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Abstract: Cancer stem cells (CSCs) are a subpopulation of cancer cells possessing stemness charac-
teristics that are closely associated with tumor proliferation, recurrence and resistance to therapy.
Recent studies have shown that different cytoskeletal components and remodeling processes have
a profound impact on the behavior of CSCs. In this review, we outline the different cytoskeletal
components regulating the properties of CSCs and discuss current and ongoing therapeutic strategies
targeting the cytoskeleton. Given the many challenges currently faced in targeted cancer therapy, a
deeper comprehension of the molecular events involved in the interaction of the cytoskeleton and
CSCs will help us identify more effective therapeutic strategies to eliminate CSCs and ultimately
improve patient survival.

Keywords: cytoskeletal; cytoskeleton-associated proteins; cancer stem cells; recurrence; metastasis;
drug resistance

1. Introduction

A steady stream of research has led to a degree of understanding of the tumorigen-
esis and growth of primary tumors and the development of complex and effective treat-
ments that can significantly prolong patient survival. However, an inescapable problem is
that tumor recurrence and metastasis remain a major cause of high mortality in patients
with cancer, even after radical surgery combined with adjuvant therapy [1]. Moreover,
chemotherapy resistance is also a troubling and intractable problem in the course of tumor
treatment [1]. However, the effective understanding of both phenomena is still very limited.
Theories related to cancer stem cells (CSCs), as a rising star in tumor research, seem to help
understand the abovementioned problems to a certain extent. CSC theory suggests that
CSCs can drive tumor growth, promote tumor progression, and initiate mechanisms related
to distant metastasis and drug resistance, features that ultimately lead to dismal clinical
outcomes [2–4]. Therefore, the eradication of this specific group seems to be a priority after
recognizing that CSCs with these characteristics may be the culprits. Before addressing
this issue, a comprehensive understanding of the biological drive, state regulation and
maintenance of CSCs is necessary.

Similar to the case of normal stem cells, CSCs are thought to present in a niche [5].
The niche of CSCs is their specific survival microenvironment, which regulates the fate
of CSCs through secreted factors and cell–cell contacts [5]. Niches are three-dimensional
structures composed of extracellular matrix components, signaling molecules, and other
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cells [6]. Through the mechanical interaction of their niche, cells are mechanically loaded,
resulting in the possible deformation of the cell membrane, cytoskeleton, and nucleus, thus
triggering the secretion of relevant signaling molecules into the niche [5,6]. These signals
and secretory factors in turn regulate the metabolism, morphology, and mechano-sensitivity
of secretory cells [6]. One study reported that the cytoskeleton is closely related to the
activity of CSCs [7]. The eukaryotic cytoskeleton, which is made up of microfilaments,
intermediate filaments, and microtubules, is a dynamic and intricate three-dimensional
network that exists inside the cytoplasm [8]. The main roles of the cytoskeleton include
mechanical support, cell shape regulation, the facilitation of cell migration, and intracellular
transport [8,9]. It can also provide locations for the localization and binding of signaling
molecules as scaffolds for signaling cascades [8,9]. The dysregulation of the cytoskeleton
is closely related to a variety of diseases, especially cancer [10]. Different cytoskeletal
components and remodeling processes have profound effects on the behavior of CSCs [11].
Moreover, the cytoskeleton can play a role in regulating cellular bioenergetics in CSCs by
dynamically controlling the mitochondrial structure and function of CSCs, in addition to
affecting the niche of CSCs [12].

It is evident that understanding the influence of the cytoskeleton and related proteins
on various biological behaviors of CSCs will help to further solve the clinical treatment
challenges of cancer. Therefore, we outline existing research that supports the significance
of cytoskeletal components in controlling the structure, bioenergetics, and function of CSCs.
A greater understanding of the behavior and regulatory factors of CSCs will help with the
creation of innovative treatments for metastatic, drug-resistant malignancies.

2. Cancer Stem Cells

In the early 1990s, CSCs were discovered in leukemia and were isolated by recognizing
the expression of their characteristic surface markers, CD34+CD38− [13,14]. Subsequently,
CSCs expressing different surface markers were identified in a large number of solid
tumors, such as CD133+CXCR4+ CSCs in pancreatic cancer and CD44+CD24− CSCs in
breast cancer [15,16]. It was shown that these special cells are also part of the tumor
body [17]. CSCs have a strong capacity for self-renewal, that is, the process of generating at
least one daughter cell that retains stem cell characteristics by symmetric or asymmetric
division [18]. The expansion of CSCs in a symmetrical division leads to unrestricted cell
growth, which directly leads to tumor formation [19,20]. CSCs, like regular stem cells, are
controlled by the Wnt/β-catenin, Sonic Hedgehog (Hh), and Notch pathways responsible
for self-renewal [21–23]. Understanding the regulation of CSCs’ self-renewal may provide
more options for cancer treatment. Another great feature of CSCs is their capacity to
differentiate into various cell types [24]. Under normal circumstances, multiple signaling
pathways stably regulate these two important properties of stem cells to form a balance
that is conducive to normal proliferation and differentiation [25]. However, when this
regulatory balance is disrupted, uncontrolled CSCs grow and migrate in a frantic manner,
ultimately leading to tumor progression and metastasis [26].

CSCs are located in niches, specialized anatomical areas within the tumor microenvi-
ronment [27]. These unique niches contribute to the maintenance of the aforementioned
characteristics of CSCs and promote their phenotypic flexibility while shielding them from
the immune system [23,28]. Aberrant tumor proliferation and vascular rarefaction lead
to a tumor microenvironment characterized by hypoxia, acidity, and malnutrition [29].
Therefore, CSCs must effectively adapt their cellular bioenergetics to cope with these ad-
verse conditions [30]. An in-depth study revealed that CSCs prefer mitochondrial oxidative
metabolism [31]. Cancer cells carry out aerobic glycolytic metabolism, while CSCs mainly
rely on oxidative phosphorylation (OXPHOS) [32–34]. Subpopulations of cancer cells
switch between glycolysis and OXPHOS to meet the energy demands of survival, also
embodying metabolic plasticity [35]. Compared with general tumor cells, mitochondrial
mass and membrane potential were found to be increased in CSCs, reflecting an enhanced
mitochondrial function and increased oxygen consumption rate [36–40]. Additionally, a
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high mitochondrial mass suggests a stem cell phenotype that is linked to a potential for
metastasis and resistance to DNA damage [41]. Furthermore, CSCs are considered to be
an important contributor to chemoresistance due to their well-defined quiescent pheno-
type, endothelial–mesenchymal transformation (EMT), multidrug resistance (MDR), and
resistance to DNA damage-induced apoptosis [42–45].

