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Abstract: Binge drinking intake is the most common pattern of ethanol consumption by adolescents,
which elicits emotional disturbances, mainly anxiety and depressive symptoms, as well as cognitive
alterations. Ethanol exposure may act on the adenosine neuromodulation system by increasing
adenosine levels, consequently increasing the activation of adenosine receptors in the brain. The
adenosine modulation system is involved in the control of mood and memory behavior. However,
there is a gap in the knowledge about the exact mechanisms related to ethanol exposure’s hazardous
effects on the immature brain (i.e., during adolescence) and the role of the adenosine system thereupon.
The present review attempts to provide a comprehensive picture of the role of the adenosinergic
system on emotional and cognitive disturbances induced by ethanol during adolescence, exploring
the potential benefits of caffeine administration in view of its action as a non-selective antagonist of
adenosine receptors.
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1. Introduction

Ethanol is the most commonly used drug by adolescents, mainly consumed through a
binge drinking pattern. According to the National Institute on Alcohol Abuse and Alco-
holism (NIAAA), binge drinking consumption is characterized by approximately 0.08%
grams of alcohol/dL, which corresponds to the intake of four drinks for women and five
drinks for men during 2 h [1]. Evidence from human and laboratory animal studies high-
lighted the profound structural and functional neurodevelopment processes modifying
synaptic plasticity and dendritic connectivity during adolescence [2]. This on-going neu-
ronal maturation predisposes the central nervous system (CNS) to harmful consequences
of drugs (i.e., ethanol), eliciting anxiety and depressive symptoms as well as cognitive
deficits [3–5]. These ethanol-induced behavioral changes in adolescents result from distur-
bances in homeostasis of several brain regions, such as the prefrontal cortex, hippocampus,
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and limbic system, which aggravates adolescent risk behavior [6]. In addition, ethanol also
negatively affects the mesocorticolimbic pathway, which is part of the reward and reinforce-
ment circuitry. Activation of the dopaminergic system signaling on the ventral tegmental
area and nucleus accumbens, concomitant to hyperactivation of the glutamatergic system in
limbic structures, trigger neurotoxicity mechanisms and behavioral alterations, especially
in the immature brain [7,8].

Our research group demonstrated that the binge drinking paradigm from adoles-
cence until adulthood in animal models induces emotional and motor alterations as well
as cognitive deficits related to oxidative damage in several brain areas, such as the hip-
pocampus and prefrontal cortex [9–11]. However, we found that the deleterious effects of
binge ethanol drinking were not restricted to the central nervous system (CNS). In fact, the
stomatognathic system is markedly affected by binge drinking patterns [12]. In this context,
we investigated strategies of protection or treatment against ethanol’s hazardous effects on
body systems, especially the CNS. For instance, we demonstrated that physical exercise
is a useful tool to attenuate or prevent ethanol damage [13]. Moreover, we demonstrated
that caffeine is able to prevent ethanol-induced alveolar bone loss in adolescent rats [14].
We further explored the effects of caffeine on the CNS in view of the known beneficial
effects of the regular intake of moderate doses of caffeine [15], in particular, to attenuate
neurotoxicity in different animal models of brain diseases [16,17].

Although caffeine has multiple molecular targets, it was first proposed by Bertil
Fredholm late last century that caffeine mostly acts through the antagonism of adenosine
receptors [18]. Indeed, it was recently confirmed that the ability of caffeine to control synap-
tic transmission and plasticity in hippocampal circuits is critically and solely dependent on
the antagonism of adenosine receptors [19]. Adenosine is a prototypical neuromodulator re-
leased in an activity-dependent manner, with a parallel role in fine-tuning neuronal function
under physiological conditions and controlling neurodegeneration in different neuropsy-
chiatric conditions [20]. Adenosine signals through adenosine receptors, namely A1, A2A,
A2B, and A3 [21]. These four metabotropic receptors can recruit numerous transduction
pathways, in particular, the formation of intracellular cyclic adenosine monophosphate
(cAMP). Adenosine A1 and A3 receptors are coupled to Gi/Go protein, resulting in the
inhibition of adenylate cyclase activity and consequent reduction of cAMP formation,
whereas A2A and A2B receptors are coupled to Gs proteins, activating adenylate cyclase
that increases cAMP production [22].

Adenosine receptors have a wide but heterogenous distribution in the brain. Adeno-
sine A1 receptors (A1R) are the most abundant adenosine receptor subtype, with higher
levels in the limbic cortex and thalamus. A1R potently inhibit glutamatergic transmission
throughout the brain, as well as dopamine release in corticostriatal neurocircuits [23,24].
On the other hand, adenosine A2A receptors (A2AR) are sparsely but widely distributed
throughout the brain to selectively control synaptic plasticity processes [16,25,26], and they
are more densely located in the basal ganglia to integrate dopaminergic modulation of
corticostriatal glutamatergic transmission [27–29]. These adenosine receptors interact with
dopamine receptors as A1/D1 and A2A/D2 receptor heterodimers, respectively [30], to
efficiently regulate the mesocorticolimbic system and control addiction circuits [31].

The molecular mechanisms associated with drug abuse involve multiple processes
ranging from neurotransmitter reuptake blockade, increase in excitatory neurotransmit-
ters release, as well as high extracellular monoamine levels in synapses (reviewed in
ref. [32]). Ethanol increases the synaptic levels of adenosine through direct and indirect
processes [33–35]. Physiologically, the bidirectional equilibrative nucleoside transporters
(ENT1) regulate adenosine intracellular and synaptic levels, and ethanol inhibits the activity
of ENT1 (a direct mechanism), increasing adenosine levels in the synaptic cleft [36]. Chronic
exposure to ethanol triggers neuroadaptations in the densities of A1 and A2A receptors,
which may contribute to ethanol abuse and neurotoxicity [34,35,37].

The indirect process is a result of ethanol metabolism to acetaldehyde by alcohol
dehydrogenase, CYP2E1 and catalase enzymatic systems. Subsequently, acetaldehyde is
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converted to acetate, catalyzed by aldehyde dehydrogenase [38]. The acetate produced is
recycled to form the neurotransmitter acetylcholine by an active process (i.e., adenosine
triphosphate consumption), increasing the levels of intracellular adenosine [38].

