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Abstract: Fungal conditions affect a multitude of people worldwide, leading to increased hospitaliza-
tion and mortality rates, and the need for novel antifungals is emerging with the rise of resistance
and immunocompromised patients. Continuous use of azole drugs, which act by inhibiting the
fungal CYP51, involved in the synthesis of ergosterol, essential to the fungal cell membrane, has
enhanced the resistance and tolerance of some fungal strains to treatment, thereby limiting the arsenal
of available drugs. The goal of this review is to gather literature information on new promising
azole developments in clinical trials, with in vitro and in vivo results against fungal strains, and
complementary assays, such as toxicity, susceptibility assays, docking studies, among others. Several
molecules are reviewed as novel azole structures in clinical trials and with recent/imminent ap-
provals, as well as other innovative molecules with promising antifungal activity. Structure–activity
relationship (SAR) studies are displayed whenever possible. The azole moiety is brought over as a
privileged structure, with multiple different compounds emerging with distinct pharmacophores
and SAR. Particularly, 1,2,3-triazole natural product conjugates emerged in the last years, presenting
promising antifungal activity and a broad spectrum against various fungi.

Keywords: antifungal drugs; azoles; new developments

1. Introduction

Over the last few decades, fungal infections have been considered as a serious concern
to the population, with increasing incidence and resistance to the clinically available
drugs. Fungi-associated conditions affect more than a billion people worldwide, with
more than 150 million being severe, life-threatening conditions, leading to approximately
1.7 million deaths annually (according to a 2017 study) [1,2]. Fungal infections (mycoses)
might derive from opportunistic pathogens, such as Candida and Aspergillus species, the
most frequent invasive fungal infection (IFIs) agents, particularly in immunocompromised
patients. Dermatophytosis, superficial fungal infections, are also very common and difficult
to treat [3]. As the number of immunocompromised patients increases, especially during
the COVID-19 pandemic, so does the occurrence of opportunistic fungal-like diseases and
infections [4,5].

Although challenging, the search for new antifungal agents increased in the last few
years, due to the arise of resistance problems of fungi to the existing therapeutics, new
fungal strains and, as previously mentioned, the increased occurrence of fungal infections
in the past decades, leading to the approval of new antifungal drugs in 2021 and 2022 [1,6].
Nonetheless, there are still limited options and no breakthroughs in novel scaffolds with
three predominant classes in clinical: polyenes, echinocandins, and azoles, currently the
most utilized antifungal class [5,7,8]. Drug–drug interactions, associated toxicity, and
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tolerability issues, as well as previously mentioned problems, drove researchers to search
for new therapeutical antifungal agents with a broader spectrum, higher potency, improved
safety profile, and fungicidal activity [7,9].

Most used antifungal agents are included in the class of azoles. This family of com-
pounds has shown over the decades a vast range of applications in the treatment of fungal
infections and diseases, with increasing interest and use in the clinical setting. Therefore,
the development of new promising molecules with an azole scaffold has rapidly emerged
throughout the years [7,9]. In this review, new developments focusing on the azole anti-
fungal class of drugs will be discussed, highlighting emerging drug candidates with this
chemical scaffold. An historical perspective of antifungal azole drugs and their mechanism
of action will be introduced, and new approaches and clinical trial candidates will be
presented. When possible, structure–activity relationship (SAR) studies of these newly
synthesized compounds will be discussed.

2. History and the Evolution of Azoles

Azoles are five-membered heterocyclic and aromatic molecules containing at least
one nitrogen atom and two double bonds. Additionally, the ring can also have oxygen
or sulphur atoms conjugated on the heterocycle, generating different parent structures,
as exemplified in Figure 1. Pyrrole, the simplest azole, is also represented [10]. From the
azole rings shown, two of them represent major classes for antifungal drugs: imidazole
and triazole, which will be discussed later in this review.
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Figure 1. Chemical structure of pyrrole, the simplest azole, as well as azole rings containing nitrogen
only, nitrogen and oxygen, and nitrogen and sulphur [10,11].

Numerous and diverse synthetic approaches to obtain antifungal azoles have been
applied and will not be contemplated in this review. For details on the synthesis of azoles,
recent reviews can be consulted [12–16].

Benzimidazole (Figure 2) was the first azole described that presented antifungal
activity, by Woolley in 1944 [17]. However, it was not until 1958 that an azole antifungal
drug was developed, with the introduction of chlormidazole (Figure 2) to the market, which
set off the search for azole compounds for antifungal therapy [9]. Subsequently, new azoles
were developed, and three new antifungal azoles surfaced as topical agents: clotrimazole
and miconazole appeared in 1969 and econazole short after that, in 1974 (Figure 2). These set
of azole drugs, due to similar physiochemical properties and similar structure, containing
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an imidazole ring, are grouped as first generation imidazoles [9]. Ketoconazole was
introduced in 1981 and labelled as a second-generation imidazole (Figure 2). Unlike the
previous imidazoles, this compound was not limited to treat superficial mycoses, and it
was the first azole orally available to treat systemic fungal infections [18–20]. However,
ketoconazole presented several side effects, lack of effectiveness, low selectivity, and
recurrence of the fungal infections, which motivated the search for new azole derivatives
and, later, its removal from the market to treat systemic mycosis [9,19].
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The new class of triazole antifungal drugs (Figure 3) presented various advantages
over the previous used imidazoles, such as having suitable solubility, greater affinity to the
target fungal enzyme than to the human one and, therefore, higher selectivity and safety,
and a broader spectrum of action [18]. Terconazole was the first of this class to be marketed
and it belongs to the first generation of triazoles, as well as fluconazole, itraconazole,
and fosfluconazole, the latter being a prodrug of fluconazole developed to achieve higher
intravenous bolus administration than fluconazole. Fluconazole was approved in 1989 and
presented good pharmacokinetics (PK) and a broad spectrum of antifungal action. Due
to its safety profile, fluconazole rapidly replaced ketoconazole against various conditions.
However, resistance to this drug has emerged in the last few decades. Itraconazole also
presented a broad spectrum of action and decreased toxicity profile when compared to
ketoconazole [19]. Although this new class of antifungal drugs presented higher safety than
the imidazole drug ketoconazole, drug–drug interactions, toxicity, resistance problems,
and pharmacokinetic issues were still present, which represented limitations in the clinical
aspect [19].

To further improve PK, safety, to broaden the spectrum of antifungal activity, to pos-
sibly fight resistant strains and in attempt to obtain fungicidal activity for some species,
second generation triazoles emerged. Voriconazole was developed from fluconazole and
approved in 2002. Posaconazole, an analog of itraconazole with a wide range of antifun-
gal activity was approved in 2006. Ravuconazole, a derivative of fluconazole, displayed
a broad spectrum of antifungal activity and higher potency than fluconazole, which is
promising against fluconazole-resistant strains. A prodrug of ravuconazole, fosravucona-
zole bis(L-lysine), was developed and approved in 2018 in Japan. Other second generation
triazoles include albaconazole, efinaconazole, and isavuconazole (structures not shown
here) [8,9,19,21]. Currently, there are about 23 antifungal azoles in the market, with clotri-
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mazole, ketoconazole, miconazole, fluconazole, itraconazole, and voriconazole being the
most used ones [22].
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3. Mechanism of Action of Azole Antifungals

Although there are several mechanisms disclosed for antifungal action, among azole
drugs all share a common mechanism of action. Antifungal azoles act by targeting the
fungal cell membrane, affecting the synthesis of ergosterol. Ergosterol is a mammalian
cholesterol derivative, and it is a fundamental component of the fungal cell membrane.
Moreover, ergosterol acts as a stimulator of growth and proliferation in fungal cells, due to
its hormone-like role. This function could be impaired if ergosterol is depleted and replaced
with uncommon sterols [3,9,18].

Azoles inhibit the lanosterol 14-α-demethylase (or CYP51), a fungal cytochrome
P450-dependent enzyme responsible for the transformation of lanosterol in 14-demethyl
lanosterol in the ergosterol biosynthetic pathway. CYP51 catalyzes the conversion of
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the 14-α-methyl group on lanosterol to 14-α-hydroxymethyl and, posteriorly, to 14-α-
carboxyaldehyde. This group is released as formic acid, and leads to the introduction of a
double bond between C-14 and C-15 (Figure 4) [8]. By inhibition of this enzyme, the levels
of lanosterol and 14-α-methylsterols increase and the levels of ergosterol decrease. This
results in an alteration of the normal permeability and fluidity of the fungal cell membrane,
which will lead to consequences to the activity of membrane-bound enzymes and inhibition
of growth and replication of fungal cells [18–20]. In some fungal species, azoles can also in-
hibit the subsequent ∆22-desaturase step [23]. Additionally, against Candida species, azoles,
such as voriconazole and miconazole, presented fungicidal activity, the latter associated
with the accumulation of reactive oxygen species (ROS) in biofilm cells [24].
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sion of lanosterol to 14α-demethyl lanosterol (Adapted from Peyton, 2015) [8,23].

The CYP51 enzyme presents a protoporphyrin moiety, with an iron atom situated
at the active site, to which the azole antifungals bind through one of the nitrogen atoms
located on the azole ring. Depending on the remaining structure, other interactions with
the target molecule are established, which will determine the target and azole conformation,
as well as the affinity and selectivity for the fungal enzyme. As previously mentioned, the
earlier series of azole antifungals bearing an imidazole ring were replaced with a triazole
ring, which presented higher specificity to the fungal cytochrome P450 and better safety
profile [19,23]. This enzyme also catalyzes the synthesis of cholesterol in mammals. For
an antifungal to be efficient and safe, it must demonstrate higher affinity (and, therefore,
higher specificity) to the fungal CYP51 instead of the mammalian one [18]. Inhibition of
other enzymes of the cytochrome P450 involved in the biosynthesis of cholesterol can result
in toxicity and drug–drug interactions, resulting in less than ideal selectivity for the fungal
enzyme [19]. A visual representation for the interaction of fluconazole, a known triazole
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antifungal, and VT-1161, a novel tetrazole antifungal agent, with the active site of CYP51 is
shown in Figure 5.
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Figure 5. (a) Representation of the interaction of fluconazole (in green), a known triazole antifun-
gal drug, with the heme group (in red) in the active site of CYP51 from Saccharomyces cerevisiae;
(b) Representation of the interaction of VT-1161 (in green), a tetrazole antifungal agent, with the heme
group (in red) in the active site of CYP51 from Candida albicans. ChemBio3D was used to visualize
(PDB 4WMZ and PDB 5TZ, respectively) [25,26].

4. New Antifungal Azoles in Research and Development

Continuous use of azoles may cause resistance problems (acquired resistance), which
can be correlated with mutations on the target enzyme, namely of the genes that encode
CYP51, increased expression of these genes, or overexpressed efflux by membrane pumps
(that will expel the drug from the cell) [23,27,28]. Moreover, some fungal strains might
be intrinsically resistant, both by weak affinity of the drug to the target molecule and/or
enhanced efflux [27]. Additionally, widespread use of antifungal agents in the prophylaxis
or treatment of IFIs has led to the development of clinical resistance, which represents
a burden to researchers due to its undetectable nature in in vitro susceptibility testing
and in vivo animal models [29]. Therefore, due to their relevance in the clinic, a continu-
ous investigation to improve azoles efficacy to overcome drug resistance with optimized
derivatives and even new approaches of hybridization is being followed.

4.1. Azoles in Clinical Trials
4.1.1. Luliconazole

Luliconazole, or NND-502 (1, Figure 6), is a novel vinyl-imidazole antifungal agent of
topical use and a follow-up candidate of lanoconazole (2, Figure 6), an imidazole compound
with a ketene dithioacetal moiety which has shown antifungal activity against a variety of
fungal strains as the R-enantiomer (with stronger potency than the racemate). Similarly, the
structurally related R-enantiomer of luliconazole (1) displayed higher antifungal potency
than the racemic compound, and stronger activity than lanoconazole (2) [30].
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Phase Identifier Title Condition(s) Status Ref. 

4 
NCT02394340 

Study evaluating the drug interaction potential of lulicona-
zole cream 1% in participants with tinea pedis and tinea 

cruris 

Tinea pedis 
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Luliconazole (1) was tested using the broth microdilution method to measure the
antifungal activity against Trichophyton species, using lanoconazole (2) as standard and
expressing the obtained results in MIC, the minimal concentration required to inhibit fungal
growth. In this study, luliconazole (1) presented lower concentrations of MIC (ranging
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from 0.0018 to 0.056 µM) than lanoconazole (2) (MIC values from 0.0041 to 0.125 µM),
therefore demonstrating its antifungal potential. To evaluate the in vivo activity of this
compound, Niwano et al. utilized the guinea pig model, and the compound and standard
drugs were applied topically. When compared to the standard drugs used, luliconazole (1)
presented promising results and strong antifungal activity, since all infected guinea pigs
feet became fungus-free (although the standards presented high antifungal potency, results
for luliconazole (1) were stronger and therefore making it an optimal drug candidate). It is
important to note the fungicidal activity of this compound 1, which makes it an interesting
antifungal agent [31].

