserved
(Figure 2b). These results suggest that the amino acid composition of the N-pocket is
strongly associated with its structural and functional importance. As we can see in Figure 2c,
all DENV (highlighted in gray, PDB ID: 5I3Q [18]) and ZIKV (highlighted in cyan, PDB
ID: 6LD4 [19]) N-pocket residues are conserved, except for Leu767 in ZIKV, replaced by
Met765 in DENV RdRp. It is important to point out that these two amino acids share similar
volumes and electronic properties, and thus should not promote significative changes in
the binding of small molecules to the N-pocket. The high conservation state of N-pockets
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corroborates with a high probability of ZIKV and DENV RdRps to share the same ligands.
Based on these findings, an unsupervised cheminformatics approach using known DEV
RdRp inhibitors was performed to find ZIKV RdRp hits from an in-house collection of
natural and semi-synthetic compounds.

2.2. Chemical Space Analysis of RdRp Inhibitors

A chemical space analysis was conducted in order to select compounds from our in-
house library that are similar to known RdRp inhibitors. Therefore, we compiled a dataset
of known DENV RdRp inhibitors from PubChem and the literature. In total, 94 com-
pounds were obtained from several bioassays on PubChem AID: 441537 [20], 642356 [21],
663478 [22], 1277364 [23], 1301573 [24], 1401288 [25], 1401306 [25], 1497239 [26], 1655471 [27],
1674514 [28], 1728708 [29] and 30 compounds were manually collected from published
studies [17,20,21,23,25,27,28,30–41], providing a dataset of 124 DENV RdRp inhibitors. The
in-house dataset from the Laboratory of Antibiotics and Chemotherapeutics (LAC), at São
Paulo State University (UNESP), presents 77 natural and semi-synthetic compounds was
merged to the publicly available dataset and a chemical space analysis was conducted
using the dimensionality reduction method t-Distributed Stochastic Neighbor Embedding
(t-SNE) [42].

As shown in the t-SNE plot (Figure 3A), 24 compounds from the in-house collection
share the same chemical space of the known NS5 RdRp inhibitors. Most of them belong
to the classes of acridones, diphenylamines, and flavonoids (Figure 3B). In view of this,
these compounds were prioritized for molecular docking to assess their binding modes
in ZIKV RdRp protein [19]. Since the scaffolds of the compounds are different from the
nucleoside-like structure, the analysis was focused on the N-pocket site.
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Figure 3. t-SNE plot showing the chemical space of known DENV RdRp inhibitors and our in-house
database of natural and semi-synthetic compounds. (A) DENV RdRp inhibitors collected from the
literature and PubChem are shown in blue circles. The in house natural and semi-synthetic database
compounds are represented in red. (B) 2D structures of the main scaffolds found in each cluster.

2.3. Docking Calculations at the ZIKV NS5 RdRp (N-Pocket)

The prioritized compounds from chemical space analysis were submitted to docking
calculations to rank the most promising hits as well as to predict the binding affinities. All
docking poses were analyzed according to the following parameters: (i) docking score
and intermolecular interactions at the N-pocket binding site; (ii) overlap and binding
mode similarity with the ZIKV RdRp NNI co-crystallized ligand 5-(3-fluorothiophen-2-yl)-
2-hydroxy-4-methoxy-N-[4-(trifluoromethyl)benzenesulfonyl]benzamide and (iii) ligand
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efficiency. The redocking of the co-crystallized ligand was performed to verify the accuracy
of the docking protocol in predicting the position of the ligands within the binding site
(Supplementary Figure S2). Redocking also gives us a reference value of the docking score
to consider in the compounds’ priorization. The redocked pose showed an RMSD value of
0.84 Å and a docking score value of −8.73 Kcal·mol−1.

Almost all ligands presented acceptable docking scores, close to the redocking score
of the co-crystalized compound (docking score −8.73 Kcal·mol−1). Moreover, analyzing
the binding modes and interactions, 16 ligands were prioritized for in vitro experimental
validation. Thirteen of them had similar binding modes with the known ZIKV RdRp NNI.
From them, 12 compounds presented ligand efficiency (LE) greater than 0.3 Kcal·mol−1·non-
hydrogen atom−1. LE is value that normalizes the binding affinity (∆G) or docking score
with respect to the number of non-hydrogen atoms (n) [43–45]. The normalization of
molecular weights influences the likelihood that a hit compound can be further optimized
into prospective hit-to-lead investigations, as larger compounds tend to show greater
docking scores due to the larger number of interactions [46,47].

