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Abstract: N-methyl-D-aspartate receptors (NMDARs) are widely distributed in the central nervous
system (CNS) and play critical roles in neuronal excitability in the CNS. Both clinical and preclinical
studies have revealed that the abnormal expression or function of these receptors can underlie the
pathophysiology of seizure disorders and epilepsy. Accordingly, NMDAR modulators have been
shown to exert anticonvulsive effects in various preclinical models of seizures, as well as in patients
with epilepsy. In this review, we provide an update on the pathologic role of NMDARs in epilepsy
and an overview of the NMDAR antagonists that have been evaluated as anticonvulsive agents in
clinical studies, as well as in preclinical seizure models.

Keywords: N-methyl-D-aspartate (NMDA) receptor; seizure; epilepsy; NMDA receptor antagonist;
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1. Introduction

Epilepsy is a common neurological disorder, affecting about 1% of the general pop-
ulation, approximately 50 million people worldwide [1]. Despite the widespread use of
anti-seizure medications (ASMs) over the past few decades in the management of epilepsy,
about one-third of patients with epilepsy show no response to anti-seizure medication [2,3].
The International League Against Epilepsy (ILAE) defines drug-resistant epilepsy (DRE) as
the “failure of adequate trials of 2 tolerated, appropriately chosen and used AED schedules
(whether as monotherapies or in combination) to achieve sustained seizure freedom” [4].
The incidence of DRE was recently found to be about 19.6% of total epilepsy cases [5]. This
calls for the need for further understanding of the mechanisms implicated in epileptogene-
sis, which could bolster treatment options.

Several pathways have been implicated to play a role in epileptogenesis [6], among
which the desynchrony between neuronal excitation and inhibition is widely speculated
to majorly contribute. Previous research on seizures from temporal lobe epilepsy (TLE)
has demonstrated that glutamate levels rise in the extracellular fluid and that glutamate
can directly activate N-methyl-D-aspartate receptors (NMDARs) and cause neuroexcita-
tory toxicity [7]. An overwhelming body of evidence exists centered around the role of
NMDARs in several neurological disorders, including epilepsy. More recently, a sub-type
of autoimmune encephalitis has been found to be associated with ~20% of epilepsy cases.
This has further highlighted the role of the NMDAR complex in epileptogenesis [8]. These
factors have formed the basis of research directed at both the preventive and therapeutic
roles of NMDAR-modulating therapy in the management of neurological disorders.

The NMDAR complex is characterized by excitatory neurotransmitters (glutamate
receptors) located on the synapses of interneurons regulating the balance between neuronal
excitation and inhibition, and it has been implicated to play a role in epilepsy [9,10]. Several
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animal models have consistently shown that blocking NMDARs is effective in both the pre-
vention and reversal of neurological disorders, including epilepsy [11]. A high sensitivity
to modulation, as well as a proclivity for negative side effects, including neurotoxicity, has
made it challenging for the development of newer agents. In this review, we highlight the
role of NMDAR-guided therapy by providing an overview of the key pathophysiology,
linking the role of the NMDAR complex in epilepsy with an emphasis on drugs currently
in use, as well as on-going preclinical studies utilizing NMDAR-modulating therapy.

2. NMDAR Complex

The NMDAR is one of the ionotropic glutamate receptors (iGluR) serving as a target
for action of the major excitatory neurotransmitter glutamate at the presynaptic terminal
and post-synaptic membrane in the central nervous system (CNS) [12].

The NMDAR complex contributes to normal brain functioning, which begins in-
utero. By providing neuronal excitation that promotes survival and efficient connectivity,
NMDARs are involved in neurodevelopment [13]. This developmental period extends
from the third trimester of pregnancy to the first several years of postnatal life in humans.
NMDAR transmission is involved in the connectivity between hippocampal and prefrontal
circuits [14]. NMDAR activation in hippocampal pathways controls an activity-dependent
synaptic modification called long-term potentiation (LTP), contributing to learning and
new memory formation [15,16].

In addition, the NMDAR complex is involved in spatial learning [17]. Furthermore,
NMDAR transmission is involved in persistent neuronal firing, which has been implicated
in underlying neurocognitive disorders and particularly in aversive mental states [18].

The receptor complex consists of a heterotetrametric structure in which an NR1
(GluN1) subunit is ubiquitous, and there are varying combinations of NR2 (GluN2) or NR3
(GluN3) subunits, with multiple binding sites for glutamate, polyamine, Mg2+, and glycine
(Figure 1). The varying combinations of subunit binding sites determine the pharmacologi-
cal regulation of the NMDAR. The glutamate binding site is situated on the NR2 subunit,
and, similarly, the glycine binding site is situated on the NR1 subunit. These binding sites
exhibit varying neuroanatomic expressions.
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(GPR40) affected N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmis-
sion through the regulation of NR2A and NR2B expressions on the surface of neurons 
[30]. Furthermore, the endocytosis of NMDARs and the binding of GPR40 with NR2A and 
NR2B were regulated through GPR40 [30]. Alterations in the interactions involved in 
NMDAR trafficking could open new avenues of therapeutic targets to alleviate neuronal 
overexcitation in epilepsy. 