Antifungal activity against Candida albicans and Aspergillus fumigatus was also tested
in vitro using the broth microdilution method and in vivo using murine models and com-
pared to the standards fluconazole and itraconazole. Against C. albicans, luliconazole (1)
displayed lower concentrations of MIC (ranging from 0.087 to 0.706 µM) than fluconazole
(MIC values ranging from 0.42 to 1.63 µM), which demonstrated higher antifungal potency.
Against A. fumigatus, luliconazole (1) demonstrated MIC values of≤0.00087 µM, lower than
those of itraconazole (MIC ~ 0.00089 µM). In vivo studies revealed that oral luliconazole (1)
was less promising in terms of increasing survival rates of mice than fluconazole against
C. albicans, and that against A. fumigatus opposite results were observed, as luliconazole
(1) revealed to prolongate the survival when compared to the standards fluconazole and
itraconazole. Due to the observed results, additional in vivo studies using a rat model were
performed and were in accordance with in vitro results for the Aspergillus strain, making
this compound an interesting oral antifungal agent for the treatment of aspergillosis [32].

Luliconazole (1) formulated as a 1% cream was firstly approved in Japan in 2005,
following its approval in India in 2009 and in the United States in 2013 for the treatment of
tinea infections. Clinical trials for luliconazole (1) are presented in Table 1 [30]. In the future,
clinical trials to treat Candida infections would be beneficial to support in vitro studies and
broaden the clinical spectrum of this promising antifungal agent.

Table 1. Clinical trials for luliconazole (1) (summarized).

Phase Identifier Title Condition(s) Status Ref.

4

NCT02394340
Study evaluating the drug interaction potential
of luliconazole cream 1% in participants with

tinea pedis and tinea cruris

Tinea pedis
Tinea cruris Completed [33]

NCT02767271
Maximal use of luliconazole cream 1% in

pediatric participants with moderate to severe
tinea pedis or tinea cruris

Tinea pedis
Tinea cruris Completed [34]

4 NCT02767947
Safety and efficacy of product 33525

(luliconazole cream 1%) in pediatric participants
with tinea corporis

Tinea corporis Completed [35]

2, 3 NCT01431820
Safety and efficacy of luliconazole solution, 10%

in subjects with mild to moderate
onychomycosis (solution)

Distal and lateral
subungual

onychomycosis
Completed [36]

2 NCT00869336 Multicenter study of the efficacy and safety of
luliconazole cream in tinea pedis (athlete’s foot) Tinea pedis Completed [37]

1, 2 NCT01044381
Open-label pharmacokinetics/safety study of

luliconazole solution, 10% in distal
subungual onychomycosis

Onychomycosis Completed [38]

1 NCT05110638

Safety and tolerability study of SKX-16
(luliconazole 10% solution) in subjects with

moderate to severe distal
subungual onychomycosis

Onychomycosis
of toenail

Active, not
recruiting [39]
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4.1.2. Isavuconazole

Isavuconazole, or BAL4815 (3, Figure 7), a 2nd generation triazole antifungal drug,
was approved in 2015 in the United States to treat mucormycosis and invasive aspergillosis.
Ever since then, this azole agent has been used in the prophylaxis of IFIs and to treat
infections caused by other fungal strains due to its broad spectrum of action, which has been
demonstrated by several studies. This compound is administered orally or by intravenous
route as isavuconazonium sulfate, a prodrug that releases isavuconazole (3) in vivo and
has a high volume of distribution and bioavailability [40].
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Isavuconazoles’ antifungal activity against Candida, Aspergillus, Mucorales, Fusarium,
and Scedosporium has been studied. When tested against Aspergillus species, isavuconazole (3)
presented promising antifungal results, with MIC values similar/comparable to those of
voriconazole [41]. Additionally, when tested against azole-resistant Aspergillus lentulus,
isavuconazole (3) displayed promising activity [42]. Against Mucorales species, which was
little susceptible to the standard voriconazole, isavuconazole (3) displayed little antifungal
activity. Moreover, isavuconazole (3) revealed moderate activities against Fusarium and
Scedosporium species and displayed comparable activity to the standards fluconazole,
voriconazole and itraconazole against Candida species, being efficient even to fluconazole-
resistant Candida krusei [41,43]. Further investigation on the in vitro antifungal activity of
isavuconazole (3) should be performed for Fusarium, Scedosporium, and Mucorales species,
to confirm the obtained results.

In terms of in vivo results, a phase 3 clinical trial (NCT00412893, Table 2), with pub-
lished results in 2016, studied the efficacy and safety of isavuconazole (3) in comparison to
voriconazole, in patients with suspected invasive aspergillosis [43]. Both azoles demon-
strated similar, successful results, with isavuconazole (3) causing fewer side effects than
voriconazole [43]. Similar effects were found by Bongomin et al. in 2019, when the same
drugs were assessed for the treatment of chronic pulmonary aspergillosis and adverse
effects were compared [44]. As previously mentioned, the use of isavuconazole (3) was
approved for the treatment of mucormycosis, which is a fungal disease with high mortality
rates and little treatment options. Prior to the approval, a phase 3 study (NCT00634049,
Table 2) was performed with the purpose of assessing the efficacy and safety against in-
vasive aspergillosis and rare disease-causing fungi such as Mucorales. When comparing
the effects of isavuconazole (3) and amphotericin B against patients with mucormycosis,
similar responses were obtained, with isavuconazole (3) presenting high tolerability and ef-
fectiveness [45]. Other studies confirmed these findings [40]. Intravenous isavuconazole (3)
was tested in a phase 3 clinical trial (NCT00413218, Table 2) vs. intravenous caspofungin
followed by the testing of oral isavuconazole (3) vs. oral voriconazole for the treatment of
invasive candidiasis, which is a growing disease, causing hospitalizations and mortality in
patients. Patients with candidemia or invasive candidiasis received the intravenous drugs
for 10 days, with successful outcomes for both the tested drugs. When followed by the
oral drugs, the use of isavuconazole (3) presented higher success than voriconazole, which
represents promising results for the use of this triazole for the treatment of candidiasis [46].
Isavuconazole (3) has an extensive list of clinical trials, some of which are still active, ongo-
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ing, and which will not be discussed. Additional information about animal and clinical
data can be found in recent literature [47].

Table 2. Mentioned clinical trials for isavuconazole (3) (summarized).

Phase Identifier Title Condition(s) Status Ref.

3

NCT00412893 Isavuconazole (BAL8557) for primary
treatment of invasive aspergillosis

Aspergillosis
Invasive fungal

infections
Completed [48]

NCT00634049 Isavuconazole in the treatment of renally
impaired aspergillosis and rare fungi (vital)

Aspergillosis
Invasive fungal

infections
Completed [49]

NCT00413218
Isavuconazole (BAL8557) in the treatment

of candidemia and other invasive
Candida infections

Candidiasis, invasive
Candidemia

Mycoses
Completed [50]

4.1.3. SUBA-Itraconazole

SUBA (“super-bioavailability”)-itraconazole is an orally administered azole, which ap-
peared to improve the bioavailability and interpatient variability of the existing antifungal
drug, itraconazole [51].

In a phase 3 study to assess the safety and tolerability of SUBA-itraconazole when
used in IFI prophylaxis (NCT03572049, Table 3), patients receiving stem cell transplants
were treated with the tested compound vs. the conventional itraconazole. Resulting data
showed that the novel formulation led to faster achievement of therapeutic levels, with less
variability, no gastrointestinal toxicity and, therefore, higher tolerability and safety profile
and increased bioavailability. Moreover, it is thought to be more cost-effective, due to
decreased dosing regimens. Further testing is necessary to prove these results with a larger
population and compared to other used drugs in the treatment of IFI prophylaxis [52].
SUBA-itraconazole was approved in the United States by the Food and Drug Adminis-
tration (FDA) for the treatment of blastomycosis, histoplasmosis, and aspergillosis (when
treatment with amphotericin B is not possible) [53].

Table 3. Clinical trial for SUBA-itraconazole (summarized).

Phase Identifier Title Condition(s) Status Ref.

3 NCT03572049 Endemic mycoses treatment with
SUBA-itraconazole vs itraconazole (MSG15)

Invasive fungal
infections Completed [54]

4.1.4. Iodiconazole

Iodiconazole (4, Figure 8) is a novel triazole antifungal agent in research, which has
demonstrated a broad spectrum of antifungal activity and particular interest against As-
pergillus species [55]. In 2013, Sun et al. tested iodiconazole (4) for in vitro activity against
different fungi using the broth microdilution method, and additional in vivo studies were
performed to assess PK and correlate with pharmacodynamics data. In order to assess the
PK properties of this compound 4, microdialysis was performed in rats following the deter-
mination of the relative recovery (Rin vivo) and before the administration of iodiconazole
(4). In terms of pharmacodynamics data, MIC values were calculated in vitro using several
azole agents as standards (fluconazole, itraconazole, ketoconazole, and miconazole). By
analyzing the obtained results, iodiconazole (4) demonstrated promising results against
C. albicans, Candida parapsilosis, Nannizzia gypsea, Microsporum canis, Trichophyton violaceum,
Trichophyton mentagrophytes, and Epidermophyton floccosum, with MIC values ranging from
<0.129 to 0.258 µM, lower than those presented for the standard drugs, meaning stronger
antifungal potency against these fungal strains [56].
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Recently, in 2021, iodiconazole (4) was tested in vivo as a topical agent to treat super-
ficial fungal infections, to assess PK properties, dose-response after one dosage and the
bioavailability of different formulations (1%, 2%, and 4%) using the tape-stripping method
in healthy human volunteers. The results from this study were consistent with previous
in vivo studies performed by Wu et al. and will be useful for future research and use of the
tested formulations of topical iodiconazole (4) [55].

Iodiconazole (4) was used as the lead for the design of novel bioisosteric triazole
molecules in order to improve its low oral bioavailability and water solubility. The phenyl
ring on the side chain was replaced with other heterocycles synthesizing a new series of
triazole molecules and attempting to create an oral agent with improved PK properties. The
antifungal activity of the compounds was assessed using the broth microdilution method
against C. albicans, Candida tropicalis, Cryptococcus neoformans, Trichophyton rubrum, and
A. fumigatus, using fluconazole as standard and displayed results as MIC80, defined by the
authors as the concentration needed to inhibit 80% of fungal growth. Compound 5 (Figure 9)
was the most promising of the compounds derived from iodiconazole (4) against C. albicans,
with a MIC80 value of 0.179 µM, lower than the standard (MIC80 = 0.816 µM). When tested
against C. tropicalis, all tested compounds were promising and with MIC values lower
than fluconazole (MIC80 = 13.06 µM). From the series, compound 5 presented the strongest
antifungal activity with a MIC80 = 0.046 µM. Except for compound 6 (Figure 9), the tested
molecules presented stronger antifungal activity than the standard fluconazole (MIC80 val-
ues ranging from 0.044 to 0.696 µM vs. 6.53 µM for fluconazole) against C. neoformans, with
compound 7 (Figure 9) being the strongest one (MIC80 = 0.044 µM). Against A. fumigatus,
to which fluconazole is inactive, compound 7 demonstrated promising antifungal potential
(MIC80 = 44 µM) and compound 5 showed moderate activity (MIC80 = 184 µM). Lastly,
against T. rubrum, none of the compounds demonstrated promising antifungal activity [57].
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From the obtained results, the authors concluded that compound 5 demonstrated the
most promising results and that the furan heterocycle in this compound was favorable
for the antifungal potential. Moreover, other substituents, such as thiophene (7) and
pyridine rings, were also favorable for the activity and preferred to the benzimidazole (6)
and quinoline groups. In addition, LogP values of the series of compounds showed
to be adequate for new antifungal oral agents and docking studies were performed for
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compound 5, which indicated that the heterocyclic substitution maintained the binding
activity of the molecules to the targets’ active site [57].