A medicinal chemistry-based inspection was conducted [47,48], considering favorable
scores for a higher number of hydrogen bonds between ligand and protein residues; salt
bridges; π-cation and π-stacking interactions; and unfavorable scores for nonpolar regions
of the ligand exposed to solvent. After this inspection, nine compounds were prioritized
for the experimental evaluation (Table 1).

Four out of the nine virtual hits are naturally-occurring flavonoids (chrysin (6), sorb-
ifolin (7), pedalitin (8) and quercetin (9)). Flavonoids have already been described in the
literature as inhibitors of the RdRp domains of DENV and ZIKV [49]. Three compounds
belong to the class of acridones, a class already described by some authors due to their
antiviral activity and capability of inhibition of DNA and RNA viruses [50,51]. A potent ac-
tivity of N-substituted acridones has already been demonstrated against DENV-2, blocking
its multiplication in vitro [52]. ARORA and coworkers [53] demonstrated that compounds
containing the diphenylamine subunit were able to inhibit the RdRp domain of DENV
including the compound bis-chloro-diphenylamine, 2-aminoindan-2-carboxyl derivative
NITD-434 (13) (Figure 4) that interacts with residues Thr795 and Thr796 of the N-pocket
site. Three of the nine hits are diphenylamines.

RdRp inhibitors have been classified as NI and NNI. The NIs present a structural simi-
larity to nucleosides and have to be converted into triphosphate forms by host kinases to be
incorporated into viral DNA or RNA, acting as chain terminators [54]. On the other hand,
the NNIs interact directly with viral polymerase and present different scaffolds, such as
flavonoids, alkaloids, acetylenic acids, terpenes, steroids, benzothiazine 2,2-dioxide analogs,
pyrazole-5-phenylamine analogs, thiophene-based analogs, N-sulfonylpyrazoles and N-
sulfonylanthranilic acids, thiazolidinone-thiadiazole and pyridobenzothiazole analogs [49].
NNIs act into the RdRp allosteric site and, in general, display fewer side effects since they
are more selective for viral than host polymerase targets [55]. Among the DENV NNIs,
there are natural products including flavonoids 10, 11 and 12 (Figure 4). Furthermore,
another DENV RdRp NNI, the bis-chloro-diphenylamine, 2-aminoindan-2-carboxyl deriva-
tive compound (13) or NITD-434 (Figure 4), occupies the template RNA site and performs
interactions with conserved residues between the four serotypes of DENV and ZIKV [53].
The synthetic co-crystallized DENV RdRp NNIs acylsulfonamide derivatives compounds
(14) and (15) [8] (Figure 4), occupy the N-pocket site and had IC50 values ranging from
0.172 to 5.46 µM for compound 14 and 0.023 to 0.427 µM for compound 15 [10,56]. Among
the ZIKV NNIs, there are few natural compounds such as chalcones and alkaloids, as well
as synthetic compounds undecylenic acid compound 17 (Figure 4) and thienylcarbonyl-
piperazinyl-benzothiophene (TBP), compound 16 (Figure 4) that act to inhibit ZIKV NS5
RdRp [57].
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Table 1. Virtual hits prioritized based on the computational approaches.

Compound Structure Chemical Class Docking Score
(Kcal·mol−1)

LE * (Kcal·mol−1·Non-Hydrogen
Atom−1)

1
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Recently, the flavonoids luteolin and quercetin were tested against severe acute respi-
ratory syndrome coronavirus 2 (SARS-CoV-2) RdRp and presented IC50s values of 4.6 µM
and 6.9 µM, respectively [58]. The authors also performed docking and molecular dynamic
simulations of both ligands at the N-pocket and RNA binding sites, suggesting that they
may properly bind to both sites.
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Figure 4. DENV and ZIKV RdRp known inhibitors and their respective IC50 values
at RdRp: (10) podocarpusflavone A [31]; (11) chartaceone D [21]; (12) rhamnetin [30];
(13) bis-chloro-diphenylamine, 2-aminoindan-2-carboxyl derivative [49]; (14) 5-(5-(3-Hydroxyprop-
1-yn-1-yl)thiophen-2-yl)-2,4-dimethoxy-N-((3-methoxyphenyl)sulfonyl)benzamide [8]; (15) 5-(5-(3-
Hydroxyprop-1-yn-1-yl)thiophen-2-yl)-4-methoxy-2-methyl-N-(quinolin-8-ylsulfonyl)benzamide [24];
(16) TPB [57]; (17) undecylenic acid [38]. Flavones (18) baicalein [59–61] and (19) baicalin [59] with
antiviral activity (EC50) against several flaviviruses.
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2.4. Pedalitin and Quercetin Inhibits ZIKV RdRp Activity