Overactivity of the adenosinergic system has been linked to emotional changes
in adolescents following withdrawal from high alcohol consumption that persists un-
til adulthood [39]. Therefore, in this review, we explored the ability of caffeine, a non-
selective adenosine receptor antagonist, to attenuate or counteract the deleterious effects
of ethanol, considering that caffeine affords neuroprotection in different models of neu-
rotoxicity [40,41], attenuating several symptoms of ethanol intoxication such as fatigue,
headache, dizziness, weakness, and others [42]. The present review attempts to provide a
comprehensive picture of the role of the adenosinergic system on emotional and cognitive
disturbances induced by ethanol during adolescence, exploring the potential benefits of
caffeine administration and the molecular mechanisms involved.

2. Ethanol versus Adenosine Effects on Anxiety

Ethanol is a drug commonly used in early adolescence, a period where curiosity,
novelty, and risk-taking are prevalent [43]. Such early ethanol intake predisposes these
adolescent consumers to a higher probability of ethanol abuse or dependence in adult-
hood since binge drinking leads to an escalating consumption of alcohol, culminating in a
heavy drinking pattern of use, aggravating the neurotoxicological effects of ethanol [44–46].
Epidemiological studies have demonstrated that binge ethanol drinking induces mood
and anxiety disorders in adolescents, either upon daily or episodic consumption [47,48].
Spear [2] reported that ethanol toxicological consequences are intensified among adoles-
cents as a result of modifications in brain maturation and behaviors that are observed in
both clinical and experimental studies.

Reduction and disruption of the integrity of the white matter, as well as a decrease
of connectivity between the prefrontal cortex and limbic regions, i.e., mesolimbic and
mesocortical pathways mediated by dopamine signaling, have been found following
adolescent ethanol exposure [2,49]. These structural and molecular dysfunctions trigger
long-lasting anxiety-like behavior in adulthood. Previous studies have indicated that
anxiety-like behavior in rodents is present in several animal models involving ethanol
consumption, including the development of social anxiety in male rodents [50], anxiogenic
effects in elevated plus-maze in adolescent animal exposure to adulthood [10,51], in the
light-dark box [52], and open field paradigms [11,13,53].

Our group also investigated the impact of heavy chronic ethanol exposure from
adolescence to adulthood (6.5 g/kg/day for 55 days) in female rats, which led to neu-
ronal loss in different brain areas, as well as an increase in oxidative stress accompanied
by motor, cognitive, and emotional alterations [54,55]. In particular, we focused on be-
havioral disruptions elicited by binge drinking models (3.0 g/kg/day; 3 days on-4 days
off) to mimic a usual pattern of ethanol consumption among teenagers [9,10,13]. Binge
ethanol drinking in adolescent female rats triggers an anxiety-like behavior assessed in
the elevated plus maze paradigm, which persists upon long-lasting withdrawal of ethanol
consumption (14 days) [11]. In these studies, we highlighted the potential mechanisms
involved in ethanol’s hazardous effects, including oxidative stress and neuroinflamma-
tion [55]. However, additional pathophysiological pathways have also been documented,
such as alterations of different neurotransmitter systems, mainly an over-function of the
glutamatergic pathway and downregulation of GABAergic signaling [56,57]. Alternative
pathophysiological mechanisms underlying the impact of ethanol on anxiety should be
further studied to provides a reasonable comprehension of adolescent brain alterations.
In this review, we highlight the interaction of ethanol with the adenosinergic system on
anxiety-like behavior, mainly during withdrawal.

Some studies suggest that ethanol may increase adenosine levels in the brain by acetate-
oxidation (acetyl-CoA to ATP) and inhibition of cellular uptake by ENT-1 blockade [58].
This overactivity of the adenosine system may result in different excitatory mechanisms by
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alteration of the balance between adenosine A1 (inhibitory) and A2A (excitatory) receptors,
consequently affecting other neurotransmitters involved in anxiety [58]. As mentioned
above, A1R are widespread in the brain, with the highest expression in the hippocampus,
cerebral and cerebellar cortex, and thalamic nuclei [59]. Additionally, A1R are moderately
expressed in the caudate-putamen and nucleus accumbens, acting presynaptically and
postsynaptically [23]. In turn, A2AR have the highest density in basal ganglia and are also
present in the extended amygdala and hypothalamus that are involved in the modulation
of anxiety and stress [60,61].

The exploration of anxiety-like behavior (elevated plus maze and open field test)
at several time points after withdrawal of ethanol intake following an intraperitoneal
administration of an acute ethanol dose (4 g/kg) revealed a more pronounced alteration
of anxiety between 12–18 h [62]; the acute administration of an A1R agonist (CCPA: 0.05,
0.125, and 0.25 intraperitoneally) reduced of anxiogenic-like behavior in the elevated plus-
maze, whereas the administration of the selective A2AR agonist (DPMA) had no effect.
Conversely, the selective A1R antagonist 8-cyclopentyl-1,3-dipropylxanthine (DPCPX)
triggered anxiety. These findings were also reported by another group [63] using the A1R
agonist R-N6-phenylisopropyladenosine (R-PIA) and the A2AR agonist 2-p-(2-carboxethyl)
phenylethyl-amino-5′-N-ethylcarboxamidoadenosine (CGS 21680). Other studies also
suggest the direct involvement of adenosine on anxiety, since A1R knockout mice displayed
increased anxiety and an aggressive profile [64,65]. These results indicate that A1R may be
involved in anxiety-like behavior and emerges as a promising pharmacological target to
attenuate anxiety conditions [66].

A2AR knockout mice also display alterations of anxiety-like behaviors, and ADORA2A
polymorphisms are associated with social behavior and exploratory activity, eliciting
anxiety-like behavior with the involvement of the anterior cingulate cortex and amyg-
dala [67–70]. Accordingly, the genetic deletion of neuronal A2AR prevents stress-induced
anxiety [17], whereas the overexpression of A2AR leads to an anxiogenic profile [71]. This
also implies a role of A2AR in the control of anxiety [72,73].

We hypothesize that ethanol exposure induces hyperexcitability of the adenosinergic
system in the adolescent brain, eliciting two fundamental alterations: (i) disruption of
brain maturation, promoting unbalance of adenosine A1/A2A receptors, inducing anxiety
behavior, and (ii) modifying adenosine-dependent neurotransmitter levels and the activity
of neurocircuits involved in anxiety.