4.1.5. Albaconazole

Albaconazole (8, Figure 10) is a 2nd generation triazole with a quinazolinone scaffold
in its structure, orally administrated and with a broad spectrum of action [5]. A phase 2
study was completed to evaluate the efficacy and safety of oral albaconazole (8) for the
treatment of onychomycosis of the toenail (NCT00730405, Table 4). Results showed that
albaconazole (8) was efficient, with higher success than placebo, and proved this compound
to have high cure rates and good tolerability, being an alternative for terbinafine and
itraconazole treatments [58].

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 11 of 45 
 

 

From the obtained results, the authors concluded that compound 5 demonstrated the 
most promising results and that the furan heterocycle in this compound was favorable for 
the antifungal potential. Moreover, other substituents, such as thiophene (7) and pyridine 
rings, were also favorable for the activity and preferred to the benzimidazole (6) and quin-
oline groups. In addition, LogP values of the series of compounds showed to be adequate 
for new antifungal oral agents and docking studies were performed for compound 5, 
which indicated that the heterocyclic substitution maintained the binding activity of the 
molecules to the targets’ active site [57]. 

4.1.5. Albaconazole 
Albaconazole (8, Figure 10) is a 2nd generation triazole with a quinazolinone scaffold 

in its structure, orally administrated and with a broad spectrum of action [5]. A phase 2 
study was completed to evaluate the efficacy and safety of oral albaconazole (8) for the 
treatment of onychomycosis of the toenail (NCT00730405, Table 4). Results showed that 
albaconazole (8) was efficient, with higher success than placebo, and proved this com-
pound to have high cure rates and good tolerability, being an alternative for terbinafine 
and itraconazole treatments [58]. 

N
OH

N
N

F

F
8

N

N

O

Cl

 
Figure 10. Chemical structure of albaconazole (8) [5]. 

Table 4. Clinical trials for albaconazole (8) (summarized). 

Phase Identifier Title Condition(s) Status Ref. 

2 NCT00730405 
Efficacy and safety study of 4 dose regimens of oral alba-

conazole in subjects with distal subungual onychomycosis 
Onychomycosis Completed [59] 

In 2013, Jiang et al. designed novel triazole molecules (9–14, Figure 11) derived from 
the antifungal drug albaconazole (8) by bioisosterically replacing the phenyl ring on the 
side chain for heterocyclic rings. The goal of this substitution was to create orally available 
antifungal agents with appropriate PK. The antifungal activity of this new series of com-
pounds was studied using the broth microdilution method against C. albicans, C. tropicalis, 
C. neoformans, T. rubrum, and A. fumigatus, using fluconazole as standard. When tested 
against C. albicans, compound 9 presented the lowest MIC80 value (0.034 µM), while com-
pounds 10, 11, and 12 showed MIC80 values of 0.149, 0.151, and 0.138 µM, respectively 
(higher antifungal potential than fluconazole, with MIC80 = 0.816 µM). All tested com-
pounds demonstrated promising antifungal activity against C. tropicalis, with MIC80 val-
ues ranging from 0.009 to 2.41 µM vs. MIC80 = 13.06 µM for the standard. The whole series 
showed promising antifungal potential against C. neoformans and T. rubrum (MIC80 values 
ranging from 0.016 to 2.4 µM), except for 13 against C. neoformans (MIC80 = 35.3 µM) and 
10 and 13 against T. rubrum (MIC80 = 9.5 and 141.1 µM, respectively). Compound 9 showed 
the highest antifungal potential of the series against these strains, with MIC80 values of 
0.034 and 0.133 µM against C. neoformans and T. rubrum, respectively. Against A. fumiga-
tus, to which fluconazole is intrinsically resistant, compound 12 and 14 showed excellent 
antifungal activity (MIC80 = 0.55 and 4.3 µM, respectively). The remaining compounds 
demonstrated promising activity, except for 13. From the results obtained, it was con-
cluded that compounds 9 and 12 were the most promising ones, with a broad spectrum 

Figure 10. Chemical structure of albaconazole (8) [5].

Table 4. Clinical trials for albaconazole (8) (summarized).

Phase Identifier Title Condition(s) Status Ref.

2 NCT00730405
Efficacy and safety study of 4 dose

regimens of oral albaconazole in subjects
with distal subungual onychomycosis

Onychomycosis Completed [59]

In 2013, Jiang et al. designed novel triazole molecules (9–14, Figure 11) derived from
the antifungal drug albaconazole (8) by bioisosterically replacing the phenyl ring on the
side chain for heterocyclic rings. The goal of this substitution was to create orally available
antifungal agents with appropriate PK. The antifungal activity of this new series of com-
pounds was studied using the broth microdilution method against C. albicans, C. tropicalis,
C. neoformans, T. rubrum, and A. fumigatus, using fluconazole as standard. When tested
against C. albicans, compound 9 presented the lowest MIC80 value (0.034 µM), while com-
pounds 10, 11, and 12 showed MIC80 values of 0.149, 0.151, and 0.138 µM, respectively
(higher antifungal potential than fluconazole, with MIC80 = 0.816 µM). All tested com-
pounds demonstrated promising antifungal activity against C. tropicalis, with MIC80 values
ranging from 0.009 to 2.41 µM vs. MIC80 = 13.06 µM for the standard. The whole series
showed promising antifungal potential against C. neoformans and T. rubrum (MIC80 values
ranging from 0.016 to 2.4 µM), except for 13 against C. neoformans (MIC80 = 35.3 µM) and
10 and 13 against T. rubrum (MIC80 = 9.5 and 141.1 µM, respectively). Compound 9 showed
the highest antifungal potential of the series against these strains, with MIC80 values of
0.034 and 0.133 µM against C. neoformans and T. rubrum, respectively. Against A. fumiga-
tus, to which fluconazole is intrinsically resistant, compound 12 and 14 showed excellent
antifungal activity (MIC80 = 0.55 and 4.3 µM, respectively). The remaining compounds
demonstrated promising activity, except for 13. From the results obtained, it was concluded
that compounds 9 and 12 were the most promising ones, with a broad spectrum of activity
on the tested fungal strains. The isomers of compound 9 were studied and it was noted
that the (−)-isomer presented higher antifungal activity than the (+)-isomer. Additionally,
SAR studies revealed that benzoxazole (12) and benzothiazole (9) were favorable for the
antifungal activity, while benzimidazole (13) resulted in a decrease of antifungal potency.
Docking studies of compound 9 demonstrated that the substitution did not affect the



Pharmaceuticals 2022, 15, 1427 12 of 43

potency of the binding to the CYP51 target, although it was a different interaction than
albaconazole (8), the lead structure. This compound was also evaluated for PK properties
using an in vivo study with rats using iodiconazole (4) as standard, which revealed better
oral absorption, meaning that the goal of the design was successful. Further evaluations
are necessary to confirm these results [57].
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In 2020, novel triazole compounds were designed based on albaconazole (8) and
tested using the broth microdilution method against C. albicans, C. neoformans, A. fumigatus,
and N. gypsea. All tested compounds showed good activity against the tested strains,
with particular interest regarding the activity of some compounds against A. fumigatus.
Compound 15 (Figure 12) presented promising results against all fungal species assessed,
with MIC values ranging from 0.036 to 0.58 µM (comparable to albaconazole (8), with MIC
ranging from 0.036 to 2.3 µM) [60].
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zole (8) [60].

Selected compounds from the series (structures not shown) were tested against two
fluconazole-resistant strains of C. albicans. Compound 15 displayed promising antifungal
activity (MIC = 18.5 and 4.6 µM), with comparable results to albaconazole (8) (MIC = 18.5
and 9.3 µM). SAR studies revealed that substitutions at the C-7 were favorable for the anti-
fungal potency, when compared to substitutions at C-5, C-6, and C-8. From the substitutions
at C-7, halogen groups presented higher antifungal activities than electron-withdrawing
substituents such as nitro and trifluoromethyl. Compound 15, with a chlorine substituent
at C-7, was the most promising of the series tested. Docking studies performed with com-
pound 15 to the active site of CYP51 in C. albicans and A. fumigatus revealed similar binding
interactions for both strains, but further investigation is needed for lead optimization [60].
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4.1.6. PC945

Compound PC945 (16, Figure 13) is a novel antifungal agent, with a triazole scaffold
and characteristics that allow nasal administration. It has been demonstrated that this
new triazole molecule has potent antifungal potential. PC945 (16) presented a broad
spectrum of activity against azole-susceptible and resistant strains of A. fumigatus, with
MIC values from 0.047 to 11.72 µM, lower/comparable to voriconazole (MIC from 0.183 to
11.45 µM) and comparable to posaconazole (MIC from 0.023 to 2.85 µM). Against C. albicans,
Candida glabrata, and C. krusei, this compound showed strong inhibition of fungal growth,
with MIC values ranging from 0.119 to 12.08 µM (stronger than voriconazole, with MIC
values from 0.4 to 28.6 µM, and comparable to posaconazole, with MIC values from 0.116
to 11.6 µM). When tested against C. neoformans, PC945 (16) presented equal antifungal
potential that voriconazole and posaconazole (MIC = 0.023 µM vs. MIC = 0.023 µM to the
standards), and against Cryptococcus gattii the antifungal activity was similar to voriconazole
and posaconazole (MIC = 0.37 µM vs. MIC = 0.359 and 0.713 µM to voriconazole and
posaconazole, respectively). Other strains were tested but with minor results [61].
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Additionally, an in vitro model of human alveolus was used to study the synergic effect
of PC945 (16) and posaconazole or voriconazole against azole-susceptible and resistant
A. fumigatus strains. Results showed that combination of the known triazoles with the novel
antifungal agent was beneficial to the antifungal activity when compared to the use of the
drugs alone [63]. PC945 (16) has been tested as an intranasal administration in vivo using
biomarkers in mice, infected with A. fumigatus and using posaconazole and voriconazole as
standards. Fungal susceptibility tests were performed and revealed the high susceptibility
of the used A. fumigatus strain to PC945 (16), equal to that of posaconazole, and higher
than voriconazole. Results from the intranasal administration of the drugs in mice revealed
the high antifungal potential of PC945 (16), which inhibited infection successfully and to a
larger scale than the standards [64].

Nonclinical and clinical PK properties and the results of a phase 1 clinical trial
(NCT02715570, Table 5) for patients with pulmonary aspergillosis, assessing safety and
tolerability of this novel triazole agent, were posted recently in 2021. Study results revealed
appropriate PK properties, with good drug delivery to the lungs, minimizing side effects,
drug–drug interactions, enhancing the local efficacy and rapid absorption to the systemic
circulation. In vivo results in humans were concordant with the nonclinical results [65].
The clinical trials available for PC945 (16) are summarized in Table 5.

Table 5. Clinical trials of PC945 (16) (summarized).

Phase Identifier Title Condition(s) Status Ref.

3 NCT05238116

Safety and efficacy of PC945 in combination
with other antifungal therapy for the

treatment of refractory invasive
pulmonary aspergillosis

Refractory IPA Recruiting [66]
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Table 5. Cont.

Phase Identifier Title Condition(s) Status Ref.

2

NCT03905447
The effect of early treatment of PC945 on

Aspergillus fumigatus lung infection in lung
transplant patients

Aspergillosis
Lung transplant infection Terminated [67]

NCT03870841 The effect of PC945 on Aspergillus fumigatus
lung infection in patients with cystic fibrosis

Aspergillosis
Cystic fibrosis Terminated [68]

NCT05037851
PC945 prophylaxis or pre-emptive therapy

against pulmonary aspergillosis in lung
transplant recipients

Pulmonary aspergillosis Recruiting [69]

NCT03745196
The effect of PC945 on Aspergillus or Candida

lung infections in patients with asthma or
chronic respiratory diseases

Asthma
Respiratory candidiasis

Respiratory aspergillosis
COPD

Bronchiectasis

Terminated [70]

1 NCT02715570
A study to investigate the safety, tolerability
and pharmacokinetics of single and repeat

doses of PC945
Aspergillosis Completed [71]

4.1.7. Tetrazole-Pyridine Hybrids

Hoekstra et al., in 2014, designed and synthesized a series of tetrazole-pyridine hybrids,
searching for new, more selective antifungal azoles. The compounds were then tested for
in vitro antifungal activity against C. albicans and T. rubrum, and for selectivity for the
fungal CYP51. All compounds presented good antifungal activity, with MIC values from
≤0.0019 to 0.0076 µM (compared to the standard drug itraconazole, with MIC values of
0.023 and 0.088 µM against C. albicans and T. rubrum, respectively). Compounds 17 and
18 (Figure 14), which presented high in vitro safety, and high selectivity against the fungal
enzyme CYP51, proceeded to several more studies [72].
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itraconazole, and voriconazole). Oteseconazole (17) showed a strong bound to the fungal 
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Compound VT-1161, or oteseconazole (17, Figure 14), is a tetrazole-pyridine hybrid
that has shown promising results in antifungal therapy. In 2014, Warrilow et al. tested
its antifungal potential against C. albicans (specifically, its potency and selectivity to the
fungal CYP51, when compared to the human enzyme), using an array of techniques, includ-
ing the broth microdilution method, and four standard drugs (clotrimazole, fluconazole,
itraconazole, and voriconazole). Oteseconazole (17) showed a strong bound to the fungal
CYP51, with a dissociation constant (Kd) ≤39 nM, comparable to the standards used (Kd
ranging from 10 to 56 nM). Considering the human CYP51, oteseconazole (17) displayed
no visible binding at the concentration of 86 µM. This is an important observation since
binding studies to the human CYP51 are essential to study the drug selectivity and so low
toxicity was found. This selectivity study was performed since high antifungal potential
was previously demonstrated. When tested for antifungal activity, compound 17 presented
great results, with MIC values of 0.0038 µM (compared with MIC ranging from 0.011 to
3.27 µM for fluconazole and voriconazole). According to the obtained results, otesecona-
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zole (17) displayed high selectivity and affinity against the fungal CYP51, which makes this
compound 17 a promising antifungal azole for the treatment of C. albicans infections [73].