Nine prioritized hits were submitted to endpoint assay at 20 µM to verify their in-
hibitory activity against ZIKV RdRp. Most of the compounds evaluated did not obtain
significant inhibition results. Pedalitin and quercetin were the only ones with activity
greater than 80%, with inhibitory activity of 97% and 99%, respectively, and consequently
were selected for the concentration-response assays.

We then investigated ZIKV RdRp activity in the presence of pedalitin and quercetin.
A concentration-response assay was performed at concentrations ranging from 80 µM
to 0.156 µM to determine the inhibitory concentration of 50% (IC50). From this range
of concentrations, it was determined that pedalitin and quercetin had IC50 values of
4.1 ± 0.3 µM and 0.5 ± 0.1 µM, respectively (Supplementary Figure S1). The enzymatic
activities obtained are in agreement with those described for other flavonoids, as shown in
Figure 4.

2.5. Pedalitin and Quercetin Binding Modes Predicted by Docking

From the enzymatic data, the two flavonoids pedalitin and quercetin were high-
lighted as promising ZIKV RdRp inhibitors. In Figure 5A,B we show the binding mode
of quercetin and pedalitin, predicted by our docking calculations. Quercetin presented
four interactions highlighted with an asterisk (*) (Figure 5A), that are the same interactions
performed by the co-crystallized 5-(3-fluorothiophen-2-yl)-2-hydroxy-4-methoxy-N-[4-
(trifluoromethyl)benzenesulfonyl]benzamide compound. These interactions are hydrogen
bonds with residues Ser712, Arg731, Trp797, Ser798 and Asp666 (catalytic triad residue). In
the same way, pedalitin presented four hydrogen bonds, with Ser712, Ser798, Trp797 and
Thr796 and a cation–π interaction with the residue Arg731. Moreover, it also interacts with
Asp666 via a hydrogen bond.
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Figure 5. Docking poses of (A) quercetin (carbon atoms in pink sticks representation) and (B) pedalitin
(carbon atoms in orange sticks) at the N-pocket of ZIKV RdRp. Hydrogen bonds are represented
as green dotted lines and cation–π interactions in yellow dotted lines. The interactions of residues
highlighted with an asterisk (*) are the same observed with the co-crystallized ligand.

The binding modes of the flavonoids quercetin and pedalitin predicted by docking
with ZIKV RdRp suggested a promising binding affinity with the allosteric binding site of
the protein, corroborating the enzymatic assays results.
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2.6. Pedalitin and Quercetin Inhibits ZIKV Replication In Vitro

The anti-ZIKV activities of the pedalitin and quercetin were further investigated
through the employment of Vero cells infected with ZIKV wild type (ZIKVBR) (Figure 6).
For this, a concentration-response assay was performed to determine the effective concen-
tration of 50% (EC50) and cytotoxicity of 50% (CC50), and to calculate the Selective Index
(SI = CC50/EC50). Vero cells were infected with ZIKVBR and simultaneously treated with
pedalitin or quercetin at concentrations ranging from 200 µM to 0.005 µM for 72 h when
viral replication rates were assessed (Figure 6). Cell viability analysis was performed in
parallel (Figure 6).
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) after 72 h.p.i.. Cellular viability was measured in parallel
using an MTT assay (indicated by •). Mean values of three independent experiments each measured
in quadruplicate including the standard deviation are shown.

From this range of concentrations, the treatment of ZIKV-infected cells with pedalitin
demonstrated an EC50 value of 19.28, CC50 value of 83.66, and SI value of 4.34, and quercetin
demonstrated an EC50 value of 17.74, CC50 value of 35.99, and SI value of 2.03 (Table 2).

Table 2. Summary of the computational and experimental results for the best two compounds found
in this study.

Compound Docking Score
(Kcal·mol−1)

IC50 ZIKV
RdRp (µM)

EC50 ZIKV
(µM) CC50 (µM) SI *

pedalitin −7.93 4.1 ± 0.3 19.28 83.66 4.34
quercetin −7.74 0.5 ± 0.1 17.74 35.99 2.03

* Selectivity index, SI = CC50/EC50.