The impact of ethanol intake on the density and expression of adenosine receptors has
resulted in somewhat conflicting results. Thus, chronic heavy intermittent ethanol vapor
exposure followed by withdrawal (blood ethanol concentration 162.1–217.9 mg/dL) for
64 h, followed by 8 h of withdrawal or not, causes an overexpression of A1R in the cerebral
cortex, with no changes of A2AR density in the striatum [74]. In contrast to these findings
in adult rodents, the intake of ethanol in adolescent mice triggers a persistent reduction
of brain A1R density during withdrawal [39]. A reduction of A1R expression and density
in the cerebral cortex and cerebellum of the offspring of dams exposed to ethanol was
also observed [75]. Notably, there is a positive correlation between A2AR affinity and the
A2AR/A1R affinity ratio but a negative correlation between A1R affinity and the potency
(ED50) of adenosine agonists to accentuate ethanol-induced motor incoordination [76].
In general, noxious situations trigger a downregulation of A1R and an upregulation of
A2AR [20,71].

These adaptive changes are expected to contribute to an increase in excitatory gluta-
matergic synaptic transmission [77,78], mainly by a reduction of A1R density, impairing
inhibitory control in synapses, as reported in experimental and clinical studies [79,80].
In particular, both glutamatergic N-methyl-D-aspartate (NMDA) receptors and voltage-
sensitive calcium channels are controlled by the tonic activation of A1R [81,82], as well as by
A2AR [83], implying that ethanol can imbalance the control of synaptic plasticity as well as
of neurodegeneration that is critically dependent on NMDA receptors and voltage-sensitive
calcium channels [84].
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Apart from this imbalanced adenosine modulation of plasticity that is critical for
the development of additive behaviors, adenosine modulation of reward circuitry is also
altered [32,72,85]. Reward circuitry activation by glutamatergic inputs from the cortex, as
well as dopaminergic inputs from the ventral tegmental area with projections to medium
spiny neuron striatum, through heterodimers of A2A-D2 and A2A-mGlu5 receptors, may
be probable pathophysiological mechanisms induced by ethanol abuse since this substance
increases adenosine levels causing hyperactivation of A2AR, with consequent increased
release of dopamine and glutamate [32,86,87]. Consequently, neural excitotoxicity, changes
in homeostatic regulation by oxidative stress, abuse risk, and several behavioral alterations,
such as anxiety, occur [35].

Adenosine receptors, in particular A2AR, control the activity of the hypothalamus–
pituitary–adrenal (HPA) axis [88]. In particular, adenosine modulates different circuits
of the pituitary gland [89]. In the intermediate region, the blockade of A2AR reduces
proopiomelanocortin and alfa-MSH levels, reducing the activation of the HPA axis [90].
Conversely, the inhibition of A2AR in the anterior lobe of the pituitary hyperactivates the
HPA axis, increasing proopiomelanocortin, adrenocorticotropic hormone, and consequently
blood corticosterone levels [90], which characterizes the anxiety-related profile. However,
further investigations focused on ethanol-induced anxiety versus adenosinergic modulation
of the HPA axis during adolescence should be undertake.

In summary, the knowledge of the balance between adenosine receptors (A1 and A2A)
in the adolescent brain and the control of neurotransmitters in different neurocircuits is
a significative step toward elucidating our hypothesis. Such well-outlined mechanisms
may support critical strategies for neuroprotection or treatment of anxiety induced by
ethanol consumption in adolescents by pharmacological or genetic manipulations targeting
adenosine receptors.

3. Ethanol versus Adenosine Effects on Depression

Depression is an affective disorder characterized by the presence of mood dysreg-
ulation typified by a depressed mood (dysphoria) and reduced ability to have pleasure
(anhedonia). Depressed patients may also present cognitive impairment and somatic
symptoms, leading to significant distress or impairment in general body system func-
tioning [91–93]. Depressive disorders can be triggered by several etiologies, including
drug abuse, such as opioids, sedatives, stimulants, and hallucinogens, whereas depressive
symptoms can appear during or shortly after intoxication or discontinuation of the drug of
abuse [91,94–96].

Epidemiological studies have consistently concluded that alcohol intake in a binge
pattern, mainly in late adolescence, elevates the risk of developing depressive symptoms
in young women between 20 to 30 years of age, when the consumption occurs frequently,
approximately 16% [97]. Moreover, drinking habits are often associated with depres-
sive symptoms and suicide in young individuals, with circa 11.5% showing depressive
behavioral and 2.8% suicidal ideation [98]. Ethanol is a CNS depressant which triggers de-
pressive symptoms by different molecular targets. According to Alasmari et al. [99], ethanol
consumption elicits modifications in dopamine, glutamate, and GABA neurotransmitter
release. It is noteworthy that significant dopaminergic reductions in the reward system or
in neurotransmitter recruitment play a role in the progression of negative reinforcement,
resulting in psychoneuroimmunological neuroadaptations related to neuroinflammation
and emotional disruption [99–102]. It has also been reported that ethanol exposure reduces
brain-derived neurotrophic factor (BDNF) in the hippocampus [103–105]. Such alterations
are more harmful during adolescence since, during brain maturation, an unbalance of
neuromodulatory mediators affects limbic circuitry, impairing the development of neuro-
circuitry in the prefrontal cortex, leading to increased limbic reactivity and consequently
changes in affective control [106,107].

In addition, adolescent subjects present elevated amygdala activity and decreased fear
extinction, mediated by changes in prefrontal cortex–amygdala connectivity [108]. Further-
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more, the adolescent brain is particularly sensitive to repeated ethanol exposure. Thus,
ethanol neurotoxicity associated with enhanced emotional reactivity and poor effective
control displays augmented risk of emergence and exacerbation of emotional dysregulation,
such as depression [2,107,109].

Accordingly, our group has reported, using animal models, that ethanol exposure dur-
ing brain development elicits a depressive profile, even after long-term abstinence [9,110],
with a reduction in BDNF levels in the hippocampus immediately upon withdrawal [10].
This observation is particularly relevant since there is a strong relationship between the
negative effects displayed by ethanol in neurotransmitter homeostasis, the HPA axis, and
neurotrophic factors [111]. However, alternative pathophysiological mechanisms may
explain the depressive profile elicited by ethanol intake in adolescent CNS, and one such
mechanism involves a dysfunction of the adenosine modulation system.