3. Cytoskeleton of the Cell

The cytoskeleton is mainly composed of three structures: microfilaments made of
G-actin and F-actin, microtubules made of α and β-tubulin, and intermediate filaments
(IFs) made of different keratins and vimentin [8,46]. Any changes, including those of the
cellular structure and the rearrangement and relocation of organelles, may lead to changes
in cellular metabolism that enhance cell migration and invasion characteristics [9]. Actin
and microtubules in the cytoskeleton play supportive and key regulatory roles in these
important cellular processes [47]. The unfolding of the actin network is essential to the
majority of cellular processes [48]. The ability of actin to freely switch between polymeric
F and monomeric G actin forms confers the fast remodeling of the actin cytoskeleton in
response to internal and external stimuli [49]. Moreover, this cytoskeletal remodeling plays
a crucial role in cellular integrity, motility, and membrane trafficking [50]. Actin can synthe-
size slowly growing pointy ends and quickly growing barbs through self-polymerization
in vitro, and intracellular polymerization is tightly regulated by actin nucleation and actin-
severing proteins [51]. Moreover, actin filaments can generate various pseudopodia that
cells might exploit to investigate the extracellular environment during invasion and metas-
tasis [52]. Actin reorganization also occurs during mitochondrial fission [53]. Mitochondria
can travel via dendrites and axons along actin filaments [12]. During the actin breakdown
phase, fragmented mitochondria rapidly fuse, accelerating mitochondrial integrity repair
and maintaining mitochondrial homeostasis [54]. In addition, F-actin cages around dys-
functional mitochondria are triggered to assemble, preventing the proliferation of damaged
mitochondria [55]. In conclusion, the actin cytoskeleton is critical for the spatial domain
transport, dynamics and quality control of mitochondria. Actin-nucleating agents that stim-
ulate the formation of actin filaments are essential for actin activity. Known actin-nucleating
proteins include formins, tandem WASP homology 2 (WH2) nucleators, and the Arp2/3
complex [56]. The ability to polymerize and depolymerize is critical to actin, and these
processes are primarily regulated in space and time by the actin-binding protein (ABP)
family [57]. In cancer cells, the homeostasis between G and F actin and their association
with ABPs is frequently altered, leading to dysregulation [58]. ABPs are categorized as
monomer-binding proteins, cross-linking and binding proteins, end-capping and severing
proteins, anchoring proteins, signaling proteins, and stabilizing proteins based on their
roles [59].

3.1. Monomer-Binding Proteins

Monomer-binding proteins mainly include profilin, twinfilin, and thymosin β4 [60].
Four different types of profilin (PFN) exist (PFN1-4), with PFN1 being extensively expressed
in all tissues [61]. PFN catalyzes the exchange of ADP with ATP on G-actin monomers,
which is essential for actin polymerization [62]. PFN modulates membrane protrusion by
binding to N-WASP and VASP, which also increases the intracellular PFN concentration and
enhances the elimination of stinger-terminated actin monomers, resulting in depolymeriza-
tion [63]. The phosphorylation/dephosphorylation of serine 3 is a major regulator of PFN
activity. In addition, in combination with PIP2 and cortactin, intracellular pH also modu-
lates the activity of PFN itself [64]. Twinfilin (TWF), an actin monomer sequestering protein,
exists in two isoforms of TWF-1 and -2 in the human body [65]. TWF is mainly found in
lamellar pseudopods, localized in subcellular regions with a high actin turnover. By binding
to ADP-G actin, TWF prevents G-actin from being added to actin filaments [66]. Thus, TWF
mainly regulates actin polymerization/depolymerization by blocking nucleotide exchange
on actin monomers [67]. Furthermore, TWF is involved in cell migration and the EMT, and
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it controls the cell cycle by affecting the mTOR pathway [68,69]. Its synthesis is regulated by
Cdc42-downstream signaling and Rho GTPases Rac1 [65]. Thymosin β4 (Tβ4) is involved
in cytoskeletal reorganization by buffering intracellular G-actin concentrations [70]. It is
itself a significant G-actin sequesterer that activates Cdc42 and Rac by activating various
signaling pathways [71,72]. Moreover, many studies have suggested that Tβ4 can activate
the hypoxia-inducible factor 1 (HIF-1) gene and participate in processes such as the EMT
and angiogenesis through the AKT and Notch/NF-κB pathways [73–75].

3.2. Cross-Linking and Bundling Proteins

Members of the cross-linking and bundling protein family include fascin, filamins,
spectrins and alpha-actinin [76]. Fascin, required for actin binding and bundling, is present
in tissues as three isoforms (fascin-1, -2, and -3) [77]. The special beta trefoil of fascin
forms actin-binding sites that bind dozens of parallel actin filaments together to form
tight, stiff filamentous pseudopods [78]. These actin bundles act as proprietary channels
that deliver signaling molecules from the cell core to the cell leading edge [79]. The
Rho family of GTPases is a small (~21 kDa) family of signaling G proteins, of which
members RhoA and Rac1 act upstream of fascin via protein kinase C (cPKC) to regulate
actin binding [80]. F-actin cross-linking by fascin-1 involves the N-terminal and C-terminal
domains of fascin-1, and a major mechanism that inhibits the actin-bundling activity
of fascin-1 is the phosphorylation of an N-terminal motif (S39 in human fascin-1) by
conventional isoforms of protein kinase C (cPKC) [81]. Rac1 and RhoA inhibit actin binding
by promoting the cPKC phosphorylation of S39 [82]. Of the three isoforms of filamin (FLN),
FLNA and FLNB are widespread while FLNC is confined to cardiac and skeletal muscle [83].
One of the main roles of FLN is to connect actin filaments to the cell membrane [84]. FLN
is a homodimeric protein found in stress fibers, lamellar pseudopods and filamentous
pseudopods [48]. The N-terminal domain is an actin-binding region featuring F-actin-,
α-actin-, β-spectrin-, and fibrin-binding sites [85]. The C-terminus is a repeating rod region
through which protein dimerization occurs in a tail-to-tail manner [86]. Functionally, in
addition to helping actin form orthogonal branches, FLNA is involved in linking many
receptors related to cell signaling and the cell cycle [87]. FLNA is mainly regulated by the
phosphorylation of residue S2152 [88]. Spectrins construct hexagonal lattices beneath the
plasma membrane to keep the membrane cytoskeletal network stable [89]. The α- and
β-spectrin genes, which are widespread in cells, encode the two isoforms of spectrin [90].
The α and β subunits are arranged head-to-head to form an antiparallel tetramer that
constitute the platform for the binding of channel proteins, receptors, and transporters [91].
On the one hand, spectrin participates in cell migration through actin-dependent and non-
actin-dependent mechanisms, and it can bind to calcium or calmodulin to participate in
cell proliferation [92]. This is due to the fact that at normal calcium levels, spectrin proteins
are found along the edges of cells and diffuse throughout the cell as calcium concentrations
increase [93]. Spectrin binds to calmodulin-dependent protein kinase II (CaMKII), which
activates the PI3K/Akt signaling pathway to promote proliferation [94]. Additionally,
spectrin is involved in hypoxia-induced, angiogenesis-mediated cytoskeletal remodeling, a
process regulated by c-Jun N-terminal kinase (JNK) signaling [95]. The α actinin (ACTN)
that belongs to the spectrin superfamily is present in all cells [96]. ACTN exists in four
forms (ACTN 1-4) in the human body and is crucial for the formation and stabilization of
stress fibers [96,97]. ACTN links the cytoskeleton with transmembrane proteins, stabilizes
the cell structure, and provides a scaffold for the integration of signaling molecules into
specific sites [98]. The PIP3 produced by PI3K activation damages the interaction of ACTN
with actin and integrins, thereby impairing the structure of focal adhesion and promoting
cytoskeletal remodeling [99].

3.3. Anchoring Proteins

Anchoring proteins mainly include the ezrin–radixin–moesin (ERM) family and mer-
lin [100]. Ezrin is mainly expressed by the vil2 gene in epithelial cells [101]. Its C and N
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domains interact with the integral membrane proteins in the actin cytoskeleton and the
plasma membrane, respectively [102]. This allows ezrin to form connections between the
actin cytoskeleton and the plasma membrane and to respond to extracellular signals [103].
Ezrin is also closely associated with multiple signaling pathways, including Rho, PI3K,
AKT, and MAPK [104]. Moesin, another member of the ERM family, binds to actin via the
C-terminus, thereby attaching actin to the plasma membrane [105]. Moesin, localized in
filopodia and microvilli, is involved in the EMT, cell adhesion, and membrane fold forma-
tion [106,107]. In addition, moesin affects cell division and spindle–actin communication
by binding to microtubules [108]. Radixin, encoded by chromosome 11, has a central α-
structural domain with an F-actin-binding site at the C-terminus [109]. Radixin is essential
for cytoskeletal organization, as well as cell motility and adhesion, as it cross-links to actin
on the cell surface [110]. Merlin, encoded by chromosome 22, has two isoforms: isoform 1
and isoform 2 [111]. Lacking a conserved actin-binding site, the N-terminus of merlin is
the actin-binding domain [112]. Merlin plays an important role in the intracellular effectors
that control cell proliferation and adhesion, as well as linking F-actin and transmembrane
receptors [112].