In a 2015 study by Garvey et al., the efficacy of oteseconazole (17) was tested against
C. albicans strains, both fluconazole-sensitive and fluconazole-resistant. In vitro and in vivo
studies were performed, the latter using the murine model for vaginal candidiasis. This
compound demonstrated potent inhibition of the fungal enzyme CYP51 for C. albicans
and demonstrated adequate potency, safety profile, and adequate PK, as well as in vitro
activity against resistant strains. Furthermore, it also demonstrated efficacy in the used
animal model, which reinforces its promising activity as an antifungal agent [74]. In the
same year, Shubitz et al. also demonstrated the efficacy of oteseconazole (17) for the treat-
ment of coccidiodomycosis, by testing the compound in vitro against Coccidioides immitis
and Coccidioides posadasii and, posteriorly, using the in vivo murine model. The in vitro
assay revealed that oteseconazole (17) had high antifungal potency against the tested
strains, with MIC values from 1.9 to 7.6 µM (compared to the standard drug, fluconazole,
with MIC = 13–52 µM). Although the compound also showing good in vivo results, no
clinical trials were performed to this date using oteseconazole (17) for the treatment of
coccidiodomycosis [75]. It was also noted that oteseconazole (17) was more potent than
fluconazole against most species of Candida and against various strains of Cryptococcus
neoformans var. grubii and C. gattii. In the treatment of recurrent vulvovaginal candidiasis
(RVVC), oteseconazole (17) may be an alternative to fluconazole, revealing to have high
efficacy and tolerability for this condition [76].

Clinical trial results of a phase 2 study for the treatment of RVVC (NCT02267382, Table 6)
were published in 2018 and revealed successful antifungal efficacy of oteseconazole (17). This
compound demonstrated good tolerability, minimal and moderate side effects (compa-
rable to the placebo), and recurrence rates up to 0%. In these studies, oteseconazole (17)
also showed concordance with in vitro studies, and good PK properties, which make this
compound an optimal drug candidate for the treatment of RVVC as a better alternative to
fluconazole. In addition, this compound has been granted “qualified infectious disease
product” (QIDP) and fast track designations from the FDA for the treatment of RVVC. Up
until now, fluconazole was used, since there were no better alternatives and no approved
drugs for this condition. However, oteseconazole (17) was approved in 2022 for the treat-
ment of RVVC and with particular interest to women with RVVC that present resistance,
allergy, or intolerance to fluconazole or even that experience drug–drug interactions due to
simultaneous use of other medication [76–79].

In 2021, two clinical trial results were published: a phase 2 clinical trial for the treat-
ment of onychomycosis of the toenail (NCT02267356, Table 6) [80] and a phase 2 clinical
trial for the treatment of acute vulvovaginal candidiasis (VVC) (NCT01891331, Table 6) [81].
Onychomycosis is a chronic fungal disease which affects mostly elderly people, with lim-
ited treatment options. Adverse effects of oral drugs, limited effectiveness of topical drugs,
and the risk of drug–drug interactions represent some setbacks for the arsenal of therapeu-
tical drugs to treat this disease. Clinical trial data revealed that the oral oteseconazole (17)
had promising antifungal activity, with complete cure rates significantly higher than the
placebo and similar efficacy to that of terbinafine. Oteseconazole (17) is, therefore, a
new treatment option with high antifungal potency and observed adequate safety and
tolerability windows (which are thought to be linked to the tetrazole scaffold). Further
evaluation to confirm the therapeutic effect on a larger scale should be performed [80].
Oral oteseconazole (17) was tested against fluconazole, the standard, for the treatment of
moderate and severe VVC, a common antifungal disease in women with limited treatment
due to resistance problems, drug–drug interactions, and low safety profiles. Efficacy results
of oteseconazole (17) were similar to those of fluconazole, except for the reoccurrence of
the disease, to which oteseconazole (17) had more successful results: no mycological recur-
rence was observed for this antifungal azole. Additionally, oteseconazole (17) presented
higher safety margins and tolerability profile than fluconazole, which makes it a promising
therapeutical agent for the treatment of this conditions. However, additional studies should
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be performed in a larger sample group to confirm the obtained data [80]. Oteseconazole (17)
has completed six clinical trials for different conditions, which are summarized in Table 6.

Compound VT-1129, or quilseconazole (18, Figure 14), is a tetrazole-pyridine hybrid
derived from oteseconazole (17). Similar to oteseconazole (17), this compound was studied
against fungal CYP51 (in this case, using Cryptococcus species) and human CYP51. Not
only did the compound display high affinity for the fungal enzyme, with Kd ranging from
14 to 25 nM (comparable to the standard drugs fluconazole, voriconazole, itraconazole,
clotrimazole, and ketoconazole, with Kd ranging from 4 to 52 nM), but also demonstrated
high selectivity for the fungal enzyme (Kd = 4.53 µM for human CYP51). Moreover,
studies against Cryptococcus strains demonstrated that quilseconazole (18) was an effective
antifungal agent, with MIC90 of 0.117 µM against several C. neoformans isolates and MIC90
of 0.487 µM against various C. gatti isolates (higher potency that fluconazole). Therefore,
this compound shows promising antifungal results against this species [82].

Lockhart et al. also tested quilseconazole (18) antifungal activity against various
C. neoformans and C. gattii isolates. Compound 18 displayed high antifungal potential,
presenting MIC values from ≤0.029 to 3.9 µM and ≤0.029 to 7.8 µM for 50% and 100% of
inhibition of fungal growth, respectively (lower than those of fluconazole for 50% inhibition,
with MIC ranging from 0.82 to <209 µM) against C. neoformans. Against C. gattii, good
antifungal potential was observed, with MIC values from ≤0.029 to 1.9 µM and 0.12 to
<15.6 µM for 50% and 100% of inhibition of fungal growth, respectively. Further, the authors
noted that quilseconazole (18) was also active against strains with reduced susceptibility to
fluconazole [83].

In 2018, Wiederhold et al. assayed in vivo the antifungal efficacy of quilseconazole (18)
for the treatment of cryptococcal meningitis, using murine models. The administration of
this compound to the mice, infected with C. neoformans, lead to an increase survival rate
(when compared to control mice) and to a reduction of colony-forming units (CFU) in the
brain tissue (in comparison to control mice), which did not occur when fluconazole was
administered. Although promising results against this condition, further testing needs to
be performed against fungal strains with reduced susceptibility for azole antifungals [84].
Furthermore, quilseconazole (18) has been tested in vivo for the treatment of cryptococcal
meningitis in mice, using the murine model. Results showed high efficacy in increasing
survival rates and reducing the fungal burden in C. neoformans-infected mice. However,
the use of immunocompromised mice and a susceptible fungal strain is a limitation, and
further studies are necessary to further support the obtained data [85]. Quilseconazole
(18) has completed a clinical trial and has been granted QIDP, fast track, and orphan drug
designations from the FDA, for the treatment of cryptococcal meningitis [86].

Compound VT-1598 (19, Figure 15) is a next generation tetrazole hybrid, with a broad
spectrum against yeasts, endemic fungi, and molds, including Candida auris and Aspergillus
species. It has received QIDP, fast track and orphan drug designation by the FDA for the
treatment of coccidioidomycosis. Additionally, in vivo studies using the murine model
have demonstrated the antifungal activity of VT-1598 against invasive aspergillosis and
are an important base for future studies [62,87]. Information about clinical trials of this
compound is presented in Table 6.
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Table 6. Clinical trials for VT-1161 (17) and VT-1598 (19) (summarized).

Drug Phase Identifier Title Condition(s) Status Ref.

Oteseconazole
(17)

3

NCT03562156;
NCT03561701

A study of oral oteseconazole
for the treatment of patients

with recurrent vaginal
candidiasis (yeast
infection) (violet)

Recurrent
Vaginal

Candidiasis
Completed [88,89]

NCT03840616

Study of oral oteseconazole
(VT-1161) for acute yeast

infections in patients with
recurrent yeast

infections (ultraviolet)

Recurrent
vaginal

candidiasis
Completed [90]

2

NCT02267382

A study to evaluate oral
VT-1161 in the treatment of

patients with recurrent vaginal
candidiasis (yeast infection)

Recurrent
vaginal

candidiasis
Completed [77,91]

NCT02267356

A study to evaluate the
efficacy and safety of oral
VT-1161 in patients with

onychomycosis of the toenail

Onychomycosis Completed [92]

NCT01891331

A study to evaluate the
efficacy and safety of oral

VT-1161 in patients with acute
vaginal candidiasis

(yeast infection)

Candidiasis,
vulvovaginal Completed [93]

NCT01891305

A study to evaluate the
efficacy and safety of oral
VT-1161 in patients with

moderate—severe interdigital
tinea pedis

Tinea pedis Completed [94]

VT-1598 (19) 1 NCT04208321 Safety and pharmacokinetics
of VT-1598 Coccidioidomycosis Completed [95]

4.2. New Molecules with a Traditional Azole Pharmacophore
4.2.1. New Triazoles

Inspired in 2nd generation antifungal azoles, Wang et al. designed novel triazole
molecules, combining the triazole ring with a hydroxyl substituent, a difluorophenyl group
and a piperazine containing side chain (Figure 16). The compounds’ antifungal activity was
tested against two strains of C. albicans, C. parapsilosis, C. neoformans, C. glabrata, A. fumigatus,
T. rubrum, and N. gypsea using the broth microdilution method. The therapeutical antifungal
drugs itraconazole, fluconazole, and voriconazole were used as standards, and results were
presented as MIC80. Generally, the tested compounds were not effective against C. glabrata
(MIC80 values from 8 to >126 µM) and A. fumigatus (MIC80 > 126 µM), presented moderate
activity against T. rubrum (MIC80 from 1.7 to 30.8 µM), good to moderate activity against
N. gypsea, C. parapsilosis, and C. neoformans (MIC80 values ranging from 0.5 to 31.2 µM) and
showed good to high antifungal activity against both strains of C. albicans (MIC80 from 0.44
to 30.8 µM, with the exception of one compound). To sum, some of the tested compounds
displayed promising antifungal potential and could be further evaluated [96].



Pharmaceuticals 2022, 15, 1427 18 of 43Pharmaceuticals 2022, 15, x FOR PEER REVIEW 18 of 45 
 

 

N
N

N

N
N

N
N NF

F

OH

R

Halogens, methyl, 
cyanide and nitro 
groups at different 

positions

 
Figure 16. Chemical structure of the tested triazole compounds [96]. 

New triazole compounds were developed by replacing the 1,2,4-triazol-1-yl group in 
fluconazole with a 4-amino-3-mercapto-1,2,4-triazole moiety (Figure 17). This series of 
compounds was tested using the broth microdilution method against four strains of C. 
albicans, C. parapsilosis, C. neoformans, E. floccosum, and T. mentagrophytes, using fluconazole 
as standard. Compound 21a (Figure 17) presented the highest antifungal potential, with 
MIC values ranging from 3.8 to 120 µM against all tested fungi (fluconazole with MIC 
values ranging from 0.82 to 52.2 µM for all tested strains, except for T. mentagrophytes, to 
which it was inactive in this study). Additionally, the authors concluded that the dichlo-
rophenylethyl-triazole structure (21) is preferred for antifungal activity over the difluoro- 
(20) [97]. 