An interesting study indicated a relationship between adenosine and the pathophysi-
ology of alcoholism and depression [112]. Inhibitory mechanisms of adenosine in the CNS,
which modulate excitability, neurotransmitter release, and ion channel function regulation,
play a role in mood changes in alcohol-exposed patients [23,113,114]. In cell culture assays,
ethanol acute exposure increases adenosine levels and contributes to intoxicating and/or
rewarding effects [115,116]. High levels of adenosine hyperactivate A2AR signaling, which
develops desensitization across prolonged ethanol exposure [117]. Another fundamental
neuroadaptation consists of the reduction of the plasma membrane nucleoside transporter
ENT-1, which results in reduced extracellular and synaptic adenosine levels [72,117]. De-
spite these findings, few studies have addressed the impact of alcohol exposure during
adolescence on the adenosine modulation system.

Scarce studies have demonstrated that repeated ethanol administration (2.0 g/kg)
in adolescent mice increased the binding activity of cAMP response element-binding
protein (CREB) in the prefrontal cortex and hippocampus [118]. It is well-defined that
elevation of CREB expression in the dorsomedial striatum, olfactory bulb, and GABAergic
neurons of caudate-putamen, nucleus accumbens, and tuberculum olfactory, also occurs
upon recruitment of A2AR and is likely associated with negative behavioral changes (i.e.,
anxiety-like and depressive-like phenotype) induced by heavy ethanol consumption in
mice [71,119].

Taken together, the available evidence is suggestive of the involvement of the adeno-
sine modulation system in the depressive-like profile induced by ethanol exposure dur-
ing adolescence, namely through CREB overexpression resulting from the overactivation
of A2AR. It is noteworthy that A2AR hyperactivation directly influences A2A/D2 het-
erodimerization, as already mentioned above when discussing anxiety [120,121]. Accord-
ingly, functional interrelationships related to mesocortical and mesolimbic pathways of
A2A/D2 receptor interactions that are impaired by ethanol administrations may result in
emotional, motivational, rewarding, and addiction behavior disruption and learning dys-
function, which reinforces the putative role of the adenosine modulation system in several
neuropathologies, such as anxiety, drug addiction, schizophrenia, and depression [71,122].

To support this link between A2AR modulation and depressive-like behavior through
the influence of dopamine levels, Coelho et al. [71] investigated the impact of A2AR
overexpression in cortical areas for dopamine-related behavior. These authors found that
the hyperactivity of the A2AR pathway induces a depressive-like phenotype [71,123,124].
Furthermore, Kaster et al. [17] reported that the chronic caffeine administration or selective
adenosine A2AR antagonism or genetic deletion of adenosine A2AR is able to prevent
or revert mood and memory dysfunction, as well as neurochemical and synaptic deficits
induced by chronic stress.

In summary, acute and/or chronic ethanol exposure during adolescence disturbs the
homeostasis of the adenosine modulation system in the brain, contributing to hazardous
symptoms related to depression. In addition, overexpression of A2A/D2 receptors in
mesocorticolimbic areas, preferably in the forebrain, has been associated with depression
behavior, which may explain the depressive signs seen in aging and chronic stress [71].
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4. Ethanol versus Adenosine Effects on Cognition

Cognitive functioning depends on multiple integrated processes occurring in distinct
areas of the CNS. For instance, the acquisition of declarative (or spatial) memories begins in
the hippocampus, through synaptic changes, since damages to this structure compromise
recent memory, while remote memories remain intact. This fact suggests that cognitive
storage occurs in other structures, such as the neocortex, which has been widely pointed out
as an important storage location [125–127]. In turn, the targeting/selection of memories that
will become long-lasting is regulated by environmental factors and emotionality, among
other factors, and this modulation is operated by structures such as the prefrontal cortex
amongst others [126,128].

Classically, the neurotransmitters glutamate and acetylcholine play a fundamental
role in memory processing [129,130]. Nonetheless, other signaling systems robustly regu-
late memory acquisition, including the adenosine modulation system. Imbalances in the
adenosine system affect several CNS functions, including cognition, whereas overactiva-
tion of adenosinergic receptors, especially the A1R and A2AR subtypes, elicit memory
impairment [121]. Although it is complex to define the exact contribution of the different
adenosine receptors to the control of cognition since their responses differ upon homeo-
static or pathological conditions [131–133], a prominent role of A2AR seems evident: this is
best heralded by the observation that the pharmacological overactivation of A2AR [134]
or the overexpression of A2AR in forebrain neurons [135] or the opto-stimulation of the
A2AR transducing system [136] are each sufficient to cause a disruption of spatial reference
memory performance.

In keeping with our hypothesis of a parallel an opposite deregulation of the A1R/A2AR
imbalance upon repeated ethanol intake, we propose that cognitive deficits may also be
dependent on A1R/A2AR activity. Thus, overactivation of A1R inhibits the release of
glutamate and acetylcholine, impairing cognition processes, such as memory acquisition
and consolidation mediated by the hippocampus [129,130]. The overactivity of A1R may
lead to cognitive impairment. Accordingly, acute treatment with micromolar doses of
A1 receptor agonists induced deficits in memory acquisition and retention, whereas the
administration of selective A1 receptor antagonists reversed these negative effects [137].

Therefore, substances that promote an increase or imbalance in adenosine receptor
activity may produce mnemonic impairments, especially in critical periods of develop-
ment/remodeling of the CNS [138]. Epidemiological data reveal that ethanol consumption,
especially in a binge pattern, usually starts during adolescence [138–141], and neural circuits
in the immature brain are vulnerable to several factors that modulate brain function [141].

Accordingly, we reported that the cumulative four cycles of binge drinking paradigm
(3 g/kg/day) during adolescence impairs short-term memory in object recognition tasks
in the immediate ethanol withdrawal period [10]. In agreement with this, other binge
drinking studies during adolescence also found mnemonic disruption by applying diverse
cognitive tests [8,142–144], highlighting the potentially hazardous effects of binge-like
consumption on distinct types of memory.