Summarizing computational and experimental data (Table 2), both pedalitin and
quercetin bound to the N-pocket site of ZIKV RdRp, presenting good docking scores,
compared to the redocking calculations, and binding site interactions similar with the
co-crystalized ligand. Agreeing with docking calculations, enzymatic assays showed that
both flavonoids inhibited ZIKV RdRp activity. Moreover, infection assays demonstrated
that both compounds presented in vitro antiviral activity, and pedalitin presented a higher
selectivity index (SI), representing a more promising hit.

Other flavonoid compounds have already demonstrated anti-ZIKV effects on Vero
cells [62], such as the flavones baicalein (18) and baicalin (19) (Figure 4), which showed
an EC50 of 0.004 µM and 14 µM, respectively [59]. Baicalein was also tested against
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other flaviviruses, such as Japanese encephalitis virus (JEV) and DENV-2, displaying an
EC50 values of 27 ± 4 µM [52] and 55.1 µM, respectively [60,61]. Quercetin, identified
in our study, also demonstrated anti-viral activity against DENV-2 virus in the study of
Zandi and coworkers [63]. They used DENV-2 infected Vero cells and tested different
concentrations of quercetin. At a concentration of 165.4 µM, the replication was reduced
by 67%. Concentration-response curves were performed with administration after viral
adsorption to the cells, obtaining an EC50 value of 95.6 µM [63].

Alternatively, there is a crucial role in virus-host cell interactions that provide im-
portant targets for the development of non-specific acting antivirals [64]. Non-specific
antivirals can interfere with viral infection by acting on cellular signaling pathways or by
modulating the differentiation and function of several immune cells [65]. This antiviral
effect might contribute to a lower probability to develop viral resistance due to their re-
liance on host cell components [64]. Additionally, the intervention of virus-host interactions
can include a broader range of activity with the immune system, especially for unknown
emergent viral infections, where replication mechanisms are not elucidated [66].

Flavivirus polymerases have been reported to antagonize the interferon (IFN) signaling
pathway via numerous mechanisms, including STAT2 degradation, inhibition of RIG-I, and
suppression of IFNAR1 maturation [67–69]. Combating flavivirus infections by modulating
the signaling pathway could be a factor to improve the infection outcome. In this case,
non-specific antivirals are particularly desirable to be used combined with direct-acting
antivirals and prepare the scientific community for future epidemics [70].

3. Materials and Methods
3.1. Computational
3.1.1. DENV and ZIKV NS5 RdRp Similarity Analysis

The 3D structure of ZIKV NS5 RdRp (PDB ID: 6LD4 [19]) was submitted to the ConSurf
server [14–16] for estimating the evolutionary conservation of amino acids, based on their
phylogenetic relations with homologues. Initially, 150 homologue sequences were imported
from UNIREF-90 database [71]. The sequences with sequential identity <35% or >95%
were ignored. A multiple sequence alignment (MSA) of the homologous sequences was
built using the MAFFT-L-INS-I method [72] and the phylogenetic tree was built using the
neighbor-joining algorithm [73]. Position-specific conservation scores were then computed
using the empirical Bayesian method [74]. At the end of this analysis, the 3D structures
and FASTA sequences of ZIKV (PDB ID: 5I3Q [8]) and DENV (PDB ID: 6LD4 [19]) were
aligned using the PyMol v. 2.4 [75] and UniProt [76], respectively. The root-mean-square
deviation (RMSD) was calculated for the distances of the conserved residues.

3.1.2. Collection of DENV RdRp Inhibitors

Initially, a search was performed in PubChem [77–80] databases for inhibitors of
the NS5 RdRp of DENV. The activity IC50 threshold for component selection was 50 µM
defined by PubChem. The bioassays selected for RdRp data collection were: PubChem AID:
441537 [20], 642356 [21], 663478 [22], 1277364 [23], 1301573 [24], 1401288 [25], 1401306 [25],
1497239 [26], 1655471 [27], 1674514 [28] and 1728708 [29]. Moreover, RdRp inhibitors from
articles were manually collected from the literature [17,20,21,23,25,27,28,30–41] and added
to our database.