HO

S
N

N

N

X

X

N

N
N

NH2

R

20: X = F
21: X = Cl
      21a: R = 2,4-Cl2-Ph

Increased antifungal activity
for chlorine substituents in the phenyl

ring, especially for 21a substitution

 
Figure 17. Scaffold for the difluoro- (20) and dichloro- (21) phenylethyl-triazole series, as well as the 
structure for compound 21a and respective SAR [97]. 

Later in 2014, a new series of triazole-piperidine compounds was designed, synthe-
sized, and tested for antifungal activity against a variety of fungi (C. albicans, C. neofor-
mans, C. parapsilosis, C. glabrata, A. fumigatus, T. rubrum, and N. gypsea) and using flucona-
zole and itraconazole as standards. Generally, the tested piperidine-containing triazoles 
22–29 (Figure 18) displayed good inhibitory activity against all tested strains, in particular 
for C. albicans and C. neoformans. Given the obtained results, the authors suggested that 
compounds 22 and 23, with butyrate and butyric acid, respectively, presented higher an-
tifungal potential than their analogs 24 and 25, with ethyl formate and formic acid groups, 
respectively. Moreover, the introduction of 4-acetyl (26) and 4-trifluoromethoxyl (27) to 
the phenyl ring of compound 28 resulted in increased antifungal activity against C. albi-
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and C. glabrata (Figure 18). Compounds with aromatic rings presented excellent antifungal 
activity and compounds 26, 27, and 29 were considered the most active compounds, and, 
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Figure 16. Chemical structure of the tested triazole compounds [96].

New triazole compounds were developed by replacing the 1,2,4-triazol-1-yl group
in fluconazole with a 4-amino-3-mercapto-1,2,4-triazole moiety (Figure 17). This series
of compounds was tested using the broth microdilution method against four strains of
C. albicans, C. parapsilosis, C. neoformans, E. floccosum, and T. mentagrophytes, using flucona-
zole as standard. Compound 21a (Figure 17) presented the highest antifungal potential,
with MIC values ranging from 3.8 to 120 µM against all tested fungi (fluconazole with
MIC values ranging from 0.82 to 52.2 µM for all tested strains, except for T. mentagro-
phytes, to which it was inactive in this study). Additionally, the authors concluded that
the dichlorophenylethyl-triazole structure (21) is preferred for antifungal activity over the
difluoro- (20) [97].
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Figure 17. Scaffold for the difluoro- (20) and dichloro- (21) phenylethyl-triazole series, as well as the
structure for compound 21a and respective SAR [97].

Later in 2014, a new series of triazole-piperidine compounds was designed, synthe-
sized, and tested for antifungal activity against a variety of fungi (C. albicans, C. neoformans,
C. parapsilosis, C. glabrata, A. fumigatus, T. rubrum, and N. gypsea) and using fluconazole
and itraconazole as standards. Generally, the tested piperidine-containing triazoles 22–29
(Figure 18) displayed good inhibitory activity against all tested strains, in particular for
C. albicans and C. neoformans. Given the obtained results, the authors suggested that com-
pounds 22 and 23, with butyrate and butyric acid, respectively, presented higher antifungal
potential than their analogs 24 and 25, with ethyl formate and formic acid groups, re-
spectively. Moreover, the introduction of 4-acetyl (26) and 4-trifluoromethoxyl (27) to the
phenyl ring of compound 28 resulted in increased antifungal activity against C. albicans
and introduction of 2-methyl (29) resulted in increased activity against C. parapsilosis and
C. glabrata (Figure 18). Compounds with aromatic rings presented excellent antifungal
activity and compounds 26, 27, and 29 were considered the most active compounds, and,
therefore, promising antifungal leads [98].
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of the compounds were assessed using the broth microdilution method as values of MIC80 
and fluconazole was used as standard. Compounds 33–35 (Figure 20) presented good in-
hibitory activity against all tested strains (C. albicans, C. parapsilosis, C. neoformans, C. gla-
brata, C. tropicalis, A. fumigatus, T. rubrum, and N. gypsea) and demonstrating particularly 
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Figure 18. Chemical structures for compounds 22–29, and respective SAR [98].

To enhance some properties of fluconazole, Mahmoudi et al. designed fluconazole
derived triazole alcohols, with a N-(halobenzyl)piperazine carbothioate side chain. The
new compounds were tested for their antifungal activity against C. albicans, C. glabrata,
C. parapsilosis, C. krusei, and C. tropicalis using the broth microdilution method. All tested
compounds presented great results against all tested strains, with MIC values comparable
or better than those of fluconazole. Compound 30 (Figure 19) displayed excellent results
(MIC values ranging from 0.11 to 0.86 µM against all tested fungi) when compared to
fluconazole (MIC values ranging from 1.6 to 13.1 µM). Against fluconazole-resistant strains,
30 also showed better results than fluconazole (MIC values from 3.4 to 27.6 µM, while
fluconazole was inactive) and compounds 31 and 32 (Figure 19) were also potent against all
resistant strains (MIC values ranging from 0.4 to 52 µM). Moreover, the authors concluded
that compounds substituted with two fluor substituents at C-2 and C-4 of the phenyl ring
were more favorable than their chlorine analogs (Figure 19). Since compound 30 presented
excellent results, it was also tested for toxicity against HepG2 cells and erythrocytes, where
it displayed minimal toxicity and favorable safety profile, revealing a promising structure
for antifungal activity [99].
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Figure 19. Chemical structures for compounds 30–32 and SAR for the phenyl ring [99].

In 2014, Wu et al. designed and synthesized a series of new fluconazole analogs,
utilizing a thiazolidinedione scaffold instead of one of its triazole rings. The antifungal
effects of the compounds were assessed using the broth microdilution method as values
of MIC80 and fluconazole was used as standard. Compounds 33–35 (Figure 20) presented
good inhibitory activity against all tested strains (C. albicans, C. parapsilosis, C. neoformans,
C. glabrata, C. tropicalis, A. fumigatus, T. rubrum, and N. gypsea) and demonstrating par-
ticularly high effect against C. albicans, with MIC80 values of 0.030, 0.15, and 0.15 µM,
respectively (MIC80 of fluconazole was 0.81 µM). Additionally, 34 and 35 presented ef-
fective values against four fluconazole-resistant isolates of C. albicans, with MIC80 values
ranging approximately from 18.50 to 148.01 µM for compound 34 and 37.00 to 74.00 µM
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for compound 35 (MIC80 values for fluconazole were >3343.35 µM for all tested isolates).
These values show that these triazole-thiazolidinedione hybrids are promising antifungal
leads [100].
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Figure 20. Chemical structures of triazole-thiazolidinedione hybrid compounds 33–35 [100].

The antimycotic 5-flucytosine is an agent utilized therapeutically in combination with
other antifungal drugs, including azoles, due to its narrow spectrum, weak antifungal
potential, and fast appearance of resistance mechanisms. As fluconazole has several good
proprieties, such as good oral bioavailability and absorption, strong antifungal activity,
broad spectrum, safety profile, and adequate PK, Fang et al. designed and synthesized new
5-flucytosine-fluconazole hybrids. Given that this combination of azoles with 5-flucytosine
presented great antifungal activities, the authors decided to come up with a new series
of hybrids, using the two different molecular scaffolds of 5-flucytosine and fluconazole,
and study their antifungal potential. The main goal of this study was to exploit a new
series of potential antifungal drugs, obtained to hopefully increase the spectrum of action
and avoid resistance problems and adverse effects [101]. The synthesized compounds
were tested for antifungal activity against C. albicans, C. parapsilosis, A. fumigatus, and
C. tropicalis, using the broth microdilution method and 5-flucytosine and fluconazole as
standards. The hybrid 36 (Figure 21) presented moderate to high antifungal potential (with
MIC values ranging from 40 to 170 µM) when compared to the drugs used as positive
controls, fluconazole and 5-flucytosine (with MIC values ranging from 3 to 1650 µM and
30 to 1980 µM, respectively). These values suggest that the hybridization was successful,
meaning it favored the antifungal activity [101].
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Upadhayaya et al. synthesized a variety of tetrazole-1,2,4-triazole hybrids and their 
respective positional isomers (Figure 22) in order to study their in vitro antifungal activity 
against C. albicans, C. tropicalis, C. parapsilosis, C. krusei, C. glabrata, C. neoformans, A. fumiga-
tus, and Aspergillus niger [102]. The method used for this study was the broth microdilu-
tion method, and the results for the antifungal activity were presented in MIC. The te-
trazole-triazole hybrid 39a, presenting a 3-trifluoromethyl on the phenyl ring of pipera-
zine showed broad and strong antifungal activity, with MIC values ranging from 0.21 to 
1.73 µM (when compared to the standard drugs fluconazole and itraconazole, with MIC 
values ranging from 0.4 to >26 µM and 0.01 to 0.7 µM, respectively, not concordant with 
literature results for fluconazole for A. fumigatus, to which it is normally inactive). The 
positional isomer of compound 39a, 40a, presented similar antifungal activity, with MIC 
values ranging from 0.43 to 1.73 µM. Both these positional isomers were more active than 
fluconazole against resistant fungal Candida species. Compounds 39b and 40b, which pre-
sented a 2-butoxy substituent on the phenyl ring also presented interesting activity 
against all tested strains, with MIC values ranging from 0.43 to 1.72 µM and 0.43 to 3.44 
µM, respectively (with the exception for both Aspergillus strains with values >13.8 µM 
values). By analyzing the results, it was concluded that these compounds behaved simi-
larly to the control drug itraconazole and with better MIC values than fluconazole against 
Candida strains. Compound 39c, with a 4-chloro substituent on the phenyl ring of pipera-
zine, also presented good MIC values (ranging from 0.92 to 3.68 µM) against tested Can-
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Thenceforth, structural modifications were made to compound 36 (mainly introduction
of alkyl and aryl groups) to illustrate SAR. Two new series of derivatives 37 and 38 were
synthesized, with the scaffold presented in Figure 21. The 37 series presented weak to no
antifungal activities, which led to the conclusion that the introduction of alkyl substituents
at that site was not beneficial for the activity. On the other hand, halobenzyl compounds (38)
showed lower values of MIC in comparison to the aryl series (37), which suggested that
this structural modification was useful in order to increase the antifungal potential. In
particular, compound 38a with a 3,4-dichlorobenzyl substituent presented the best MIC
values, ranging from 9 to 30 µM. In addition, 38a also presented good lipophilicity and
rapid fungicidal potential (assessed against C. albicans via time-kill kinetic assay), thus
being a promising scaffold for a new antifungal drug. In addition, docking, quantum
chemical, and computational studies were performed to assess the mechanism of action,
binding mode, and PK properties, which will not be discussed herein [101].