Numerous pathophysiological mechanisms have been attributed to mnemonic ab-
normalities. Oxidative stress, deficits of neurotrophin levels, glutamatergic hyperactivity,
and reduction of neuronal viability and survival have been considered as possible causes
of memory impairments induced by adolescent alcohol binge drinking [8,142–145]. Al-
though all these previously described mechanisms induce mnemonic disturbances, the
probable involvement of the adenosine system should also be considered. Indeed, it was
reported that the acetate originating from ethanol metabolism could be incorporated into
acetyl-coenzyme A, supporting the production of cAMP and adenosine, thus bolstering
adenosinergic signaling [146]. In addition, alcohol consumption also inhibits adenosine
reuptake, which increases the extracellular levels of adenosine and, consequently, its ac-
tions [72]. These effects likely depend on the pattern of alcohol exposure. Acutely, alcohol
increases adenosine levels, which leads particularly to sedation and cognitive impair-
ment [137]. Chronic exposure seems to trigger a reduction of ENT-1 expression and an
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influx of adenosine, as mentioned above [115,146]. Both responses impair the balance
of influx/efflux of adenosine, thus reducing its regulatory activity, a reduction further
aggravated by the early heterologous desensitization of A1R and A2AR. Microdialysis
studies detected a four-fold increase in adenosine levels in the brain parenchyma following
ethanol exposure, which, among other responses, contributes to its sedative/hypnotic
properties, in addition to inducing cognitive disorders [137]. In fact, animal and human
studies confirm the potential of ethanol to display memory impairment related to adenosine
overactivity. Obviously, these toxicological events can also occur in adolescents and adult
individuals. Studies in zebrafish exploring the long-term consequences of early ethanol
exposure in distinct embryonic stages indicated the emergence of a mnemonic impairment,
which was reversed by acute administration of an ecto-5’-nucleotidase inhibitor (an enzyme
that converts extracellular AMP into adenosine) [147]. This emphasizes the influence of
the adenosine system on persistent cognitive deficits induced by ethanol exposure during
neurodevelopment [147].

However, there are some peculiarities related to maturing processes during adoles-
cence, which might elicit different results. For example, both increased expression of
adenosine receptors and downregulation of their reuptake seem to be associated with con-
tinuous consumption, accompanied by multiple episodes of withdrawal [37,115]. This fact
is of relevance since the binge drinking, frequently performed by teenagers, is characterized
by an intermittent consumption, which provides favorable conditions for the occurrence of
these mechanisms [139,141]. Unfortunately, few approaches have assessed the relationship
of this pattern of alcohol intake with adaptations of the adenosine system affecting memory
processing, especially during adolescence, which await further investigations to unravel
novel therapeutic strategies. Table 1 summarizes the studies addressing the involvement of
the adenosine system in the behavioral and cognitive impairments induced by ethanol.
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Table 1. The involvement of the adenosinergic system in behavioral and cognitive impairments induced by ethanol.

Drug(s) Evaluation
Condition Study Information Tests and Analysis Main Effects Development Period and

Possible Mechanisms Reference

Ethanol
DPCPX-selective

adenosine A1 receptor
antagonist

(CCPA)-selective
adenosine A1

receptor agonist

Under drug
withdrawal

Pattern of use: acute withdrawal
Type: pre-clinical study

Dose and use frequency: 0.05 mg/kg i.p.
of CCPA 15 min before of 3 mg/kg i.p of
DPCPX in ethanol withdrawal of 18 h in

the dose of 4 g/kg i.p.

Open field and
Elevated Plus Maze

test during
hangover

The anxiogenic effect of
CCPA was reverted

within 18h
of withdrawal

Adult mice/agonism of A1R
and antagonism of A1R

supporting the involvement
of A1R

[62]

Ethanol Under drug
withdrawal

Pattern of use: acute and
chronic withdrawal

Type: pre-clinical study
Dose and use frequency: ethanol 1.6 g/kg

(8% w/v) by inhalation in four
cycles of 16 h followed by 8 h of

abstinence; acutely (single withdrawal in
16 h) and chronically (multiple

withdrawal in 64 h)

Effects of single and
repeated episodes of

ethanol withdrawal on
A1R and A2AR in

controlling
ethanol-induced

convulsions

Increase in the
convulsion score upon

ethanol withdrawal

Adult mice/higher
expression of A1R in

the cortex
[74]

Ethanol Under drug
withdrawal

Pattern of use: chronic withdrawal
Type: pre-clinical study

Dose and use frequency: administration
of ethanol-free liquid diet (3.5% w/v)

with discontinuation during 6 h
after 18 days

Withdrawal score and
relative expression and

density of NMDA,
AMPA, A1R, and A2AR

Increase in seizures,
hyperreflexia, and
running episodes

Early adolescence to
adulthood/higher

expression of NMDA and
AMPA, reduction of A1R,

and no alterations of A2AR

[39]

Ethanol Under drug effect

Pattern of use: chronic exposition
Type: pre-clinical study

Dose and use frequency: administration
of ethanol in water (15% v/v) during fetal

phase in female rats, and after 60 days,
the offspring was tested

Body and brain weights,
as well A1R expression
in cortex, cerebellum,

hippocampus
and striatum

Reduction in weight and
lower expression of A1R
in cortex and cerebellum

Fetal development and
offspring/

reduction of A1R
[75]
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Table 1. Cont.

Drug(s) Evaluation
Condition Study Information Tests and Analysis Main Effects Development Period and

Possible Mechanisms Reference

Ethanol Under drug
withdrawal

Pattern of use: acute withdrawal
Type: pre-clinical study

Dose and use frequency: administration
of ethanol (6.7% v/v) with
discontinuation in 6–7 h

Withdrawal score Increase of irritability

Late adolescence until
adulthood/roleof the

adenosine receptors; higher
expression acutely of

nucleoside transporters

[63]

Ethanol
CGS21680-selective

adenosine A2A receptor
agonist

Under drug
withdrawal

Pattern of use: acute withdrawal
Type: pre-clinical study

Dose and use frequency: 0.3 mg/kg
i.p, during

6 h (0.5 h withdrawal) to 7 h
(1.5 h withdrawal)

Withdrawal score Reduction of irritability

Late adolescence until
adulthood/agonism of A1R

and A2AR with high
expression of adenosine
transporters in striatum

[63]

Ethanol Not informed

Pattern of use: chronic exposition
Type: pre-clinical study

Dose and use frequency: The
concentration of

ethanol was raised every fourth day,
increasing from 3 to 5 to 10% (v/v) for

10 weeks

Forced swim test, open
field and marble-burying

test

Anxiogenic and
depressive behavior

Adult/ENT1 null mice have
lower adenosine levels in
the striatum and reduced

A1R activation

[112]

Ethanol
Adenosine Not informed Literature review Not informed Not informed

Changes of adenosine
formation, adenosine
uptake, and effects on

adenosine receptor coupling

[23]

Ethanol
Adenosine Under drug effect Literature review Pre-clinical Ataxia, sleep effects

Not mentioned/relevance of
the inhibition of

alcohol-sensitive ENT1 in
the behavioral effects

of ethanol

[113]
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Table 1. Cont.