3.4. Capping and Severing Proteins

Gelsolin is a ubiquitous capping and severing protein that interacts with G- and F-type
actin to regulate actin polymerization through severing, capping, and nucleation [113].
The gene encoding it produces two isoforms that are localized in the plasma and cyto-
plasm [114]. Gelsolin directly or indirectly alters lipid signaling by binding to kinases and
lipases [115]. Cofilins are evolutionarily conserved capping and severing proteins [116].
Cofilin has binding sites for both F-actin and monomeric G-actin. The binding of cofilin
to actin filaments alters the orientation of the subunit, which leads to filament severance,
producing barbed ends, the preferred site for Arp2/3 binding [117]. The regulation of
cofilin mainly depends on the phosphorylation of the LIMK/TESK kinase at ser-3 or pH,
PIP2, or cysteine oxidation [118,119]. Villin is a significant part of the brush border cy-
toskeleton in differentiated epithelial tissue, where it binds, caps, severs and bundles actin
filaments [120]. Villin has three actin-binding sites, two of which retain calcium-dependent
activity at the core [121]. Villin maintains an autoinhibitory conformation at normal phys-
iological calcium concentrations, but its structural conformation changes and binds to
actin with increasing intracellular calcium concentrations [122]. The phosphorylation of
tyrosine residues within the core of villin promotes actin severing and binding in multiple
modalities, thereby increasing cytoskeletal fluidity and affecting its mechanical properties,
ultimately enhancing cell movement [123]. A study showed that the binding of villin to
F-actin is regulated by calcium concentration, PIP2 or tropomyosin [124].

3.5. Stabilizing Protein and Signaling Protein

Tropomodulins are stabilizing proteins that wrap around the growing end of actin
to prevent the dissociation or addition of G-actin [125]. In addition, tropomodulins can
regulate actin dynamics by acting as actin-nucleating agents [125]. Furthermore, tropo-
modulins regulate actin filament assembly, stability and length via capping [126]. The
nucleotide concentration of actin affects tropomodulins’ affinity for G-actin monomers [127].
Ena/VASP is a signaling protein that is essential in the formation and elongation of fil-
amentous pseudopods [128]. The C-terminus of this signaling protein has binding sites
for G and F actin, and the protein itself promotes tetramerization, which is significant for
actin extension [129]. Ena/VASP proteins are conserved regulators of actin dynamics and
play important roles in a variety of physiological processes including morphogenesis, axon
guidance, endothelial barrier function, and cancer cell invasion and metastasis [130]. The
anti-capping model of Ena/VASP function appears to be the simplest explanation for many
of the known cellular biological and biochemical properties of this protein family. Another
biochemical property of Ena/VASP proteins is their ability to nucleate actin filaments
in vitro, but the importance of this effect in vivo remains to be confirmed [130]. The inter-
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action of Ena/VASP with actin and other proteins can be affected by the phosphorylation
of PKA and the dephosphorylation of protein phosphatases [131] (Figure 1).
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3.6. Microtubule-Associated Proteins

Microtubules are one of the fundamental constituents of the cytoskeleton and are
composed of α- and β-tubulin heterodimers bound together [132]. Microtubules play
critical roles in cell morphology, cell division, vesicle transport and cell signaling [132].
Microtubule-associated proteins (MAPs) bind to microtubules, connect them to other or-
ganelles, bind them, and transport related substances [133]. Tau is a common MAP that
manages microtubule polymerization and stability to govern microtubule protein dynam-
ics [134]. Excessive phosphorylation leads to a decreased affinity between Tau and micro-
tubules, which alters post-translational modifications and destabilizes the cytoskeleton,
ultimately resulting in a diminished EMT and invasiveness [135]. Microtubule-associated
protein 2 (MAP2) stabilizes microtubule growth by cross-linking microtubules to interme-
diate filaments, leading to microtubule stiffness activation [136]. Katanin is a heterodimeric
protein composed of katanin P60 and katanin P80 subunits that exerts its microtubule-
cutting function by deploying ATP hydrolysis to extract microtubulin dimers at the lattice
and break down the polymer [137]. In addition, angiotensin II receptor-interacting protein
3 (ATIP3), one of the structural MAPs localized along the microtubule lattice, is an effective
microtubule stabilizer that binds to end-binding proteins (such as EB1) in the cytoplasmic
lysate, thereby attenuating microtubule dynamics [138]. The four abovementioned MAPs
belong to microtubule lattice-binding proteins, which are localized along the length of
microtubules.

Microtubule motility proteins include kinesins and dyneins that transport molecules
along microtubule tracks [139]. Kinesins consist of different isoforms of family proteins that
are involved in individual cellular activities. Classical kinesin with an N-terminal motility
domain and kinesin family member 14 (KIF14) with an intermediate motility domain deploy
ATP hydrolysis to generate kinesin motility with mechanical force toward the plus-ends of
growing microtubules [140,141]. Dyneins transport in the opposite direction to kinesins,
moving toward the minus-end of microtubules and transporting intracellular cargo from
the cell periphery to the center in a retrograde direction [142]. Kinesins and dyneins play
important roles in different microtubule-dependent activities, intracellular vesicle transport,
organelle transport, and mitotic spindle organization [143]. Stathmin (STMN1) is one of



Pharmaceuticals 2022, 15, 1369 7 of 30

the most prominent microtubule destabilizers, reducing the length of microtubule poly-
mers by indirectly binding microtubule protein subunits in a bent form, thus promoting
depolymerization [144]. In addition, STMN1 induces microtubule instability by specifically
interfering with the lateral binding of microtubule protein subunits at the microtubule
ends, acting at both the plus- and minus-ends [145]. In addition, MAPs that preferentially
contain polymerized microtubule plus-ends are referred to as plus-end tracking proteins
(+TIPs) [146]. End-binding proteins (EBs) are typical +TIP protein types, including EB1,
EB2 and EB3, which precisely bind to the plus-end of microtubules and associate with
stable GTP caps for microtubule growth [147]. Cytoplasmic linker-associated proteins
(CLASPs) are a conserved class of +TIPs proteins that contribute to microtubule stabiliza-
tion [148]. Members of the calmodulin-regulated spectrin-associated protein (CAMSAP)
family, consisting of CAMSAP1, CAMSAP2 and CAMSAP3, have recently been described
as microtubule minus-end-binding proteins [149]. They may regulate the stability and
localization of microtubule negative ends, thereby organizing non-centrosomal microtubule
networks sufficient for cell division, migration and polarity [150] (Figure 2).
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Figure 2. Schematic representation of microtubule−associated protein (MAP) binding to microtubules
at different sites. The main proteins include microtubule crystal−binding proteins (MAP tau, MAP2,
ATIP3, and katanin), microtubule movement proteins in which kinesins carry organelles or molecules
to the plus−end of microtubules (anterograde transport); dyneins that transport cellular molecules
to the minus−end of microtubules (retrograde transport); multisite microtubule−binding protein
stathmin (STMN1); microtubule plus−end−binding proteins (EB and CLASPs); and microtubule
minus−end-binding proteins (CAMSAP1, CAMSAP2 and CAMSAP3).