  

Figure 1. Schematic representation of N-methyl-D-aspartate receptor (NMDAR) complex and binding
sites for GluN1 and GluN2 for some NMDAR antagonists. Ifenprodil and eliprodil mainly bind
to GluN2B subunit. Mg2+, dizocilpine (MK-801), ketamine, and memantine act as noncompetitive
antagonists with binding sites inside the ion channel pore region.
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In the resting state, the channel is blocked by Mg2+ and remains equally permeable to
Na+ and Ca2+ ions [19,20]. Membrane depolarization relieves the Mg2+ blockage, and the
resulting neuronal excitation in-term mediates the NMDAR responses contributing to the
neurotoxicity from excess Ca2+ ions. Neurotoxicity resulting from overexcitation has been
widely speculated to play a major role in epilepsy [21].

2.1. NMDA Trafficking

NMDAR delivery to synapses and intracellular trafficking both depend on PDZ
proteins [22]. NMDARs are not evenly distributed once they reach the neural surface,
showing a higher concentration in postsynaptic densities and a lower one in extra-synaptic
compartments [23]. Surface NMDARs are dynamically anchored in the postsynaptic
density (PSD) region via an interaction between GluN2 subunits and proteins with PDZ-
binding domains [24]. However, there are still questions about where receptor membrane
trafficking occurs. The dysregulation of NMDAR trafficking has been implicated in several
neuropsychiatric disorders in the past, and increasing evidence points to their involvement
in epilepsy [25].

The trafficking of NMDARs to membranes was noted through an increase in synap-
tic and/or presynaptic NR1 subunits in a rat model of status epilepticus (SE) [26]. This
increase in NMDA expression coincides with the loss of synaptic inhibitions through the
internalization of (GABA)A receptors implicated in the propagation of seizures to SE [27].
Furthermore, GRIN2A mutations can impact NMDAR trafficking overall by altering the
levels of GLuN2A proteins and by altering GLuN2A membrane trafficking [28]. The defec-
tive interaction of protein binding sites involved in vesicular trafficking (SNX27) due to the
phosphorylation of GluN2A has also been implicated in NMDAR trafficking defects [29].
In animal models and human epileptic brain tissue, G-protein-coupled receptor 40 (GPR40)
affected N-methyl-D-aspartate (NMDA) receptor-mediated synaptic transmission through
the regulation of NR2A and NR2B expressions on the surface of neurons [30]. Further-
more, the endocytosis of NMDARs and the binding of GPR40 with NR2A and NR2B were
regulated through GPR40 [30]. Alterations in the interactions involved in NMDAR traf-
ficking could open new avenues of therapeutic targets to alleviate neuronal overexcitation
in epilepsy.

2.2. NMDA Modulation (Glycine and Other Sites)

The binding of a co-agonist at the glycine-mediated site (GMS) is necessary for NM-
DAR action, in addition to glutamate. The modulation of the GMS of the NMDAR is
low, given the low saturation in vivo despite the high CSF concentrations of glycine [31].
D-serine serves as a major endogenous co-agonist of the NMDAR, and D-serine levels were
recently found to be upregulated in intractable epilepsy [32–34]. It is possible that endoge-
nous glycine does not fully stimulate NMDARs as suggested by the selective potentiation
of the convulsant activity of NMDA by D-serine [35]. However, the therapeutic effect of
glycine modulation is severely limited given the requirements of a high dose and a narrow
therapeutic window and its severe adverse effects, such as oxidative damage, neurotoxicity,
and nephrotoxicity [36].

When compared to other NMDAR subtypes, NR2B-containing receptors appear to
contribute more favorably to pathogenic processes, such as epilepsy caused by excessive
glutamatergic pathway activation. This makes them more of a preferential target for modu-
lation [37]. A common mechanism involved in the allosteric modulation of NMDARs is
through proton selectivity by shifting the pKa of the proton sensor [38,39]. This mechanism
is involved in selective allosteric inhibition via ifenprodil, polyamines, and extracellular
zinc at NR2A-containing receptors [40,41]. The allosteric modulation of NMDARs through
a novel synthetic analogue of 24(S)-hydroxycholesterol-SGE-301 prevented the NMDAR
dysfunction in patients with autoimmune encephalitis from NMDAR antibodies in cul-
tured neurons [42]. A potential mechanism implicated was the prolonged decay time of
NMDAR-dependent spontaneous excitatory postsynaptic currents suggesting a prolonged
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open time of the channel. More recently, miR-219, a microRNA, was implicated to play a
regulatory role in the modulation of excitatory neurotransmission in epilepsy [43]. The
upregulation of NR1 subunits was noted through an inverse relationship between miR-219
and NMDA-NR1 expression in the amygdala and hippocampus of patients with intractable
mesial temporal lobe epilepsy [43].