Drug(s) Evaluation
Condition Study Information Tests and Analysis Main Effects Development Period and

Possible Mechanisms Reference

Ethanol
Adenosine

Withdrawal
drug effect Literature review Pre-clinical ____________

Acute ethanol increases
extracellular adenosine in

cultured cells by selectively
inhibiting ENT1

[72]

Ethanol
Adenosine

Withdrawal
drug effect

Pattern of use: chronic exposure
Type: in vitro study

Dose and use frequency: ethanol: 100
mM for 2 weeks and adenosine 1.5

units/mL for 48 h

High pressure liquid
chromatography ____________

Ethanol enhances
extracellular adenosine

levels in NG108-15 and S49
lymphoma cells, causing

increase intracellular cAMP
levels mediated by

adenosine receptors

[115]

Ethanol Self-
administration

Pattern of use: Self-administration
Type: pre-clinical study

Finality of use: dependence model
Dose and use frequency: ethanol: 3–6 to

10% (v/v) for 4 days

Two-bottle choice

Goal-directed behavior,
density of A2AR in the
Dorsomedial Striatum

(DMS) and CREB
activity

Adult mice/habitual
seeking of ethanol is

regulated by ENT1; A2AR in
DMS regulate ethanol

drinking and CREB levels

[72]

Ethanol Under
drug effects

Pattern of use: ethanol acute
Type: in vitro study

Dose and use frequency: Pretreated
with S-(4-nitrobenzyl)-6-thioinosine (100
µM: NBTI); concentrations of ethanol of 0,

25, 50, 100, and 200 mM

Human bronchial
epithelial cell line ————-

EtOH acutely inhibits
adenosine uptake via

nucleoside transporters and
chronic EtOH exposure
desensitizes adenosine

transporters

[146]

Ethanol
AMPCP-inhibitor

of ecto-5′-nucleotidase
EHNA-inhibitor of

adenosine deaminase

Long-lasting
effects of ethanol

Pattern of use: chronic withdrawal
Type: pre-clinical study

Dose and use frequency: Embryos of
zebrafish were exposed to 1% (v/v)

ethanol; AMPCP at 150 mg/kg or EHNA
at 100 mg/kg i.p. using adult fishes

After 30 min of AMPCP,
EHNA injections

locomotor anxiety,
aggressive and social
interaction behaviors

were evaluated

AMPCP during the adult
phase reversed

aggressive parameters,
and both inhibitors

(AMPCP and EHNA)
recovered social

interaction

Adult/ecto-5′-
nucleotidase and adenosine

deaminase activities
modulate long-lasting

ethanol effects

[147]
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5. Caffeine as a Therapeutic Tool in Ethanol-Induced Anxiety, Depression, and
Cognitive Disorders
5.1. Anxiety

The hypothesis that the toxicological mechanisms of ethanol exposure result from
hyperexcitability of both A1R and A2AR function entails the conclusion that a non-selective
antagonism of A1R and A2AR, such as that afforded by caffeine [17,18], may be particularly
effective to manage the behavioral disturbances caused by exposure to ethanol. We next
discuss: (i) whether the non-selective blockade of A1R/A2AR should be considered a
potential target to revert the anxiety profile induced by ethanol; (ii) if the partial inhibition of
adenosine receptors induces or normalizes the balance and tonus during brain maturation
of adolescents; (iii) what dose and time regimen of caffeine intake would be necessary to
afford neuroadaptive benefits?

Caffeine emerges as a useful nutraceutical tool since this bioactive compound is a
non-selective adenosine receptor antagonist that is generally profiled to manage anxiety
disorders. The acute intake of caffeine triggers anxiogenic effects in humans and can bolster
panic attacks; tolerance emerges with continued administration and anxiety also emerges
upon withdrawal. Experimental studies demonstrate that caffeine (25 and 50 mg/kg,
intraperitoneally) display anxiogenic-like effects in the elevated plus-maze paradigm,
whereas it has no effect at 10 mg/kg; This suggests that caffeine presents contradictory
effects depending on distinct variables, such as dose regimen [148–150]. According to
Fredholm [151], non-toxic doses caffeine selectively blocks different subtypes of adenosine
receptors. Such low doses of caffeine are equivalent to the intake of 1-3 cups of coffee, which
decrease the actions of adenosine receptors, conferring a beneficial treatment or protection
strategy. Thus, we assume that the modulation of anxiogenic repertoire by caffeine de-
pends on the dose, the pattern of administration, gender, age, and period of exposure [152].
However, the relationship between caffeine dose versus anxiety-like phenotype is still
contradictory [148,153,154]. Firstly, acute caffeine at a high dose (25–50 mg/kg) can elicit
opposite anxiogenic and anxiolytic effects in behavioral tasks [148,153,154]. Such differ-
ences have been attributed to different anxiogenic levels intrinsically related to different
animal strains [154]. Furthermore, repeated exposure to caffeine as well as noxious stimuli
lead to an adaptative alteration of the expression and density of adenosine receptors in the
brain, which pave the way to consider that chronic administration of low caffeine doses
may be an important tool to revert or attenuate the anxiogenesis in pathological conditions,
namely upon exposure to ethanol.

We established and validated a new protocol of chronic caffeine treatment (10 mg/kg
for 21 days) in adolescent female animals submitted to a binge drinking ethanol challenge.
Firstly, we investigated alveolar bone homeostasis, in which caffeine prevented ethanol
bone loss that was not mediated by A2AR blockade [14]. Presently, we are testing this
protocol in an anxiety-like model, assessing new strategies of pharmacological manipula-
tions as therapeutic tools, i.e., agonism of A1R and antagonism of A2AR. An important
study conducted by Prediger et al. [62] demonstrated that A1R agonism in an ethanol
hangover model elicits anxiolytic effects, inferring that the downregulation blockade and
consequent inhibition of glutamate release are the main mechanisms related to anxiolysis.
However, A2AR should not be neglected since it has been indicated as a potential strategy
of neuroprotection in several models of brain damage [155–157]. We anticipate that the
blockade of A2AR may rebalance the abnormal release of glutamate and catecholamines
involved in anxiety.