Upadhayaya et al. synthesized a variety of tetrazole-1,2,4-triazole hybrids and their
respective positional isomers (Figure 22) in order to study their in vitro antifungal activity
against C. albicans, C. tropicalis, C. parapsilosis, C. krusei, C. glabrata, C. neoformans, A. fumiga-
tus, and Aspergillus niger [102]. The method used for this study was the broth microdilution
method, and the results for the antifungal activity were presented in MIC. The tetrazole-
triazole hybrid 39a, presenting a 3-trifluoromethyl on the phenyl ring of piperazine showed
broad and strong antifungal activity, with MIC values ranging from 0.21 to 1.73 µM (when
compared to the standard drugs fluconazole and itraconazole, with MIC values ranging
from 0.4 to >26 µM and 0.01 to 0.7 µM, respectively, not concordant with literature results
for fluconazole for A. fumigatus, to which it is normally inactive). The positional isomer of
compound 39a, 40a, presented similar antifungal activity, with MIC values ranging from
0.43 to 1.73 µM. Both these positional isomers were more active than fluconazole against
resistant fungal Candida species. Compounds 39b and 40b, which presented a 2-butoxy
substituent on the phenyl ring also presented interesting activity against all tested strains,
with MIC values ranging from 0.43 to 1.72 µM and 0.43 to 3.44 µM, respectively (with the
exception for both Aspergillus strains with values >13.8 µM values). By analyzing the results,
it was concluded that these compounds behaved similarly to the control drug itraconazole
and with better MIC values than fluconazole against Candida strains. Compound 39c, with
a 4-chloro substituent on the phenyl ring of piperazine, also presented good MIC values
(ranging from 0.92 to 3.68 µM) against tested Candida strains. Its positional isomer, 40c,
showed similar results. Other substituents in R presented moderate activity (which was
the case for 4-nitrophenyl and 4-fluorophenyl), while some showed moderate to weak
antifungal activity (such as 2-methoxyphenyl and 3-chlorophenyl). The configuration of
the synthesized hybrids (2R,3S) was also important since it enhanced the activity when
compared to the non-optically active congeners. Given the data presented, compounds 39a
and 40a, with a trifluoromethyl group at C-3, were the most promising of the synthesized
hybrids, displaying broad spectrum of action and low values of MIC [102].
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4.2.2. Tetrazoles

In 2018, Qian and co-workers hybridized a tetrazole moiety with a 4-pyridinyl-1,2,4-
triazole-3-one moiety, resulting in a series of new compounds (Figure 23) [103]. The authors
synthesized various sets of compounds with different substitutions on the triazolone ring,
namely on the C-2 position, and studied their antifungal activities against two strains
of C. albicans, C. parapsilosis, C. glabrata, C. neoformans, and A. fumigatus. Firstly, the sub-
stituents were different hydroxyl chains, all of which proved to be inactive. Subsequently,
those side chains were replaced with aliphatic side chains, to improve the lipophilicity of
the hybrids. The substitution proved to be successful and resulted in a series of compounds
with good MIC80 values against Candida species and C. neoformans (which were superior
when compared to the standards fluconazole and VT-1161). From those compounds, 41
presented the best MIC80 values, ranging from 0.49 to 1.97 µM (except for A. fumigatus).
Following that, the authors concluded that the antifungal potential was enhanced with
the volume increase of those side chains and with lipophilicity increase. Additionally, it
was also noted that the lipophilicity ameliorated the compounds capacity to penetrate the
fungal membrane and the added volume would better fit the fungal CYP51 hydrophobic
pocket—both verified by supplementary docking studies. Considering these findings,
Qian et al. developed compounds with aromatic moieties with benzyl and pyridyl sub-
stituents, which presented inferior antifungal values of MIC80 to those of compound 41.
Bearing in mind previous results, compounds were synthesized with the introduction of
lipophilic and bulky alicyclic side chains. The antifungal potential of these compounds
increased continuously with the aliphatic ring size, until no further than six-membered
rings. Aliphatic rings with seven or eight carbon atoms revealed to decrease the activity in
comparison to smaller rings. Once again, these results were concomitant with the state-
ment that the antifungal potential was increased with suitable lipophilicity and volume
of the side chain. From this series of compounds synthesized, it is important to highlight
compound 42, which exhibited excellent MIC80 values ranging from 0.24 to 0.48 µM (except
for A. fumigatus), when compared to compound 41 and the standard drugs. Additionally,
41 and 42 presented good results against N. gypsea (with MIC80 values of 7.9 and 7.7 µM,
respectively), which was resistant to the reference drug VT-1161, and weak inhibition
against human CYP450s, which makes these promising compounds for further studies
with good selectivity and low probability of drug–drug interactions [103].
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Up to now, several azole antifungal compounds have been presented in this review.
Amongst these derivatives, a common pharmacophoric structure can be envisioned (Table 7,
entry 1). Many azole agents in development contain this main structure, such as isavu-
conazole (3), iodiconazole (4), and the tetrazole-pyridine hybrids (VT-1161, VT-1129 and
VT-1598), with different substituents at R and triazole or tetrazole rings at X. From var-
ious SAR studies and by analyzing the results of different studies with a large arsenal
of compounds, a compilation of enhancing features for the antifungal activity has been
summarized (Table 7). In some cases, chirality issues were taken into consideration since
enantiomers vs. racemates can produce different spectra of activity. In other cases, those
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studies were not taken into account and further testing should be performed to assess the
impact of chirality.

Table 7. Compilation of favorable substitutions and SAR for triazole and tetrazole molecules with a
traditional azole pharmacophore.
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4.3. Novel Derivatives with Azole Moieties Aside the Traditional Pharmacophore

Apart from this common scaffold, Subhedar et al. synthesized novel tetrazole-quinoline
hybrids, containing rhodanine, and studied them for their antifungal activity against
C. albicans, Aspergillus flavus, A. niger, C. neoformans, and Fusarium oxysporum. The com-
pounds generally presented weak to moderate antifungal activity, with MIC values ranging
from 76 to 454 µM against all tested strains. Compounds 43, 44, and 45 (Figure 24) where
the most promising ones, with MIC values similar to that of the standard drug, miconazole,
against C. albicans (MIC values of 65, 65, 63, and 60 µM, respectively). SAR studies demon-
strated that a shorter side chain (n = 1) was preferable than a longer one (n = 2) in terms
of the antifungal potential; also, the introduction of a carboxylic acid increased antifungal
activity against F. oxysporum, A. flavus, and C. albicans (when compared to the unsubstituted
analogs) (Figure 24). Additionally, in silico absorption, distribution, metabolism, and
excretion (ADME) prediction showed these hybrids present good ADME properties [104].
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Regarding the previous compounds, new hybrids were synthesized by Kategaonkar et al.
by replacing the rhodanine fragment with an ethoxy phosphonyl group [105]. These com-
pounds were tested against C. albicans and A. niger and demonstrated moderate antifungal
activity. Compound 46 (Figure 25) showed comparable activity to that of griseofulvin,
the standard drug (MIC value of 22 µM vs. 28 µM for griseofulvin) against C. albicans.
Compounds 47, 48, and 49 (Figure 25) also presented similar antifungal activity as griseo-
fulvin, with MIC value of 22, 22, and 21 µM, respectively (griseofulvin value of MIC was
28 µM) against A. niger. These results suggest that the presence of a methyl group at C-7 in
46 results in increased antifungal activity against C. albicans and the presence of methyl,
methoxyl, and ethoxyl groups at C-8 (47, 48, and 49, respectively) enhanced antifungal
potency against A. niger [105].
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Nikam et al. synthesized chalcone, pyrazoline, and isoxazoline hybrids with tetrazole
moieties and tested their antifungal activity against C. albicans and A. niger using the agar
dilution method and fluconazole as standard. All tested compounds displayed moderate
antifungal activity when compared to fluconazole (MIC values of 82 µM against both
strains). Compounds 50a, 51a, 51b, 52a, 52b, and 52c (Figure 26) presented similar values
of MIC to the reference drug (MIC = 82 µM) against C. albicans and compounds 50a, 51c,
and 52c (Figure 26) displayed equal values of MIC to standard (MIC = 82 µM) against
A. niger, making them promising structures for antifungal activity [106].
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Figure 26. Chemical structures for compounds 50a, 51a–c, and 52a–c [106].

The results from studies with these structures demonstrated that, generally, the contri-
bution for antifungal activity against C. albicans and A. niger was higher with ethoxyphos-
phonyl moieties (tested by Kategaonkar et al. [105]), approximately the same for oxazoline,
pyrazoline, and rhodanine moieties (tested by Nikam et al. [106] and Subhedar et al. [104])
and, lastly, for the chalcone moiety (tested by Nikam et al. [106]). The SAR extracted from
these structures and substructures is represented in Figure 27.
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Figure 27. Impact of different moieties on the antifungal activity of the represented scaffold [104–107].

In 2011, a group of researchers decided to synthesize a series of tetrazole hybrids with
a thiol substituent. To study their antifungal potential, compounds were tested against
A. fumigatus, A. flavus, T. mentagrophytes, and Talaromyces marneffei and their MIC were
measured. Compound 53 (Figure 28) presented high antifungal activity against all tested
fungal strains, with MIC values ranging from 44 to 49 mM, comparable values to the
standard itraconazole (MIC values ranging from 27 to 30 mM). When compared to other
hybrids in this series of compounds, the benzyl substituent (53) was beneficial instead of
the cyclopropyl and ethyl groups in the same position [108].
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tropicalis. Compounds 55 and 56 (Figure 30) presented high antifungal activity, with MIC 
values of 56 and 49 µM, respectively, to C. albicans and C. glabrata and 112 and 98 µM, 
respectively, to C. tropicalis (when compared to the standard drug, fluconazole, which pre-
sented values of 163, 82 and 163 µM to C. albicans, C. glabrata, and C. tropicalis, respec-
tively). However, compound 56 with a 1-phenyl-1H-tetrazol-5yl-thio substituent was 
demonstrated to be toxic using the brine-shrimp toxicity assay, assumed to be linked to 
its lipophilicity. Moreover, it was noted by the authors that the presence of N-methyl 
groups, which are electron-donating, in the azole rings (55) resulted in a decreased toxicity 
in comparison to compounds with electron-withdrawing groups (56) [110]. 

Figure 28. Chemical structure of compound 53 and SAR for this series of tetrazole-tetrazole hy-
brids [108].

Altıntop et al. developed a new series of tetrazole-thiazoline hybrids and tested
the antifungal activity against Aspergillus parasiticus, Aspergillus ochraceus, Penicillium
chrysogenum, Trichoderma harzianum, Fusarium solani, Fusarium moniliforme, Fusarium
culmorum, and C. albicans. All compounds displayed good antifungal activity against
all tested strains, with MIC values similar or higher than the standard, ketoconazole
(with the exception of P. chrysogenum). Particularly, compound 54 (Figure 29) showed
higher antifungal activity than ketoconazole against C. albicans, with MIC value of 221 µM
(compared to MIC value of 470 µM for the standard drug). In this study, the authors
concluded that compound 54 was the most promising synthesized hybrid, due to its
antifungal results. Additionally, MTT assay results highlighted its low toxicity against
NIH3T3 cells (IC50 = 433 ± 28.9 µg/mL) [109].
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Figure 29. Chemical structure of compound 54 [109].

In 2011, a series of tetrazole-benzimidazole compounds was synthesized and tested for
its antimicrobial activity. Benzimidazole, which is considered an interesting scaffold and is
present in various compounds with effective antimicrobial properties (including antifungal),
was utilized in combination with other azoles, in search for new antifungal drugs. The
antifungal activity (MIC) was evaluated against C. albicans, C. glabrata, and C. tropicalis.
Compounds 55 and 56 (Figure 30) presented high antifungal activity, with MIC values of
56 and 49 µM, respectively, to C. albicans and C. glabrata and 112 and 98 µM, respectively,
to C. tropicalis (when compared to the standard drug, fluconazole, which presented values
of 163, 82 and 163 µM to C. albicans, C. glabrata, and C. tropicalis, respectively). However,
compound 56 with a 1-phenyl-1H-tetrazol-5yl-thio substituent was demonstrated to be toxic
using the brine-shrimp toxicity assay, assumed to be linked to its lipophilicity. Moreover, it
was noted by the authors that the presence of N-methyl groups, which are electron-donating,
in the azole rings (55) resulted in a decreased toxicity in comparison to compounds with
electron-withdrawing groups (56) [110].
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Figure 30. Chemical structures of compounds 55 and 56, and toxicity SAR [110].

In the same year, Mungra and co-workers also produced tetrazole-benzimidazole
hybrids and studied their antifungal activity against two fungal strains, A. fumigatus and
C. albicans, using the broth microdilution method. All tested compounds exhibited weak
antifungal activity against A. fumigatus. Compounds 57, 58, and 59 (Figure 31) presented
promising activity against C. albicans, with MIC values of 757, 713, and 390 µM, respectively,
when compared to the standard griseofulvin, with MIC = 1417 µM. Additionally, the
authors concluded that methoxyl substituents at R2 led to stronger activity than hydrogen,
methyl, or chlorine substituents [111].
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In another study, tri-tetrazoles compounds were synthesized and tested in vitro for
their antifungal properties, by measuring the MIC against C. albicans, Saccharomyces cere-
visiae, A. niger, and A. fumigatus. The most promising compounds out of the series synthe-
sized were 60 and 61 (Figure 32), which displayed good antifungal properties against all
tested strains (with MIC values ranging from <0.14 to 1.08 and <0.14 to 0.54 µM, respec-
tively, comparable to the standard drug fluconazole, with MIC values ranging from <0.52
to 1.02 µM, not concordant with literature reports for A. fumigatus, to which it is normally
inactive). Due to the observed MIC values and the broad spectrum, these were considered
promising leads for antifungal therapy. The presence of a tetrahydro-1,4-oxazine, morpho-
line, in compound 60 and the presence of a hydroxyl and difluoro methoxyl groups on the
phenyl ring in compound 61, associated with good antifungal activities, suggested that
these groups in these positions may increase the antifungal potential [112].