3.1.3. Chemical Space Analysis of RdRp Inhibitors

The chemical space of known DENV RdRp inhibitors and an in-house collection
of natural and semi-synthetic compounds was performed using t-Distributed Stochastic
Neighbor Embedding (t-SNE) [42]. The t-SNE dimensionality reduction was performed
using scikit-learn v. 1.0.2 [81] and extended connectivity fingerprints (ECFP6) with 2048 bits
available on RDkit package v. 2022.03.2 [82].
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3.1.4. Protein and Ligand Preparation

The 3D structure of ZIKV NS5 RdRp (PDB ID: 6LD4; resolution: 1.5 Å [19]) complexed
with the compound 5-(3-fluorothiophen-2-yl)-2-hydroxy-4-methoxy-N-[4-(trifluoromethyl)
benzenesulfonyl]benzamide was imported into Maestro workspace v.9.3 (Schrödinger, LCC,
New York, NY, USA, 2012) and processed using the Protein Preparation Wizard [83,84].
In this step, bond orders and formal charges were adjusted, while hydrogen atoms were
added to the protein. The protonation states (pKa) of polar amino acid residues were
predicted by the Epik program [85,86] at pH = 7.4 ± 0.5, whereas the OPLS-2005 force
field was used to minimize the energy of the 3D structure. In parallel, protonation states
and 3D geometric optimization of prioritized compounds were predicted using LigPrep
software [84,87] at pH = 7.4 ± 0.5.

3.1.5. Molecular Docking

Molecular docking studies were performed using the DockThor VS webserver [88,89].
The grid box was centered at the x, y, and z coordinates of the co-crystallized ligand
bound to the N-pocket site. The search algorithm precision mode was set up as the
standard configuration of genetic algorithm parameters, and the soft docking mode was
activated. At the end of the docking procedure, we used the PLIP server [90] to analyze the
intermolecular interaction patterns of the docking poses (hydrogen bonds, hydrophobic
interaction, cation-π, π-stacking, water and salt bridge interactions). Finally, the binding
mode of the ligands obtained was compared to that of co-crystallized ligand (PDB ID:
6LD4). Then, the Pymol software v. 2.4 [75] was used for visual inspection and to render
the pose images.

3.2. Experimental
3.2.1. Quercetin and Pedalitin

Quercetin and pedalitin were obtained from Pterogyne nitens, a medicinal Brazilian
tree, according to our previous phytochemical procedures [91].

3.2.2. Protein Cloning, Expression and Purification

ZIKV NS5 RdRp polymerase was cloned at pETTRX by the LIC method and expressed
and purified according to the protocol described in [92]. Briefly, NS5 RdRp polymerase was
expressed in ZYM 5052 auto-induction medium and purified in four steps: (i) a HisTrap
HP 5.0 mL with a Ni Sepharose resin (GE Healthcare, Sao Carlos, Brazil); (ii) a buffer
exchanged by dialysis and a concomitant TEV protease cleavage from 6His-TRX-tag; (iii) an
inverse HisTrap HP 5.0 mL to separate protein from 6His-TRX-tag and (iv) a size-exclusion
chromatography at a XK 16/60 Superdex 75 column (GE Healthcare, Sao Carlos, Brazil).

3.2.3. NS5 RdRp Activity Assays

ZIKV NS5-RdRp activity assays were performed as described by Fernandes and
coworkers [93]. The endpoint assays were performed at 20 µM, and the compounds that
inhibited more than 80% of activity in this assay were submitted to a concentration-response
test. The concentration-responses assays were performed as described in [94]. In all cases,
the percentage inhibition values were calculated based on a control reaction, containing
only DMSO in the same concentrations used for the tested compounds. The results were
analyzed and plotted using the GraphPad Prism v. 8.0 program [95].

3.3. Cell Culture

Vero cells were cultured in Dulbecco’s modified Eagle’s medium (DMEM; Sigma–
Aldrich, MO, USA) supplemented with 100 U/mL penicillin (Gibco Life Technologies,
Paisley, UK), 100 mg/mL streptomycin (Gibco Life Technologies, Paisley, UK), 1% (v/v)
non-essential amino acids (Gibco Life Technologies, Paisley, UK) and 10% (v/v) fetal bovine
serum (FBS; Hyclone, UT, USA) at 37 ◦C in a humidified 5% CO2 incubator.
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3.4. Virus Rescue and Titration