3.7. Other Components of the Cytoskeleton

The myosin superfamily includes myosins with different structures and functions en-
coded by dozens of genes [151]. The main role of myosin is to convert chemical signals into
mechanical forces, a process that is achieved by its sliding along actin filaments involved in
ATP hydrolysis [152]. A variety of important cellular functions such as intracellular signal
transduction, cell migration and tumor suppression can be seen with traces of myosin
involvement [153]. IFs are dynamic, nonpolar fibrillar structures highly concentrated in
desmosomes and hemidesmosomes [154]. IFs share a common structure: an N-terminal
head domain, a C-terminal tail domain, and a central rod domain [155]. IFs undergo
dramatic structural changes upon the receipt of relevant signals, providing structural
support and participating in the control of processes such as cellular proliferation and
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apoptosis [156]. The regulation of IFs’ organization mainly relies on the interaction of IFs
with other proteins, the phosphorylation of some signaling pathways, or post-translational
modifications [157]. According to different structures and localizations, intermediate fila-
ment proteins can be divided into: type I and type II-acidic and basic cytokeratins; type
III-vimentin, glial fibrillary acidic protein, desmin, synchronization protein, and peripheral
protein; type IV-neurofilament and α-internexin; type V-lamins; and type VI-synemin and
nestin [158]. Keratin binds to integrins via plectin to stabilize hemidesmosomes, caus-
ing cell migration and adhesion to be stabilized [159]. Vimentin, which is abundantly
expressed in normal mesenchymal cells, is primarily responsible for cellular integrity and
stress tolerance [160].

4. Cytoskeleton and CSCs

CSCs are generally considered to be the main culprit for cancer metastasis and
chemotherapy resistance. The different components of the cytoskeleton, remodeling pro-
cesses, and interactions with CSCs enable CSCs to adapt to unique tumor microenviron-
ments, thus maintaining cell stemness and migratory activity.

4.1. Actin and CSCs

Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif
(TAZ) are important signaling molecules that regulate drug resistance and cancer stem cell
biomechanics. [161]. YAP/TAZ proteins act as mechanosensors in response to physical
stimuli involving the actin cytoskeleton [162]. YAP/TAZ proteins have been shown to play
a two-sided role in the Wnt signaling pathway, which is critical for intercellular function
and self-renewal capacity [163]. This is mainly because YAP/TAZ proteins are components
of the β-catenin destruction complex that translocates to the nucleus upon the activation
of the Wnt pathway [162]. An increased extracellular matrix (ECM) stiffness activates the
YAP/TAZ-downstream Rho/ROCK pathway, which facilitates the survival of CSCs [164].
The activation of integrin and focal adhesion kinase (FAK) contributes to focal adhesion
formation, leading to the activation of Rho-GTPase and stress fibrillogenesis. Meanwhile,
focal adhesions require actin polymerization. These together lead to the repression of
YAP/TAZ transcription factors, resulting in negative effects on CSCs [165]. In this case,
myosin increases the tension on the actin network after a cell has spread, while F-actin
reduces tension by dissociating to maintain tension balance [164].

4.2. Monomer-Binding Proteins and CSCs

PFN is essential for cell motility in vivo through the regulation of actin polymerization
kinetics [166]. Cell migration and intercellular adhesion can be inhibited by reducing
the expression of PFN in cancer cells [93]. In colorectal cancer, changes in the invasive,
migratory and self-renewal abilities of HT29 CSCs were found to be consistent with the rise
and fall of PFN2 expression levels. Furthermore, PFN2 directly regulates the expression
of EMT markers (E-cadherin) and stemness markers (SOX2, CD133 and β-catenin) [167].
SOX2 is a transcription factor that is essential for the regenerative capacity of stem cells,
as well as for the maintenance of pluripotency [168]. Thus, PFN2 plays an important
role in the stemness and metastatic potential of CSCs by regulating related transcription
factors. Additionally, the knockdown of PFN1 in breast cancer cells was shown to result
in the diminished expression of CSC-related genes, further demonstrating the important
regulatory role of PFN on CSC-related properties [169]. Tβ4 relies on the cytoskeletal
organization of actin to exert a regulatory role on tumorigenicity and metastatic capacity in
mouse fibrosarcoma cells [170]. Tβ4 is overexpressed in a variety of tumors and maintains
the cell stemness of CSCs by increasing the EMT [171]. Because of its important role
in promoting the tumorigenic properties of colorectal CSCs, Tβ4 may have important
implications for therapeutic intervention in human colon cancer [172]. Moreover, the
expression of Tβ4 is closely associated with the expression of the CSC marker CD133 in
gastric and ovarian cancers, thus having an impact on tumor metastasis [173]. In pancreatic



Pharmaceuticals 2022, 15, 1369 9 of 30

cancer, Tβ4 mainly regulates CSCs by activating the JNK pathway and promoting the
expression of pro-inflammatory cytokines, thereby promoting cancer progression [174].
This may be due to the fact that Tβ4 first enhances the bone morphogenetic protein (BMP)
pathway, which activates JNK through the TAB1 and TAK1 complex [175,176]. Of course,
further studies are needed to elucidate the exact pathway of Tβ4-induced JNK activation.
Additionally, the increased expression of Tβ4 promotes the migration and metastasis
of CSCs, mainly through the activation of Rac and the elevation of the IQGAP1/ILK
complex [177]. TWF, a conserved actin-binding protein, is also a prime candidate target for
the downregulation list of miR-206 [178]. It has been reported that hsa-miR-206 attenuates
the stemness and metastatic ability of breast CSCs by reducing their self-renewal and
invasive ability. TWF1 could rescue the invasive phenotype of miR-206 by enhancing
the activity of the mesenchymal lineage transcription factor-megakaryocytic leukemia
1 (MKL1) and actin cytoskeleton dynamics [178]. On the other hand, a systemic RNA
interference screening study revealed a strong association of TWF1 with chemosensitivity
and cell motility [179].

4.3. Cross-Linking and Bundling Proteins Interact with CSCs

Fascin, as an actin-binding protein, directly mediates chemoresistance in breast cancer
by activating FAK [180]. Moreover, fascin activates β-catenin signaling and promotes breast
CSC function, mainly through focal adhesion kinase (FAK) [181]. The upregulation of
fascin expression results in cytoskeletal changes that promote metastasis [182]. After the
knockdown of fascin in ovarian cancer stromal cells with high fascin expression, we found
that CSC activity, metastasis, and the EMT were reduced through pathways such as Rac1,
RhoA, and NF-κB [183]. As a result, the increased expression of fascin in most aggressive
cancers often represents the possibility of metastasis. FLNA is able to remodel the actin
cytoskeleton of CSCs, leading to enhanced tumor metastasis [184]. It interacts with Rho
GTPases, which activate cell migration, and Ras GTPases, which inhibit cell migration,
to promote metastasis [184]. The downregulation of FLNA increases the destruction
of single- and double-stranded DNA in tumor cells after cisplatin therapy, increasing
chemosensitivity [185]. Moreover, a lack of FLNA arrests the cell cycle in the G2/M
phase and increases angiogenesis by promoting the expression of VEGF [186]. In head
and neck CSCs, the activation of CD44 alters FLN expression, resulting in enhanced cell
migration and chemoresistance [187]. According to research, spectrins may be closely
associated with tumorigenesis, progression and metastatic processes [188]. Spectrin is
highly expressed in early-stage colorectal cancer but lower in advanced or metastatic
cells [189]. It was shown that colorectal cancer cell viability and cell contacts were reduced
and metastasis was increased when spectrin was knocked out. Furthermore, a marked
decrease in spectrin expression may result in the loss of DNA mismatch repair proteins [190].
In addition, β2 spectrin was shown to inhibit the properties of hepatic CSCs through β-
catenin-induced differentiation, which is a new strategy for hepatocellular carcinoma
prevention and differentiation therapy [191]. ACTN is involved in cell differentiation and
cancer metastasis by modulating the activity of several signaling pathways and recombinant
actin filaments [93]. It was shown that the potential mechanism of the ACTN4-mediated
properties of CSCs mainly involves the Akt/GSK-3β/β-catenin axis. The ACTN4-mediated
stabilization of β-catenin is closely related to Akt/GSK-3β signaling. ACTN4 promotes
the EMT and cell cycle progression by stabilizing β-catenin, maintaining the properties
of CSCs, and leading to drug resistance [192,193]. Furthermore, studies have shown that
high levels of ACTN4 expression are related to malignancy, metastasis, poor prognosis, and
chemotherapy resistance in numerous tumors, including pancreatic, ovarian, and bladder
cancers [93,194].