Benzothiazole-tetrazole hybrids were synthesized by Shanmugapandiyan and At-
makuru to assay their antifungal activity against two fungal strains, A. niger and C. albicans,
using the paper disc diffusion method. All tested compounds showed significant antifungal
potential against both fungal strains. Compounds 62, 63, and 64 (Figure 33) exhibited high
inhibition zone diameter (DIZ) values for both species (21, 20, and 21 mm, respectively,
against A. niger, and 23 mm against C. albicans at the concentration of 250 µg/mL), although
they were smaller than the standard fluconazole (values of 22 and 25 mm against A. niger
and C. albicans, respectively, at the concentration of 250 µg/mL) [113].
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benzothiazole/benzoxazole moieties against C. albicans, A. niger, Colletotrichum coccodes, 
Fusarium sambucinum, and F. oxysporum, to determine their antifungal activities. All com-
pounds presented little to no activity against all strains, except for C. albicans. Despite the 
disappointing results, the authors were able to deduce that benzoxazole hybrids 65 pre-
sented generally better antifungal activity than the corresponding benzothiazoles 66 (with 
percentage of growth inhibitions ranging from 0 to 36.7 vs. 0 to 46.7) against the mold 
species (Figure 34). In the case of C. albicans, compounds 65a, 65b, 66a, and 66b (Figure 
34) showed high antifungal activity (with percentages of cell inhibition from 98.80% to 
99.36% at the lowest tested concentration, 0.0313 µg/mL) [114]. 
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Łukowska-Chojnacka et al. tested newly synthesized compounds with tetrazole and
benzothiazole/benzoxazole moieties against C. albicans, A. niger, Colletotrichum coccodes,
Fusarium sambucinum, and F. oxysporum, to determine their antifungal activities. All com-
pounds presented little to no activity against all strains, except for C. albicans. Despite
the disappointing results, the authors were able to deduce that benzoxazole hybrids 65
presented generally better antifungal activity than the corresponding benzothiazoles 66
(with percentage of growth inhibitions ranging from 0 to 36.7 vs. 0 to 46.7) against the mold
species (Figure 34). In the case of C. albicans, compounds 65a, 65b, 66a, and 66b (Figure 34)
showed high antifungal activity (with percentages of cell inhibition from 98.80% to 99.36%
at the lowest tested concentration, 0.0313 µg/mL) [114].

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 30 of 45 
 

 

 

Figure 34. Chemical structures of compounds 65a–b and 66a–b, and SAR [114]. 

Selenadiazoles are heterocyclic compounds which present various biological activi-

ties, such as antibacterial, antifungal, antitumor, among others. The addition of this moi-

ety to known antifungal azoles, such as tetrazole, may in some cases lead to an increased 

activity. In 2015, Kanakaraju and Suresh designed a new series of hybrids using tetrazole 

and selenadiazoles and evaluated the antifungal activity using the broth microdilution 

method against C. albicans and A. niger. All tested compounds, with the exception of 67 

and 68 (Figure 35), presented only weak antifungal activity against both strains. Com-

pound 67 showed promising values when compared to fluconazole against A. niger (MIC 

= 14.8 µM vs. 20.4 µM) and 68 presented promising values of MIC against C. albicans (MIC 

= 14.8 µM vs. 20.4 µM). In the presence of the selenadiazole ring (when compared to com-

pounds without it), there was an increased antifungal activity, in particular when the chlo-

rine substituent was present on the phenyl ring linked to tetrazole (Figure 35) [115]. 

 

Figure 35. Chemical structures of compounds 67 and 68 and SAR against C. albicans and A. niger 

[115]. 

Later, Shaik et al. synthesized tetrazole-quinoline hybrids (2,5 (69) and 1,5-regioiso-

mers (70)) which were assayed for antifungal activity using the disc diffusion method 

against C. albicans and A. fumigatus and using fluconazole as standard. Generally, the 

tested compounds presented good antifungal activity for both strains, with MIC values 

ranging from 24 to 130 µM against C. albicans and 6.5 to 149 µM against A. fumigatus (flu-

conazole presented MIC = 98 µM for both strains, which is not in concordance with liter-

ature reports—fluconazole is usually inactive to A. fumigatus). Compound 69a and 70a 

(Figure 36), with a bromine substituent at C-6, displayed good antifungal activity against 

both strains, with MIC = 24 µM. Moreover, compounds 69b and 70b (Figure 36), with a 

fluor substituent at C-6 and 69c and 70c (Figure 36), with a bromine substituent at C-6, 

showed great antifungal activity against A. fumigatus, with MIC values of 6.5, 6.5, 11.2, 

and 11.2 µM, respectively. The obtained results not only suggested that the 1,5-regioiso-

mer presented better values of fungal inhibition, which reveals regioselectivity of the en-

zyme, but also that compounds with halogen groups (such as fluorine and bromine) at 

the C-6 led to an increase in activity (other groups, such as methyl, methoxyl, and 

Figure 34. Chemical structures of compounds 65a–b and 66a–b, and SAR [114].

Selenadiazoles are heterocyclic compounds which present various biological activities,
such as antibacterial, antifungal, antitumor, among others. The addition of this moiety
to known antifungal azoles, such as tetrazole, may in some cases lead to an increased
activity. In 2015, Kanakaraju and Suresh designed a new series of hybrids using tetrazole
and selenadiazoles and evaluated the antifungal activity using the broth microdilution
method against C. albicans and A. niger. All tested compounds, with the exception of 67 and
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68 (Figure 35), presented only weak antifungal activity against both strains. Compound 67
showed promising values when compared to fluconazole against A. niger (MIC = 14.8 µM
vs. 20.4 µM) and 68 presented promising values of MIC against C. albicans (MIC = 14.8 µM
vs. 20.4 µM). In the presence of the selenadiazole ring (when compared to compounds
without it), there was an increased antifungal activity, in particular when the chlorine
substituent was present on the phenyl ring linked to tetrazole (Figure 35) [115].
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Later, Shaik et al. synthesized tetrazole-quinoline hybrids (2,5 (69) and 1,5-regioisomers
(70)) which were assayed for antifungal activity using the disc diffusion method against
C. albicans and A. fumigatus and using fluconazole as standard. Generally, the tested com-
pounds presented good antifungal activity for both strains, with MIC values ranging
from 24 to 130 µM against C. albicans and 6.5 to 149 µM against A. fumigatus (fluconazole
presented MIC = 98 µM for both strains, which is not in concordance with literature reports—
fluconazole is usually inactive to A. fumigatus). Compound 69a and 70a (Figure 36), with a
bromine substituent at C-6, displayed good antifungal activity against both strains, with
MIC = 24 µM. Moreover, compounds 69b and 70b (Figure 36), with a fluor substituent at
C-6 and 69c and 70c (Figure 36), with a bromine substituent at C-6, showed great antifungal
activity against A. fumigatus, with MIC values of 6.5, 6.5, 11.2, and 11.2 µM, respectively.
The obtained results not only suggested that the 1,5-regioisomer presented better values of
fungal inhibition, which reveals regioselectivity of the enzyme, but also that compounds
with halogen groups (such as fluorine and bromine) at the C-6 led to an increase in activity
(other groups, such as methyl, methoxyl, and hydrogen groups, were less contributive).
SAR with the order of preference for substituent at C-6 is represented in Figure 36 [116].
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In 2013, Antypenko et al. synthesized a series of compounds and tested them for their
antifungal activity against C. albicans. Compound 71 (with a chloropropyl substituent)
(Figure 37) was the most potent compound, with DIZ of 22 mm at the concentration
of 100 µg/disk (when compared to nystatin, the standard, with DIZ of 21 mm at the
concentration of 100 µg/disk). Moreover, in compounds 72a and 72b (Figure 37), the
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authors observed that the shortening of the dialkylamino fragment resulted in an increase
of the activity [117].
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The series of tetrazole-pyrimidine synthesized by Vembu et al., tested using the broth
microdilution method against C. albicans, S. cerevisiae, A. niger, and A. fumigatus, showed
great potency against the tested fungi (MIC < 0.4 to 15 µM, apart from one value) compared
to MIC values of fluconazole (MIC ranging from 0.52 to 8.2 µM—not concordant with
literature results for A. fumigatus). Compounds 73, 74, and 75 (Figure 38) demonstrated high
antifungal activity against all strains (with MIC values ranging from <0.4 to 15 µM), with
75 being the most effective one and, in some cases, stronger than fluconazole. Additionally,
it was noted that compounds with substitutions on the phenyl ring are generally more
active than the unsubstituted ones [118].
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A series of tetrazole-chalcone hybrids was synthesized by Vembu et al. and evaluated
for its antifungal activity against C. albicans, A. niger, and A. fumigatus and using fluconazole
as standard. All tested compounds displayed antifungal activity against the tested strains
(with MIC values ranging from <0.46 to 18 µM). Compounds 76 and 77 (Figure 39) demon-
strated good MIC values, ranging from <0.5 to 0.98 µM, and compound 78 (Figure 39)
showed the best antifungal potential of the series, with MIC values ≤ 0.46 µM against all
tested strains (when compared to fluconazole, which presented MIC values from <0.52 to
8.2 µM, not concordant with literature results for A. fumigatus). The addition of a nitrogen
atom on the aromatic ring, leading to a pyridinyl ring (compound 79), resulted in a loss of
antifungal activity, and introduction of a hydroxyl group (compound 78) led to enhanced
antifungal potential (Figure 39) [119].
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and C. tropicalis. All tested compounds presented higher antifungal activity than the
standard miconazole against C. glabrata and C. tropicalis. When tested against C. albicans,
compounds 80 and 81 (Figure 40) showed promising antifungal activity, comparable to that
of miconazole (MIC = 32.6, 32.3, and 30 µM, respectively). It was noted that substitutions
in C-6 and C-8 on the phenyl ring with methyl and chlorine did not increase the antifungal
activity, when compared to the unsubstituted ring (compound 80) (Figure 40). In addition,
all tested compounds inhibited biofilm formation [120].
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A new series of hybrids was synthesized and tested for its antifungal activities by
Nandha et al. against C. albicans, C. glabrata, C. krusei, and C. tropicalis using the broth
microdilution method. The compounds showed little to moderate antifungal activity,
with MIC values ranging from 5.6 to > 89.7 µM (when compared to the reference drug
fluconazole, with MIC values ranging from 3.7 to 13.1 µM). Compounds 82, 83, and
84 (Figure 41) were the most promising ones, which suggested that these substituents
could lead to an increase of antifungal activity (even though they were less potent than
fluconazole) [121].
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standard for A. niger. The compounds tested were designed to contain an imidazole ring, 
bearing a propyl spacer. Since most available azoles have an ethyl spacer separating the 
azole ring and an aromatic ring instead of a propyl one, the authors decided to study the 
pharmaceutical potential of new imidazole derivatives. Along with that structural modi-
fication, the compounds’ structure contained 1,3-benzodioxole aromatic moieties, which 
might also enhance their antifungal activity. From the results, it can be inferred that com-
pounds 85 and 86 (Figure 43), which contain a trifluoromethylphenyl moiety in C-3 and 
C-4 respectively, presented good values of MIC for all tested strains (with MIC values 
ranging from 148 to 297 µM), when compared to the values presented by the controls 
(MIC values ranging from 45 to 51 µM for fluconazole and 20 µM for ketoconazole). From 
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derivatives: the trifluoromethyl moiety, in C-3 or C-4, seems to particularly enhance the 
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The pyrazole ring is an important structure in medicinal chemistry, since it is associated
with a broad spectrum of therapeutical applications, such as analgetic, anti-inflammatory,
antibacterial, antifungal, among others [122]. Therefore, various teams have tried to
take advantage of this moiety to the search of new antifungal drugs. Tetrazole-pyrazole
hybrids were synthesized and tested against C. albicans and A. niger for their antifungal
activity. Although the results were not satisfactory, with DIZ values smaller than the
standard ketoconazole, this study led to an interesting observation. The presence of
electron-withdrawing groups in the phenyl group linked to the pyrazole moiety, such as
chlorine, nitro, and trifluoromethyl, was beneficial to the antifungal activity while electron
donating-groups, such as methoxyl and methyl, were detrimental to the activity (when
compared to the unsubstituted analogs) (Figure 42) [107].
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Al-Wabli et al. synthesized benzodioxole-imidazole compounds (Figure 43) to assess
their antifungal potential using the broth microdilution method to calculate MIC. These
compounds were tested against four fungal strains: C. albicans, C. tropicalis, C. parapsilosis,
and A. niger. Fluconazole was used as standard for Candida isolates and ketoconazole
as standard for A. niger. The compounds tested were designed to contain an imidazole
ring, bearing a propyl spacer. Since most available azoles have an ethyl spacer separating
the azole ring and an aromatic ring instead of a propyl one, the authors decided to study
the pharmaceutical potential of new imidazole derivatives. Along with that structural
modification, the compounds’ structure contained 1,3-benzodioxole aromatic moieties,
which might also enhance their antifungal activity. From the results, it can be inferred
that compounds 85 and 86 (Figure 43), which contain a trifluoromethylphenyl moiety in
C-3 and C-4 respectively, presented good values of MIC for all tested strains (with MIC
values ranging from 148 to 297 µM), when compared to the values presented by the controls
(MIC values ranging from 45 to 51 µM for fluconazole and 20 µM for ketoconazole). From
those values, some conclusions about SAR can be extracted when comparing to the other
derivatives: the trifluoromethyl moiety, in C-3 or C-4, seems to particularly enhance the
antifungal potential of the benzodioxole-imidazole hybrids, in particular in C. albicans and
A. niger strains [123]. For the fungal strains C. tropicalis and C. parapsilosis, compounds 87
and 88 presented the best pairing of results of DIZ and MIC (with MIC values of 289 and
145 µM, respectively, for compound 87, and 565 and 141 µM, respectively, for compound
88 and DIZ values of 20 and 18 mm, respectively, for compound 87 and 21 and 19 mm,
respectively, for compound 88). These results suggest that the 4-bromophenyl and 3,4,5-
trimethoxyphenyl moieties, respectively, increased the antifungal activity of the derivatives
for these particular strains [123].
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In 2013, Kumar et al. studied a new series of azole-carbodithioate hybrids for their an-
tifungal activity against various strains of C. albicans, using the broth microdilution method,
and values were displayed as half maximal inhibitory concentration (IC50). Compounds
89–92 (Figure 44) revealed to be very promising, presenting interesting values of IC50,
ranging from 6.05 to 239 µM (disregarding values >232 µM from compounds 90 and 91 for
some of the strains). The most active compound of the series was 92, with IC50 values from
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6.05 to 16 µM (comparable to those of the standard drug fluconazole with IC50 = 0.42 and
0.69 µM against two of the tested strains, and no activity against the remaining strains).
SAR studies revealed that increasing the side chain generally led to a reduced antifungal
activity. Moreover, butyl side chains with imidazole and 2-methyl-imidazole displayed
antifungal potential (compounds 89 and 90, respectively). The combination of an imidazole
ring fused to a benzene and a short length methyl side chain (compound 92) was also
revealed to enhance the antifungal activity against C. albicans. Nitro group in the azole
ring was not a good substituent for the activity of this series of compounds (Figure 44).
Additionally, compounds 89–92 were submitted to a cytotoxic assay against human cervical
cell line (HeLa), where they demonstrated safety profiles, and to docking studies, where
they were revealed to be promising leads for antifungal agents [124].
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A new series of compounds was synthesized by Malukaite et al., derived from thiazole
and presenting β-amino acid and aromatic portions, and tested against azole-resistant
A. fumigatus strains and against several multidrug-resistant Candida species. Compounds
93a and 93b (Figure 45) demonstrated good antifungal potential against A. fumigatus,
with MIC values of 74 and 71 µM for the tested strains (excluding the wild type strain).
Against Candida species, compounds 93b and 94 (Figure 45) were the most promising ones,
displaying antifungal activity against most of the tested strains. Compound 93b was active
against C. auris and Candida duobushaemulonii, with MIC values from 36 to 71 µM, but not
against C. krusei or C. albicans. These data suggest that the chlorine substituent at C-4 on
the phenyl ring is essential for the activity against C. auris. Further, 94, with an additional
phenyl substituent in the side chain, was active against C. krusei (MIC = 58 µM) but lost
activity against C. auris and C. duobushaemulonii, suggesting that the addition of this ring
led to a decrease in the antifungal activity (Figure 45). Cytotoxicity studies were performed
using Vero cells, which revealed low cytotoxicity of the mentioned compounds, which
makes them promising leads for the antifungal therapy [125].