5.2. Depression

As previously mentioned, caffeine may present potential pharmacological features to
attenuate depressive-like behavior displayed by ethanol exposure. Different studies have
reported that patients suffering from psychiatric disorders tend to increase caffeine intake
and longitudinal and prospective studies indicate that caffeine consumption decreases the
risk of depression and suicide [158–160].
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The inverse relationship between caffeine intake and mood deterioration was further
confirmed in animal studies, where the prophylactic administration of caffeine (1 g/L)
prevented mood and memory alteration induced by chronic stress [17]. Furthermore, the
authors identified that neuronal A2AR play a critical role in controlling chronic stress
induced in mice and may reverse changes caused by repeated stress [17]. A similar con-
clusion was obtained in stressed or depressed individuals [31,161] and in different animal
models [73], reinforcing the inverse relationship between caffeine consumption and the
incidence of depression [162,163] or suicide [164,165].

It is noteworthy that further research is fundamental since contradictory findings have
been reported: moderate doses of caffeine (7–8 mg/kg) added to ethanol beverages in a self-
administration protocol elicited a depressive-like phenotype in a sex-dependent manner,
positive for female rodents [10]. In addition to these experimental findings, clinical studies
reported depressive symptoms following withdrawal after intake of moderate doses of
caffeine (235 or 600 mg/day), suggesting an abstinence syndrome adverse effect [166,167].
However, these studies focused on withdrawal symptoms following caffeine-induced
dependence [168].

Preclinical studies involving alcohol, depression, and caffeine are still scarce. However,
there is evidence that alcohol-induced depressive behavior may be attenuated by pre- or
post-administration of caffeine. However, the regimen of alcohol and caffeine protocols
has resulted in conflicting results with respect to the effects of caffeine on alcohol-induced
depression. Clearly, additional studies are necessary to clarify this issue.

5.3. Cognitive Deficits

There is substantial evidence that the regular consumption of moderate caffeine atten-
uates memory deficits [169]. This is most evident when considering the beneficial effects of
caffeine intake in different models of Alzheimer’s disease such as in transgenic models lead-
ing to the over-function of the amyloid cascade [170,171] or tau [172], as well as in models of
sporadic Alzheimer’s disease [161]. This prevention of memory deficits by caffeine is mim-
icked by the pharmacological or genetic blockade of A2AR [133,135,172–174]. Moreover,
caffeine also prevents memory impairment in different animal models of neuropsychiatric
disorders through the antagonism of A2AR [175–177]. This paves the way for an expected
benefit associated with caffeine intake to dampen ethanol-induced memory impairment.

The interaction between ethanol and caffeine treatment has been studied under two
contexts: concomitant use in a recreational context and as a therapeutical tool to pre-
vent or reverse cognitive disturbances induced by alcohol. Here, we have chosen the
therapeutical context to describe the therapeutic aspect of this association. Human stud-
ies demonstrated that the chronic consumption of caffeinated beverages improves reac-
tion time (an attentional, probed-recall memory performance, and cognitive measure-
ment) in healthy volunteers chronically administered with low doses of ethanol challenge
(0.5–0.75 g/kg) [178,179]. Such clinical findings are in line with experimental studies report-
ing that an acute dose of caffeine (50 mg/L) improves memory deficits induced by chronic
ethanol exposure in zebrafish models, whereas a higher caffeine dose (100 mg/L) failed to
improve ethanol-induced cognitive deficits [180]. Additionally, the previous administration
of low doses of caffeine (5 mg/kg) prevents retrograde memory damage induced by a single
dose of ethanol (3.0 g/kg) [181]. All these results indicate that caffeine might be an effective
therapeutic tool to prevent or mitigate alcohol-induced mnemonic disorders, although it
still remains to be defined which adenosine receptor is involved in this caffeine-mediated
alleviation of ethanol-induced memory impairments.

Thus, we provide fertile grounds to plough the hypothesis that caffeine might be a novel,
potentially relevant strategy to attenuate some of the deleterious effects of ethanol. However,
these putative beneficial effects likely depend on several interfering factors [10,34], and
several mechanistic questions remain unresolved. Table 2 summarizes the studies addressing
the effects of caffeine on anxiety, depression, and cognitive impairments induced by ethanol.



Pharmaceuticals 2022, 15, 1323 14 of 25

Table 2. Caffeine, adenosinergic system, and behavior.

Evaluation Condition Study Information Tests and Analysis Behavioral effects Development Period and
Possible Mechanisms Reference

Under drug effect/
abstinence

Pattern of use: acute, subchronic,
and withdrawal

Type: pre-clinical study
Dose and use frequency: Under drug effect:
10, 25, 50, and 100 mg/kg i.p.; followed by
50 mg/kg i.p. for 7, 14, and 21 days. Upon

abstinence: 50 mg/kg i.p. for 21 days
following 2 days of abstinence

Open Field test, Elevated
Plus Maze, and Social

interaction test

Low doses cause no
alterations/moderate to high

doses are anxiogenic

Adult/antagonism of
adenosine receptors,

noradrenaline transmission,
and benzodiazepine ligands

[148]

Several

Pattern of use: acute, chronic, toxic,
and withdrawal

Type: clinical studies
Dose and use frequency: not found

Clinical data Anxiogenic Adult/not investigated [149]

Under drug effect/
abstinence Literature review Clinical data

Anxiogenic (panic attack at
an high dose of 750 mg)

under effect/anxiolytic or
anxiogenic upon withdrawal

Not mentioned/antagonism
of adenosine and

noradrenaline overactivity
[150]

Under drug
Effect

Pattern of use: chronic
Type: pre-clinical and in vitro studies

Dose and use frequency: 20 mg/kg i.p. after
one week

Cortical slice
Increases the binding density

of the A1R ligand [3H]L-
phenyl-isopropyl-adenosine

Adult/upregulation of
adenosine receptors [151]

Under drug effects

Pattern of use: acute and pre-treatment
Type: pre-clinical and clinical study

Dose and use frequency: 8, 15, 30 and
60 mg/kg

Elevated Plus Maze test Low doses (not alterations)
and high doses (anxiogenic) Adult/adenosine receptors [152]

Under drug effect

Pattern of use: acute
Type: pre-clinical study

Dose and use frequency: Under drug effect:
10 and 30 mg/kg i.p.

Elevated Plus Maze
Dose-response curve

obtained in a light
environment

Adult/participation of the
GABAergic pathway [153]



Pharmaceuticals 2022, 15, 1323 15 of 25

Table 2. Cont.