4.4. Anchoring Proteins and CSCs

The increased expression of ezrin leads to increased malignancy and decreased sur-
vival in aggressive cancers [195]. Ezrin tends to be expressed more on the apical surface
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of tissues in non-invasive tumors, whereas in invasive cell lines, it tends to be expressed
in local membrane folds and filopodia, which are more favorable for promoting metasta-
sis [196]. Furthermore, the ectopic expression of phosphomimetic forms of ezrin promotes
cancer progression and metastasis in vitro and in vivo [197]. Ezrin and CD44 are co-highly
expressed in breast CSCs, which is associated not only with poor prognosis but also with
the resistance of CSCs to chemotherapy [198]. In pancreatic ductal adenocarcinoma (PDAC),
the level of ezrin in CSCs is significantly higher than that in normal cancer cells. The severe
impairment of CSC frequency, self-renewal capacity, and tumor initiation potential was
observed following the knockout or inhibition of ezrin. These all suggested that ezrin
affects the properties of CSCs in PDAC [199]. Ezrin is associated with defective adhesion
turnover and a loss of directional migration, leading to tumor invasion and metastasis [200].
The potential mechanism could be as follows. On the one hand, ezrin connects the cyto-
plasmic tail of CD44 to F-actin, leading to cytoskeletal remodeling, and changes in actin
cytoskeletal dynamics and cell shape could guide stem cell differentiation [201]. On the
other hand, ezrin can also maintain CSC properties by regulating actin polymerization
through ROCK inhibition [199]. Moesin, like other ERM proteins, has also been implicated
in cancer progression [202]. Moesin is commonly overexpressed in high-grade glioblastoma,
and its mode of action correlates with the CSC marker CD44. The main mechanism of
action of moesin is to increase the expression of CD44 in the Wnt/β-catenin signaling
pathway and to enhance the positive feedback effect on this pathway. Furthermore, moesin
was shown to increase the expression of SOX2, promoting the functional transition of
glioblastoma to an aggressive stem cell phenotype [203]. Merlin is encoded by the tumor
suppressor gene NF2 [204]. This protein regulates YAP/TAZ proteins through the mer-
lin/NF2/YAP/TAZ axis [205]. YAP/TAZ proteins are key regulators of the properties of
breast cancer CSCs [206].

4.5. Capping and Severing Proteins Interact with CSCs

Gelsolin is closely associated with properties such as oncogenic phenotype, the EMT,
cell motility, apoptosis, proliferation and differentiation [207]. Furthermore, gelsolin inter-
feres with TGF-β1-driven CSC differentiation through the EMT process in breast cancer
cells [208]. Gelsolin affects the differentiation and properties of stem cells by regulating
stem cell-related transcription factors such as Nanog, SOX2, and OCT4 [208]. Chemothera-
peutic drugs induce hepatocellular carcinoma cell death by activating cofilin-1, a process
associated with the interaction of Bcl-2-associated X protein and ROS accumulation. Thus,
the phosphorylation of cofilin-1 leads to chemoresistance [209]. High levels of cofilin-1
have been shown to be prognostic biomarkers and predictors of drug resistance [93]. The
overexpression of cofilin in prostate cancer leads to an enhanced EMT and promotes metas-
tasis and CSC properties [210]. Studies have reported that the knockdown of villin in
specific cell lines using siRNA resulted in cell growth arrest, demonstrating its importance
in carcinogenesis [211]. Villin can also be used as a marker of gastric CSCs and a biomarker
of metastatic lung adenocarcinoma [212,213].

4.6. Stabilizing and Signaling Proteins Interact with CSCs

Highly expressed tropomodulins in hepatocellular carcinoma lead to increased in-
vasiveness, metastasis, CSC properties, and matrix metalloproteinase (MMP) expression
through the activation of the PI3K–AKT signaling pathway [214]. Tropomodulins increase
the expression of MMP-13 and NF-κB in breast cancer, which contributes to enhanced tumor
invasion, stemness and metastasis [215]. VASP is involved in ECM-mediated β1-integrin-
FAK–YAP/TAZ signaling, which is closely related to the regulation of CSC properties [216].
Furthermore, the increased expression of Ena/VASP in PDAC and colorectal cancer (CRC)
were found to be significantly associated with liver metastasis and lower survival [216]. In
gastric cancer cells, the expression of VASP can be inhibited by miR-4455, thereby reducing
VASP-mediated properties such as proliferation, migration, stemness and invasion [217].
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4.7. Microtubule-Associated Proteins Interact with CSCs

Tubulin regulates the EMT and contributes to the formation of lamellar and filopodia,
promoting cancer cell stemness and metastasis [218]. The ectopic expression of Snail or
Twist facilitates α-tubulin decarboxylation and microtubulin-based microtentacle forma-
tion, which aid in invasion and migration [219]. Tau can modulate cell cycle processes and
related signaling pathways in cancer to affect stem cell-like phenotypes [93]. For example,
Tau activates the MAPK pathway involved in prostate cancer progression by binding to
PI3K [220]. The high expression of tau mRNA in breast cancer often indicates chemoresis-
tance [221]. It was confirmed that katanin contributes to the formation of CSCs, leading to
metastasis [222]. The main principle may be that katanin acts as a microtubule-severing
protein that cleaves cellular microtubules into short pieces and activates JNK [223]. In
addition, upregulated katanin may increase microtubule dynamics, accelerate the cell cycle,
and increase cell viability and cell migration, thereby promoting tumor metastasis [224].
A previous study suggested the involvement of microtubule stabilizer ATIP3 in the inhi-
bition of ERK1/2 activity. ATIP3 leads to the inhibition of CSCs and the EMT through
ATIP3/ERK1/2-Snai2 signaling, reducing cell proliferation, migration and invasion [225].
Among kinesins, KIF11 was found to enhance the stemness of cancer cells by promoting
the expression of stemness transcription factors (NANOG and OCT4), leading to cell pro-
liferation and resistance to chemotherapeutic agents [226]. STMN1 leads to microtubule
depolymerization, which promotes the activation of Rho, thereby enhancing the EMT and
cell stemness [227]. Moreover, microtubule disruption promotes the assembly of adherent
spots and enhances cell migration [228]. CAMSAP3 protects lung cancer cells from the EMT
by inhibiting Akt activity through microtubule regulation, whereas CAMSAP3 deficiency
promotes the EMT and stemness maintenance in these cells [229].