A wild-type ZIKV isolate from a clinical patient in Brazil (ZIKVBR, PA, Brazil) was
provided by the Evandro Chagas Institute in Belém, Pará [96]. The virus was amplified
employing Vero cells in a 175 cm2 flask. To determine viral titers, 1 × 104 Vero cells were
seeded in each of 24 wells plate 24 h prior to the infection. Cells were infected with 10-
fold serially dilutions of ZIKVBR for 1 h at 37 ◦C and then supplemented with medium
containing 1% penicillin, 1% streptomycin, 2% FBS and 1% carboxymethyl cellulose (CMC).
Infected cells were incubated for seven days in a humidified 5% CO2 incubator at 37 ◦C,
followed by fixation with 4% formaldehyde and staining with 0.5% violet crystal. The viral
foci were counted to determine viral titers which were expressed in plaque formation unit
per milliliters (PFU/mL).

3.5. Cell Viabillity

Cell viability was measured by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl
tetrazolium bromide] (Sigma–Aldrich) method. Vero cells were seeded in a 96-well plate
at a density of 5 × 103 cells per well and incubated overnight at 37 ◦C in a humidified
5% CO2 incubator. A drug-containing medium at concentrations ranging from 200 to
0.005 µM was added to the cell culture. After 72 h at 37 ◦C, the media was removed
and a solution containing MTT at the final concentration of 1 mg/mL was added to
each well and incubated for 30 min at 37 ◦C in a humidified 5% CO2 incubator, after
which media was replaced with 100 µL of DMSO to solubilize the formazan crystals.
Absorbance was measured by the optical density (OD) of each well at 490 nm, using a
spectrophotometer. Cell viability was calculated according to the equation (T/C) × 100%,
where T and C represent the mean optical density of the treated group and vehicle control
group, respectively. The cytotoxic concentration of 50% (CC50) was calculated using Graph
Pad Prism v. 8 [95].

3.6. Antiviral Assays

Vero cells were seeded at density of 5 × 103 cells per well into 96-well plates 24 h prior
to the infection. ZIKV-WTBR at a multiplicity of infection (MOI) of 0.1 and compound at
concentrations ranging from 200 to 0.005 µM were simultaneously added to cells. 72 h
post-infection (h.p.i.), cells were fixed with paraformaldehyde 4%, washed with PBS and
blocking buffer (BB) containing: 0.1% Triton X-100 (Vetec Labs, PR, BR), 0.2% bovine
albumin (BSA) and PBS for 30 min. Then, cells were incubated with primary rabbit
polyclonal anti-NS3 antibody diluted in BB for 1 h. Alexa Fluor 488 conjugated anti-rabbit
IgG was used as secondary antibody (Abcam, Cambridge, UK). Images were analyzed by
EVO cell imaging systems fluorescence microscopy (Thermo Fisher Scientific, OH, USA)
and foci of infection were counted. The antiviral activity was calculated according to the
equation (T/C) × 100%, where T and C represent the mean of the treated group and mean
of the last concentration, respectively. The effective concentration of 50% inhibition (EC50)
was calculated using Graph Pad Prism v. 8. The values of CC50 and EC50 were used to
calculate the selectivity index (SI = CC50/EC50).

4. Conclusions

Despite the severe neurological consequences caused by ZIKV infection, there is
still no antiviral for the treatment of ZIKV, and only a few ZIKV NS5 RdRp inhibitors
have been described in the literature. In our study, guided by known DENV NS5 RdRp
inhibitors, through binding site conservation and chemical space analysis as well as docking
calculations we prioritized and identified the flavonoids pedalitin and quercetin as new
inhibitors of ZIKV NS5 RdRp. Enzymatic assays reinforced the computational results,
and both compounds presented antiviral activity against ZIKV in infected cell cultures.
Therefore, quercetin and pedalitin may be promising candidates for hit-to-lead optimization,
boosting the discovery of new anti-ZIKV drug candidates.
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Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ph15121493/s1. Figure S1: ZIKV NS5 RdRp enzymatic assays.
Concentration-response curves adjusted with Hill to determine IC50± ∆ IC50 values for (A) pedalitin
and (B) quercetin. Figure S2: Superposition of the co-crystallized 5-(3-fluorothiophen-2-yl)-2-hydroxy-
4-methoxy-N-[4-(trifluoromethyl)benzenesulfonyl]benzamide compound in crystal (C atoms are
represented in blue) and the redocking pose (C atoms are represented in green) at the ZIKV NS5
RdRP structure (PDB ID 6LD4 [21]). Table S1: Docking results for all compounds selected by chemical
space analysis.
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