Evaluation Condition Study Information Tests and Analysis Behavioral effects Development Period and
Possible Mechanisms Reference

Under drug effect

Pattern of use: acute
Type: pre-clinical study; both gender

Dose and use frequency: 25 or 50 mg/kg i.p.
during one week

Open Field and Elevated Plus
Maze Anxiolytic Adult/antagonism of A2AR [154]

Under drug effects
Pattern of use: acute

Type: pre-clinical study
Dose and use frequency: 10 or 30 mg/kg i.p.

Elevated Plus Maze test High doses (anxiogenic)

Agonism and antagonism
of adenosine

receptors/involvement
of A1R

[62]

Withdrawal drug effects

Pattern of use: chronic
Type: pre-clinical study

Dose and use: 1g/L for 3 weeks
frequency: ad libitum

Forced-swimming test,
tail-suspension test and

elevated plus maze

Depressive, anxiogenic, and
anhedonia-like behavior

Adult mice/blockade
of A2AR [17]

Withdrawal drug effects

Pattern of use: chronic
Type: pre-clinical study

Dose and use: 1 g/L for 2 weeks
frequency: ad libitum

Open field, novel object
recognition task, expression

of receptors

Prevented memory
impairment and

neurodegeneration
Adult/not specified [161]

Withdrawal drug effects

Pattern of use: chronic
Type: pre-clinical study

Dose and use frequency: 0.1, 0.3 or 1.0 g/L.
Frequency: ad libitum

Open field, Novel object
recognition task and elevated

plus maze

Anxiogenic behavior,
negative impacts on

non-associative learning

Adolescence to young
adult/adenosine antagonism;

neuroinflammation
and BDNF

[162]

Withdrawal drug effects

Pattern of use: chronic exposition
Type: clinical study

Dose and use frequency: coffee
regular consumption

(235 and 600 mg/day) twice within
one week

Withdrawal symptoms

Headache, increased
irritability, decreased

performance, and disturbed
concentration, as well as
depression and anxiety

Adolescents and
adults/mood impairments

such as depression
and anxiety

[166,167]
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Table 2. Cont.

Evaluation Condition Study Information Tests and Analysis Behavioral effects Development Period and
Possible Mechanisms Reference

Under drug effects

Pattern of use: acute, subchronic,
chronic exposure

Type: pre-clinical study
Dose and use frequency: several

administrations

Alzheimer’s model Prevention of
cognitive decline

Adult mice and cell
cultures/neuroprotection

by caffeine
[169–171]

Under drug effect

Pattern of use: chronic
Type: clinical study

Dose and use: caffeine (300 mg/day) and
ethanol (0.5 g/kg) caffeine (150 mg/kg and

ethanol 0.5 g/kg)
frequency: not specified

Probed-recall memory,
sleepiness scale, memory and

profile of mood states

Caffeine reversed the effects
of ethanol on reaction

time in a dose-related manner
Young adult/not investigated [178]

Under drug effect

Pattern of use: chronic
Type: clinical study

Dose and use frequency: caffeine
(300 mg/70 kg)

and ethanol (0.75 g/kg) o.r.. for 8 weeks

Standing steadiness, auditory,
visual and complex reaction

time, manual dexterity,
numerical reasoning,

perceptual speed,
verbal fluency

Body sway in up to 40 min;
caffeine reduces simple
auditory and complex

reaction time

Young adult/caffeine
antagonized the

ethanol-induced increase in
simple auditing, simple

visual, and complex
reaction time

[179]

Withdrawal drug effects

Pattern of use: acute and chronic in
combination with ethanol
Type: pre-clinical study

Dose and use frequency: 0.5% of ethanol
and 50 mg/mL

of caffeine during 1 day to 15 days

Object discrimination Learning in the
zebrafish model

Adult/combination in
withdrawal cause no

alterations; low to moderate
doses of the combination
alter object discrimination

[180]

Under drug effects

Pattern of use: acute ethanol
Type: pre-clinical study

Dose and use frequency: 0.5% of ethanol
and 50 mg/mL

of caffeine during 1 day to 15 days

Novel odor Prevention of
retrograde amnesia

Adult rats/low doses of
caffeine prevent impairments
cognitive induced by ethanol

[181]
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The contradictory evidence related to co-exposure versus beneficial/detrimental ef-
fects probably results from the lack of well-designed investigations to isolate the different
variables. We also highlight the putative potential of binge drinking during adolescence to
imbalance the adenosine modulation system, which still requires further investigation. If
such neuroadaptations are confirmed on cognitive impairment, is caffeine able to attenuate
or prevent this dysfunction? Under what conditions (dose, frequency, and consumption
time) do these benefits occur? These are some questions in this field that still need to
be answered. Figure 1 shows the probable targets related to caffeine in preventing brain
alterations induced by ethanol on emotionality and cognition impairment.
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Figure 1. Adenosine action on A1 and A2A receptors promotes important regulation of neurotrans-
mission in the brain (A); excessive consumption of ethanol has the potential to raise adenosine levels,
modulating ENT1, generating increased levels and hyperactivity of adenosine in the synaptic cleft,
especially acting on A1 receptors (B); as a consequence, neuroadaptation occurs, reducing the tone of
A1 receptors, favoring the hyperactivity of A2A receptors (C). Caffeine, by blocking adenosine recep-
tors, promote the modulation of A2A receptor-mediated hyperactivity, reducing the effects resulting
from ethanol consumption (D), and, in the long term, could reverse neuroadaptation (E). Thus, in
theory, caffeine could be used as a therapeutic agent to combat the deleterious effects of ethanol.
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6. Conclusions

Ethanol is a psychoactive substance widely consumed by young individuals. It is
well documented that ethanol consumption elicits several negative effects on emotionality
and cognitive function, which might persist into adult life, suggesting different neuro-
toxicological mechanisms according to the pattern of consumption. Few studies have
addressed the molecular processes involving the adenosine modulation system in the be-
havioral changes induced by ethanol consumption, especially in a binge-drinking pattern.
In this review, we highlighted some probable events triggered by ethanol exposure to
mediate its harmful effects focusing on the alteration of the adenosine neuromodulation
system during adolescence and persisting until adulthood. In addition, we presented
a critical discussion about the unbalance of adenosine A1/A2A receptors to justify the
role of caffeine (a non-selective blocker of adenosine receptors) at low doses as a robust
neuroprotection strategy for improving emotional disorders and cognitive impairments
induced by ethanol exposure.
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