4.8. Other Components of the Cytoskeleton on CSCs

The nuclear transfer of cells through the dense extracellular matrix is one of the most
important steps in the process of cancer metastasis [230]. Thus, nuclear translocation is
considered to be a key limiting factor for the efficient spatial migration of cancer cells [230].
It was demonstrated that myosin IIB enhances the ability of nuclear translocation in breast
CSCs, thereby enhancing stem cell invasiveness [231]. Myosin IIB combines a nuclear
scaffold structure with the actin cytoskeleton to facilitate the extrusion of nuclei through
narrow spaces, resulting in effective 3D collagen invasion [232]. In addition, myosin IIA is
involved in promoting the EMT, and the transition between myosin IIB and myosin IIC
is critical for the EMT, contributing to stemness maintenance by influencing cell contrac-
tility [233,234]. Vimentin, a type III IF, is one of the key biomarkers for the EMT and is
usually upregulated during cancer metastasis [235]. Vimentin regulates EMT-related genes,
including Twist, Snail, ZEB1/2, and Slug, as well as key epigenetic factors [236]. Moreover,
it relies on inducing genes associated with self-renewal to inhibit cell differentiation and
to upregulate their pluripotent potential, thereby increasing the stemness of CSCs and
promoting tumor metastasis and chemoresistance [237]. Nestin is closely related to self-
renewal capacity and is considered a stem marker for neurogenic tumors and epithelial
or mesenchymal tumors [238]. Nestin may be a useful biomarker and a new target for
inhibiting tumor angiogenesis due to its more widespread expression in the proliferating
vessels of PDAC [239]. High levels of nestin expression in breast cancer patients are corre-
lated with the upregulation of VEGF, cancer stem cell markers, and proteins that activate
Wnt/β-catenin to initiate proliferation [240]. Several keratins (KRT6, 14, 16, and 17) have
been reported to be involved in the regulation of different types of cancer stem cells [241].
The interkeratin fusion between KRT6 and KRT14 promotes CSC-related properties in oral
squamous cell carcinoma [241]. KRT16 can promote cancer drug resistance and stemness by
interacting with the β5-integrin/c-Met signaling pathway [242]. KRT17 regulates stemness
and chemoresistance by binding to β4-integrin/FAK, Src, or β-catenin [243] (Table 1).
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Table 1. Mechanism of cytoskeleton and cytoskeleton-related proteins on CSCs.

Class Proteins Mechanism Effect

Actin Activation of the downstream
Rho/ROCK pathway via YAP/TAZ

Facilitating the survival of
CSCs

Monomer-binding
proteins

Profilin Direct regulation of stem cell-associated
transcription factors

Maintaining the stemness
of CSCs

Thymosin β4
Activation of the BMP pathway, followed
by JNK activation via the TAB1 and TAK1

complexes

Maintaining the stemness
of CSCs

Twinfilin Enhancing the activity of the MKL1 and
actin cytoskeleton dynamics

Facilitating the survival of
CSCs

Cross-linking and
bundling proteins

Fascin Activation of β-catenin protein signaling
via FAK Promoting CSC function

Filaminin
Interacts with Rho GTPases that activate

cell migration and Ras GTPases that
inhibit cell migration

Promoting CSC function

Spectrin Inhibition of CSCs by β-catenin-induced
differentiation

Inhibiting the properties
of CSCs

α actinin Acts through the Akt/GSK-3β/β-catenin
axis

Maintaining the stemness
of CSCs

Anchoring proteins

Ezrin Regulation of actin polymerization by
ROCK inhibition

Maintaining the properties
of CSCs

Moesin
Enhancement of positive feedback on the

Wnt/β-catenin signaling pathway by
increasing the expression of CD44

Promoting CSC function

Merlin Adjusting the YAP/TAZ pathway via the
merlin/NF2/YAP/TAZ axis Promoting CSC function

Capping and severing
proteins

Gelsolin Direct regulation of stem cell-associated
transcription factors

Maintaining the properties
of CSCs

Cofilin Acts by promoting EMT expression Maintaining the properties
of CSCs

Stabilizing proteins Tropomodulin
Increased expression of MMP-13 and

NF-κB and the activation of the
PI3K–AKT signaling pathway

Promoting CSC function

Signaling proteins ENA/VASP
ECM-mediated

β1-integrin-FAK–YAP/TAZ signaling
pathway

Maintaining the properties
of CSCs

Tubulin Regulating EMT and contributing to the
formation of lamellar filopodia Promoting CSC function

Microtubule
lattice-binding

proteins

Tau Activating the MAPK pathway by
binding to PI3K

Maintaining the properties
of CSCs

katanin Activation of JNK by cutting cell
microtubules into short segments Promoting CSC function

ATIP3 Inhibition through ATIP3/ERK1/2-Snai2
signaling

Inhibiting the properties
of CSCs

Microtubule motor
proteins Kinesins

Promoting the expression of stem
transcription factors (NANOG and

OCT4)

Maintaining the properties
of CSCs
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Table 1. Cont.

Class Proteins Mechanism Effect

Multiple site
microtubule-binding

proteins
STMN1 Activates Rho by promoting microtubule

depolymerization Promoting CSC function

Microtubule
minus-end-binding

proteins
CAMSAPs Inhibition of Akt activity through

microtubule regulation
Inhibiting the properties

of CSCs

Myosin
Involved in promoting the EMT and

enhancing the nuclear translocation of
CSC

Maintaining the properties
of CSCs

Intermediate filaments

Vimentin Regulation of EMT-related genes,
including Twist, Snail, ZEB1/2 and Slug

Maintaining the properties
of CSCs

Nestin
Upregulation of VEGF, cancer stem cell

markers, and proteins that activate
Wnt/β-catenin to initiate proliferation

Promoting CSC function

Keratins

Interacting with the β5-integrin/c-Met
signaling pathway Promoting CSC function

Binding to β4-integrin/FAK or Src or
β-catenin

4.9. Mitochondria-Cytoskeleton Interactions and CSCs

CSCs exhibit elevated mitochondrial fusion, and their metabolism relies on a rear-
ranged cytoskeletal network and OXPHOS [12]. Increased mitochondrial fusion encour-
ages ATP synthesis by OXPHOS, addressing the energy limitation problem for CSC sur-
vival [244]. In addition to functioning as a crucial metabolic enzyme in glycolysis, aldolase
also interacts with cytoskeletal elements that regulate actin polymerization [245]. Through
cytoskeletal rearrangements leading to the spatial redistribution of aldolase, PI3K plays an
AKT-independent role in altering glycolysis, thereby increasing energy metabolism [12].
Cytoskeletal rearrangements or regulatory mechanisms between cellular bioenergetics and
cytoskeletal regulators are critical for understanding the responses of cancer cells, especially
CSCs, to different stimuli [12]. The EMT program has been identified as one of the key regu-
lators of the CSC phenotype [45]. The EMT is also regulated by cytoskeleton–mitochondrial
interactions [12]. The EMT is determined in part by the morphological reprogramming of
cellular architecture and sustained by a reconstituted cytoskeleton [246]. The aggregation
of mitochondria near the cell membrane is essential to facilitate the formation of cytomotor
structures such as pseudopods during the EMT [247]. Studies have suggested that ROS
may participate in the regulation of the EMT through actin reorganization [12,248].