4.4. Use of Triazoles in the Preparation of New Antifungals from Natural Products

Considering the importance of natural products in the design of new drug candidates
and the increase in scope of click reactions, many studies have focused on the introduction
of azole rings in these compounds, especially 1,2,3-triazole, in an attempt to improve
their biological potential. A recent review highlighted this approach for a variety of
pharmacological activities [126].

Antimicrobial peptides have a broad spectrum of activities, which makes them inter-
esting leads for pharmaceutical research and the development of new therapeutic drugs.
Therefore, the scientific community has made modifications in the structures of these
peptides to reach new derivatives with accentuated activity for antimicrobial-resistant
microorganisms. Considering the antifungal activity, Junior et al. studied the synergic
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effect of triazole and saccharide rings, through different biophysical methods, by synthe-
sizing and testing a series of glycotriazole-peptides for antifungal activity. Moreover, the
effect of glycosylation in different fungal strains was assessed [127]. These triazole hybrids
were synthesized from hylaseptin-P1 (HSP1), an antimicrobial peptide isolated from Hyla
punchata anurans, with an amidated C-terminus (HSP1-NH2–GILDAIKAIAKAAG-NH2),
observed to enhance the activity of several peptides. HSP1 was chosen to evaluate the
effects of glycosylation and triazolation on the antifungal activity, as it is a compelling
molecule for structural modifications. The glycosylation was conducted at the N-terminus,
by substitution of the glycine-1 residue for a propargylglycine residue during the peptide
chain synthesis [127]. The carboxyamidated C-terminus HSP1 (HSP1-NH2), the triazole-
peptide derivative from HSP1-NH2 ([trz-G1]HSP1-NH2) (95a), the per-O-acetylated N-
acetylglucose-triazole derivative from HSP1-NH2 ([p-Glc-trz-G1]HSP1-NH2) (95b), and
the per-O-acetylated N-acetilglucosamine-triazole derivative from HSP1-NH2 ([p-GlcNAc-
trz-G1]HSP1-NH2) (95c) (Figure 46) were tested against C. tropicalis, C. parapsilosis, and
C. krusei. When tested against Candida spp. strains, the triazole derivatives presented
notably higher antifungal activity (with MIC values ranging from 11.96 to 80.50 µM) than
HSP1-NH2, which showed no activity (MIC values ranging from 136.90 to 149.90 µM). This
suggests that the triazole moiety intensifies the peptide antifungal activity. Moreover, the
glycotriazole-peptides 95b and 95c presented lower MIC values than 95a and presented
interesting values of MIC when compared to the antifungal drug 5-fluorocitosine, used as
standard for the antifungal activity. These results suggest that both the triazole ring and
carbohydrate ring lead to an enhanced antifungal activity of HSP1-NH2 [127].
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Eugenol is a natural compound, presenting several therapeutical activities, with
one of them being antifungal activity. Therefore, novel triazole molecules derived from
eugenol were designed and synthesized by Magalhães et al. and tested against C. albicans,
C. tropicalis, C. krusei, C. glabrata, and C. parapsilosis using the broth microdilution method.
Compounds 96 and 97 (Figure 47) displayed the most promising antifungal activities
(results were displayed in IC50). Compound 96, with an allyl substituent, showed good
values of IC50 against C. tropicalis, C. krusei, and C. glabrata (ranging from 26.1 to 52.1 µM)
and compound 97, with a propyl substituent, displayed good IC50 values against C. tropicalis
and C. krusei (IC50 = 25.98 µM for both strains) and moderate activity against C. glabrata and
C. albicans (IC50 = 103.94 and 173.2 µM, respectively), when compared to fluconazole values
(IC50 ranging from 3.2 to 104.4 µM). SAR studies suggest that the presence of acetyl groups,
combined with allyl (96) or propyl (97) groups, enhances the antifungal potency for these
fungal strains. When compared to other compounds synthesized by the group in previous
works (structures not shown), the analogs containing the triazole moiety revealed higher
antifungal potency against C. tropicalis and C. krusei [128–130]. Moreover, the presence of
the carbohydrate seems to be essential to the activity. Therefore, both these compounds are
promising candidates for the treatment of C. krusei, since they were more effective and less
toxic than the standard, fluconazole. In addition, the series of eugenol derived triazoles did
not present relevant cytotoxic values when tested for cytotoxic activity in fibroblast cells
from healthy human lung (MRC-5) using the MTT method. Docking studies (performed
to all compounds) and molecular dynamics studies (performed to a strategic group of
compounds), predicted compounds 96 and 97 to inhibit CYP51 by being transformed
in vivo to their deacetylated analogs, acting as prodrugs [131].
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The antifungal potential of compound 96 was also described one year later by
Goswami et al. but against the opportunistic fungus A. fumigatus [132]. Compound 96
showed prominent antifungal activity with IC50 value of 5.42 µM. Moreover, the authors
have found that this active compound possibly acts as inhibitor of cell wall-associated
melanin hydrophobicity along with the number of conidia [132].

Pyta et al. synthesized 1,2,3-triazole conjugates from the natural product gossypol,
a pigment present in cotton plants that is involved in defending them from insects and
fungi. The 1,2,3-triazole was functionalized with aliphatic chains and benzyloxy groups
and derivatives were tested against F. oxysporum. Two of these conjugates, compounds 98
and 99 (Figure 48), showed antifungal potency comparable to that of miconazole against
F. oxysporum (MIC values of 0.022 µM). Moreover, the authors have demonstrated that
the mechanism of action of these gossypol derivatives may be related to the inhibition of
ergosterol biosynthesis [133].

In another work, Pertino et al. considered the synthesis of triazole derivatives from
the natural product carnosol, which is a diterpene present in the leaves of Rosmarinus
officinalis L. and that has many reported biological activities, including antifungal. They
have prepared 24 new triazoles and the antifungal activity was checked as the percentage
of inhibition of one strain of C. albicans and one strain of C. neoformans in the range of
250–3.9 µg/mL. The most active derivatives were 100, 101, 102, and 103 (Figure 49), which
were able to induce a decrease in fungal growth in the range of 91–71% at 250 µg/mL
(282, 278, 305, and 300 µM, respectively for 100, 101, 102, and 103). Clearly, derivatives
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with a p-bromobenzyl or p-nitrobenzyl group were more active than the ones with an
unsubstituted benzyl ring [134].
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In an attempt to develop antifungal agents with an innovative structural pattern,
Irfan et al. synthesized hybrids between an N-benzyltriazole subunit and various hydroxy-
lated natural products, such as vanillin, 8-hydroxyquinoline, eugenol, isoeugenol ferulic
acid, and cuminol, among others. The most active compounds obtained were the triazoles
linked to 8-hydroxyquinoline and vanillin (104 and 105, respectively, Figure 50). The re-
sults of in vitro antifungal activity showed that compound 104 was superior/comparable
to fluconazole with IC50 values of 0.00014 µM against C. albicans and 0.011 µM against
C. tropicalis. Compound 105 was the second most active with IC50 values of 0.00014 µM
and 0.00029 µM, respectively, against the same strains. Of note, at their IC50 values, these
compounds induced less than 5% hemolysis on human red blood cells, and compound 104
showed no cytotoxicity in VERO cells up to a concentration of 31.6 µM [135].
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5. Conclusions

Azole compounds have been used for decades to treat fungal infections and are
one of the most utilized classes of antifungal agents. However, researchers have been
studying new strategies and techniques to obtain new antifungal drugs with improved
safety and tolerability profiles, diminished drug–drug interactions, toxicity, and resistance
problems, as well as enhanced antifungal potency. Various compounds have been designed,
synthesized, and studied along the years, but given the structural diversity of the active
compounds, it is difficult to generalize the nature of favorable substituents. Although the
first generations of azoles had a well-known pharmacophore pattern, recent antifungal
azole compounds show wider tolerance in structural variation. The emergence of tetrazole-
containing compounds is also something to emphasize, since many new agents, e.g., VT-
1161, VT-1129, and VT-1598, have been discovered with good profiles of safety, tolerability,
and antimicrobial potency. Furthermore, a recent strategy is the introduction of azole
moieties in bioactive natural products, which can lead to compounds with significative
activity as antifungal agents, including against resistant strains.

Promising compounds in preclinical studies need further testing, such as toxicity
studies, susceptibility evaluation against other species and mechanisms of action, as well as
in vivo studies for a proof-of-concept. Moreover, studies with resistant strains are essential
to determine the efficacy of these promising compounds in treating fungal conditions
resistant (or becoming resistant) to the current arsenal of antifungal drugs. Moreover,
SAR studies on new scaffolds would bring new perspectives and further improve lead
optimization and the search for novel antifungals, while pharmacophore-based synthesis
may help obtain efficient new leads.
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