5. Therapeutic Strategies Targeting Cytoskeleton
5.1. Therapeutic Strategies Targeting Actin

The cytoskeleton is essential for the invasion and migration of cancer cells, making
it a promising therapeutic target. Although the concept of cancer therapy targeting actin
is not new, other healthy cells may be affected because of severe off-target effects [249].
Therefore, the issue of the clinical application of actin-targeted therapy remains a press-
ing challenge. At present, a variety of actin toxins and inhibitors, including phalloidin,
cytochalasins, jasplakinolide, latrunculins, wiskostatin, CK-666, and CK-869, are widely
used for research [250–252]. However, with severe and widespread cytotoxicity, the clinical
application of these drugs has not been implemented. Thus, it is crucial to develop actin
inhibitors with strong specificity and high safety to treat cancer cells. Considering the
specificity of actin, researchers have focused on actin-nucleating agents. The use of small-
molecule-targeted formalin has been shown to be potentially beneficial for cancer treatment.
The small-molecule inhibitor SMIFH2 inhibits formalin activity, and SMIFH2 binds to the
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FH2 structural domain of actin nucleation, inhibiting actin nucleation and elongation [253].
The use of SMIFH2 was found to enhance the sensitivity of ovarian cancer cells to cisplatin
or paclitaxel [254]. Rho expression tends to be increased in tumors, and actin dynamic
function in cancer cells correlates with Rho activity [255]. Therefore, the inhibition of Rho
or upstream signaling regulators of Rho can block abnormal cytoskeletal activity and may
be a promising strategy for cancer therapy [256]. Cdc42 is a small GTPase that activates a
variety of downstream effector molecules, including actin-related proteins, kinases, and
phospholipases [257]. The Food and Drug Administration (FDA)-approved analgesic drug
R-ketorolac (Toradol) inhibits Cdc42 and Rac1 in ovarian cancer cells and is currently in
clinical trials (NCT02470299) [258]. Another effective drug, MBQ-167, is an inhibitor of
Rac/Cdc42 both in vivo and in vitro [259]. It has been shown to suppress the motility
viability and clumping of breast cancer cells, but further optimization and development are
required before clinical trials [256]. Rac is often overexpressed or overactivated in a variety
of cancers and is also a small GTPase protein [260]. The drugs currently being developed
to inhibit Rac activity have only been tested at the cancer cell level, but none appear to be
entering clinical trials [259]. ROCK is another target proposed in multiple studies [256].
ROCK1/2 serine/threonine kinases modulate cell morphology, as well as actin cytoskele-
ton reorganization, by phosphorylating various ABPs, such as ERM proteins [261]. The
inhibition of ROCK1/2 could theoretically disrupt the cytoskeletal dynamics of cancer cell
actin and provide therapeutic benefits [262]. However, another study suggested that ROCK
inhibition may activate an alternative pathway leading to a more aggressive migratory
phenotype [263]. Additionally, currently used ROCK inhibitors lack selectivity for ROCK1
and ROCK2, which have distinct roles in the regulation of cytoskeletal networks [264]. The
use of non-selective inhibitors may actually have a promoting effect on certain malignan-
cies and the tumor microenvironment [265]. The combination of novel selective ROCK
inhibitors with different anticancer drugs for cancer treatment is anticipated and exciting.

5.2. Therapeutic Strategies Targeting ABPs

Profilin has the potential to be a therapeutic target against a variety of cancers because
of its role in cytoskeletal regulation and its location in cancer signaling cascades [266]. Small
molecule screens have identified two small molecules (C1 and C2) that prevent profilin
from interacting with actin monomers [267]. However, its mechanism and safety need
to be further studied before clinical trials. Tβ4 also has potential therapeutic effects on
cancer. Silencing the Tβ4 gene in non-small cell lung cancer was found to inhibit tumor
progression, suggesting that Tβ4 could be a candidate target for therapy [268]. Tβ4 tends
to be highly expressed in rectal CSCs. Interestingly, when using lentivirus to reduce Tβ4
levels in rectal cancer stem cells, this treatment significantly reduced tumor size and aggres-
siveness in mice [172]. A few newly synthesized drugs have been detected to act as active
fascin inhibitors to treat cancer [269]. Compound G2 was found to inhibit fascin-1-directed
actin remodeling, an action that caused the destruction of filamentous pseudopods and
minimized the migratory and invasive characteristics of colorectal cancer cells both in vitro
and in vivo [270]. However, the side effects of this treatment are not fully understood and
need to be further studied. Additionally, compounds 3 and 14 were found to substantially
downregulate fascin-1 and abolish the EMT, leading to a reduction in the invasiveness
and metastatic ability of cancer cells [271]. However, further research is needed to study
how these compounds work in vivo and to address any side effects as much as possible.
Among them, the small-molecule fascin inhibitor NP-G2-044 has been shown to block
tumor invasion and metastasis. This orally available inhibitor binds to fascin and blocks
the interaction of fascin with actin filaments [272]. A multicenter Phase 1A clinical trial was
designed to evaluate the safety and tolerability of NP-G2-044 in a single daily oral dose for
the treatment of patients with refractory solid tumor malignancies (NCT03199586). Overall,
the results showed the good absorption and distribution of NP-G2-044 in humans, with
initial signals of antitumor and antimetastatic activity observed and no drug-related serious
adverse events, dose-limiting toxicities, or patient deaths [273]. Raltegravir is a human
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immunodeficiency virus 1 integrase inhibitor that disrupts cell motility by directly acting
on fascin-1 to cause the breakdown of the actin cytoskeleton [274]. However, its safety
and efficacy in humans remain to be tested. Salinomycin was identified as an inhibitor
of fascin-1, an ion carrier and antibiotic in its own right. Salinomycin relocates fascin-1
from filamentous pseudopods in PDAC cells, disrupting actin cytoskeleton remodeling
and inhibiting cancer metastasis to secondary sites [275]. The antidepressant imipramine
has also been identified as a novel fascin-1 inhibitor that significantly reduces fascin-1 ex-
pression and disrupts filamentous pseudopod formation and cytoskeletal remodeling [276].
Clinical trials on imipramine are currently underway in ER+/triple-negative breast cancer
(NCT03122444) and recurrent glioblastoma (NCT04863950) [269].

The inhibition of ezrin phosphorylation may be an effective strategy for cancer treat-
ment. Researchers screened a small-molecule library of multiple compounds that might
interact with ezrin by ion resonance (SPR) technology, and two of these compounds—
NSC668394 and NSC305787—were found to have a strong binding affinity for ezrin [277].
They can significantly inhibit the phosphorylation of ezrin, inhibit the interaction between
ezrin and F-actin, and achieve the inhibition of oncogenic activities including osteosar-
coma cell invasion, migration, and lung metastasis [278]. Furthermore, a study found that
NSC668394 in combination with lapatinib, a drug targeting HER2 and EGFR, enhanced the
induction of apoptosis and the inhibition of breast cancer cell proliferation [279]. Ezrin is
essential for cancer progression, acting as a scaffolding protein and interacting with related
proteins in cancer cells [197]. Hence, designing inhibitors to interfere with the interaction of
ezrin with related proteins may be another strategy for cancer therapy. For example, small
molecules that interfere with the ezrin–L1CAM interaction may be promising therapeutic
agents for colorectal cancer [280]. Furthermore, the treatment of ERMs with cytochalasin B
was shown to remarkably suppress the metastasis and phagocytic activity of melanoma
cells, indicating that the inhibition of actin assembly by ezrin inhibitors may be a potential
therapeutic tool for melanoma [281]. Another study found that G1749-A1771 siRNA tar-
geting ezrin mRNA effectively downregulated the expression of ezrin, contributing to the
induction of apoptosis and the inhibition of cell proliferation in osteosarcoma cells [282]. In
addition, AKT inhibitors (MK2206) or PI3K inhibitors (LY294002) can block ezrin-mediated
tumor growth and metastasis by inhibiting the PI3K/AKT signaling pathway [197]. The
multi-kinase inhibitor sorafenib (BAY43-9006) promoted apoptosis by inhibiting the ezrin
pathway and inhibited angiogenesis and metastasis in a mouse model of osteosarcoma [283].
There are also many cancer drugs targeting ezrin in natural compounds. Recent studies
have shown that baicalin exerts antitumor effects by inducing apoptosis and inhibiting
cell proliferation and invasion by inhibiting the expression of ezrin [284]. In addition, the
binding of celastrol to ROCK2 inhibits the migration of hepatocellular carcinoma, mainly
through the impaired ROCK2-mediated phosphorylation of ezrin, resulting in ineffective
ezrin activation [285].

5.3. Therapeutic Strategies Targeting Microtubules and IFs

Considering the important role of microtubules in the cytoskeleton, drugs targeting
microtubule dynamics are one of the most effective treatments [286]. For example, one
of the first compounds to target the cytoskeleton to treat cancer was paclitaxel (PTX),
which stabilizes microtubules and effectively prevents cell division in a wide range of
cancers, including lung, ovarian, and breast cancers [287]. However, the effectiveness
of PTX is limited by various side effects. The main side effects of PTX are allergy and
neuropathy. PTX hypersensitivity reactions are usually seen within the first ten minutes
of administration and include dyspnea, bronchospasm, urticaria, abdominal pain, fever,
or chills, which usually result in the immediate discontinuation of therapy [288]. In
addition, the cardiotoxicity caused by PTX administration cannot be ignored. Effective
inhibitors of microtubule dynamics also include periwinkle alkaloids, which is widely
used in cancer therapy [12]. Given the importance of intermediate filament proteins in
various tumor activities, treatment targeting intermediate filaments and their associated
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signaling networks may also be a promising therapeutic strategy [289]. The naturally
derived bioactive compound withaferin-A targets and induces vimentin cleavage and
inhibits tumor progression and metastasis in mouse models [290]. Although withaferin-A
is currently the only small molecule that inhibits the structure and function of intermediate
filaments, it also acts on several other cellular components and lacks specificity [291].
Therefore, there is an urgent need to develop inhibitors that exclusively target intermediate
filament proteins to modulate their function, which will be very important for the clinical
treatment of cancer patients.

5.4. Therapeutic Strategies Targeting MAPs

The expression of MAPs can greatly influence the efficacy of microtubule-targeted ther-
apy [292]. The MAP tau was identified as a predictive marker for a pathological complete
response to paclitaxel in breast cancer patients. Low levels of tau protein expression make
mitosis and cytoskeletal microtubules more sensitive to paclitaxel disruption [293]. After
long-term treatment, drug resistance has become a major problem in targeting microtubule
therapy. These resistance mechanisms are associated with alterations in the microtubule
proteins themselves, including alterations in microtubule protein isoform expression, post-
translational modifications of microtubule proteins, and the acquisition of microtubule
protein mutations [294]. The purine-type compound 5a affects the structure of microtubules
and causes apoptosis in cancer cells by targeting the microtubule cleavage protein katanin.
This pharmacological effect may bypass the primary resistance mechanism described above.
Thus, 5a and its analogs may be new therapeutic options for targeting katanin [223]. KIF11
is currently the most well-studied kinesin in the clinical setting. Ispinesib, a quinazolinone
derivative, is the first KIF11 inhibitor to be studied in clinical trials [295]. In a phase I trial
(NCT00089973) evaluating the safety and efficacy of ispinesib in breast cancer, antitumor
activity was detected in 20% of patients and stable disease was noted in 73% of patients,
with 27% having stable disease for 90 days or longer. The most common adverse events
reported were neutropenia, elevated liver transaminases, and diarrhea [296]. SB743921
is a recently discovered inhibitor of KIF11. In a clinical trial (NCT00136513) of SP743921
in patients with advanced solid tumors, the drug showed encouraging efficacy without
serious toxicity [297]. Other KIF11 inhibitors that have shown promise in cancer therapy
include curcumin and various tetrahydro-β-carboline-acetonide hybrids and thione deriva-
tives. Curcumin is a non-specific plant polyphenol extracted from turmeric that exhibits
antioxidant, anti-inflammatory, antibacterial and antiviral biological activities [298]. Based
on extensive studies, stathmin has recently emerged as a promising drug candidate for
the treatment of solid malignancies. To reduce stathmin transcripts in vitro and in vivo
and to explore therapeutic approaches against stathmin, a range of specific anti-stathmin
agents are being developed [299]. Anti-stathmin nuclease gene delivery via adenovirus
reduces multiplication and clonality in breast cancer cells with and without estrogen recep-
tors [300]. The stathmin promoter-driven Aurora-A shRNA adenoviral pathway can be
used to manage breast cancer as a complementary tumor-specific therapy [301].

5.5. Therapeutic Strategies Targeting the Metabolism of CSCs

Mitochondrial fusion is important for the energy metabolism of CSCs, so the inhibition
of mitochondrial fusion may be a candidate cancer therapeutic strategy. Changes in
mitochondrial fusion proteins affect mitochondrial morphology and integrity, making these
proteins ideal therapeutic targets [302]. β II protein kinase C (βIIPKC), a selective inhibitor
of mitochondrial fusion proteins, phosphorylates fusion proteins and causes the partial loss
of GTPase activity, resulting in the fragmentation and dysfunction of mitochondria [303].
OXPHOS inhibitors are expected to be used for the targeted therapy of OXPHOS-dependent
tumors. Metformin is one of the most promising inhibitors of OXPHOS, a diabetes agent
for cancer therapy [304]. Benzformin is an alternative to metformin that has the advantage
of a greater affinity for mitochondrial membranes and easier transport in cancer cells [305].
A novel metformin derivative (IM156) primarily acts on slowly circulating tumor cells
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that have the ability to evade conventional chemotherapy [306]. These therapies have
been shown to inhibit mitochondrial function and CSC survival, but consideration ought
to be given to whether the suppression of OXPHOS or a specific component induces an
alternative pathway that affects ultimate anticancer efficacy (Table 2).

Table 2. Overview of clinical trials and experiments targeting the cytoskeleton.

Categories Drug Name Mechanism Clinical Trial NCT Registry
Number/Ref.

Actin

SMIFH2 Inhibiting actin nucleation
and elongation Experimental [254]

Toradol GTPase inhibition Active, not
recruiting NCT02470299

MBQ-167 Rac/Cdc42 inhibitor Experimental [256]

Profilin C1 and C2
Preventing profilin from

interacting with actin
monomers

Experimental [267]

Tβ4 Tβ4 inhibitors Silencing the Tβ4 gene Experimental [172,268]

Fascin

NP-G2-044 Inhibiting fascin-1-directed
actin remodeling Completed NCT03199586

Compounds 3 and 14 Downregulating fascin-1 Experimental [271]

Raltegravir
Inhibitor of human

immunodeficiency virus 1
integrase

Experimental [274]

Salinomycin Fascin-1 inhibition Experimental [275]

Imipramine Fascin-1 inhibition
Early Phase 1 NCT03122444

II NCT04863950

Ezrin

NSC305787 Inhibiting the
phosphorylation of ezrin

Experimental [278]

NSC668394 Experimental [279]

Cytochalasin B Inhibition of actin
assembly Experimental [281]

LY294002 PI3K inhibitor
Experimental [197]

MK2206 AKT inhibitor

BAY43-9006 Multi-kinase inhibitor Experimental [283]

Baicalin Inhibitor of ezrin Experimental [284]

Celastrol Impairing the
phosphorylation of ezrin Experimental [285]

Microtubules

Paclitaxel Stabilizing microtubules Clinical medication [287]

Taxanes Inhibitors of microtubule
dynamics Clinical medication [12]

Vinca alkaloids

Vimentin Withaferin-A Inducing vimentin
cleavage Experimental [290]

Kinesin

Purine compound 5a Regulating katanin’s
cut-off activities Experimental [223]

Ispinesib A kinesin spindle protein
inhibitor

Completed
NCT00089973

SB-743921 NCT00136513
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Table 2. Cont.

Categories Drug Name Mechanism Clinical Trial NCT Registry
Number/Ref.

Stathmin
Anti-stathmin

adenovirus Cell cycle inhibition Experimental [300]

Aurora A shRNA Inhibitor of stathmin Experimental [301]

Mitochondria

βIIPKC Inhibitor of mitochondrial
fusion proteins Experimental [303]

Metformin
Inhibitors of OXPHOS

Experimental [304]

Benzformin Experimental [305]

IM156 Metformin derivative Experimental [306]

6. Conclusions

In this review, we summarize the mechanisms by which interactions between the
cytoskeleton, cytoskeleton-associated proteins and CSCs lead to tumor metastasis and drug
resistance. The effects of various cytoskeletal components, including ABPs and MAPs,
and cytoskeletal reorganization on CSCs are emphatically expounded. Additionally, the
main metabolic mode of CSCs, OXPHOS, is also modulated by cytoskeletal–mitochondrial
interactions. Thus, a detailed understanding of the interactions between the CSCs and
cytoskeleton facilitates the development of new cancer treatment strategies to provide
better therapy for metastatic and drug-resistant patients.
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