2.3. NMDA mGluR and AMPA Interactions

Metabotropic glutamate receptors (mGluRs), which are a subtype of glutamate re-
ceptors, are members of G-protein-coupled receptors (GPCRs) involved in intracellular
secondary messenger systems modulating neuronal excitability, which is of relevance
in epilepsy [44]. mGluR5 responses have been found to be regulated by the activation
of NMDARs via a protein kinase C (PKC) pathway [45,46]. Prior work has shown that
mGluR5-positive modulators can attenuate the behavioral effects of NMDAR antagonists,
PCP and MK-801 [47,48]. Despite the fact that there have not yet been any large clinical
trials focusing on mGluR5 in epilepsy, selective group I mGluR antagonists were explored
for their anticonvulsant effects in rodent models of epilepsy by Chapman et al., 2000,
and Yan et al., 2005 [49,50]. However, the limitations behind their potential usefulness
as anticonvulsant drugs would be due to the dominant effects of mGluR1 in cerebellar
function and motor control [51]. Accordingly, patients who express autoantibodies against
mGluR1 [52] or Homer-3 (a scaffolding protein for mGluRs) [53] exhibit signs of cerebellar
dysfunction, such as ataxia.

The increased phosphorylation of NMDA and AMPA receptor subunits in rat models
has been implicated in the regulation of synaptic plasticity and memory consolidation
via the activation of ERK1/2 signaling [54]. In humans, Anti-GluA1 and Anti-GluA2
antibodies that target AMPAR subunits have been found in patients with epilepsy caused
by autoimmune limbic encephalitis [55,56]. However, AMPAR autoantibodies were found
to not have any interaction with NMDARs [57]. More recently, a combination of NMDAR
and AMPAR antagonists in a mice model demonstrated that these receptor interactions
could potentially contribute to delayed epileptogenesis through granule cell dispersion [58].
Though the response was a delay rather than the prevention of epileptogenesis, further
clinical trials are warranted to study this interaction.

3. NMDAR Alterations and Their Role in Human Epilepsy

The alterations in NMDARs in epilepsy have been extensively investigated in the past
through the use of a variety of techniques, such as gene expression, immunoblotting, and
binding affinity techniques.

Through an in situ hybridization technique, Bayer et al., in 1995, showed that a loss of
NR1-positive cells was associated with overall neuronal loss involving pyramidal cells [59].
Furthermore, NR2 subunit mRNA levels were increased in patients with hippocampal
sclerosis (HS) [60]. In the dentate gyrus, there appears to be an increase in NR2 immunore-
activity that is associated with abnormal mossy fiber sprouting in this region [61]. It has
been consistently demonstrated that the inhibition of the glutamate binding site (NR2
subunit) decreases granule cell hyperexcitability in cases showing mossy fiber sprouting in
hippocampi [62–64]. More direct evidence from pyramidal neurons in human cortical slice
preparations from patients with mesial temporal lobe epilepsy showed that an increased
endogenous activity of NMDARs was associated with neuronal hyperexcitability [65].
More recently, in focal epilepsies, through the use of [(18)F]GE-179, a ligand that selectively
binds to open NMDAR ion channels, McGinnity CJ et al. demonstrated NMDA channel
overactivity through the use of positron emission tomography (PET) [66]. An alteration
in NMDAR subunit (NR2B) composition in cortical dysplasia tissue has been shown to
contribute to functional abnormalities due to decreased Mg2+ sensitivity of the receptor,
which results in neuronal hyperexcitability [67]. In addition, increases in the levels of NR2B
and 2D subunit mRNAs and functional NR2B-containing receptors (using a ligand-binding
method) were noted in tuberous sclerosis [68]. Dysplastic neurons showed increased ex-
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pressions of NR2B and 2C subunit mRNAs, whereas only NR2D mRNA was upregulated
in giant cells, suggesting that dysplastic neurons and giant cells contribute differently
to epileptogenesis in the tuberous sclerosis complex [68]. These studies emphasize that
various alterations in the different subunits of NMDARs (especially NR1 and NR2 subunits)
in different brain regions could be responsible for seizure development accordingly among
the several types of epilepsies.

In human patients with symptomatic epilepsies, the regulation of the GluN2B sub-
unit of the NMDAR complex via NRG1-ErbB4-Src signaling pathways was identified as
a potential modulating target through the use of the immunoblotting technique [69]. In
patients with intractable temporal lobe epilepsies, D-serine and NMDAR1 expressions
were significantly increased [34]. These observations highlight the importance of neuro-
chemical targeting, which can be further explored in the future to guide anti-NMDAR
complex therapies.

Moreover, a variety of animals models of seizures and epilepsy have demonstrated
alterations in NMDAR expressions and protein levels, although the results vary depending
on the NMDAR subunits, brain regions, and animal species assessed. This has been
comprehensively reviewed in the literature [33,69–71].

3.1. Genetic Mutations of the NDMA Receptor

Various genetic expressions of the subunits of the NMDAR (GluN1, GluN2A-2D,
and GluN3A-3B) can contribute to the development of distinct clinical phenotypes [72,73].
The genetic mutations in patients with epilepsy are classified broadly as loss-of-function,
no-change, and gain-of-function mutations [73].

The GluN1 subunit, encoded by GRIN1, is typically involved in loss-of-function
mutations contributing to structural changes resulting in a wide range of epilepsies
of variable semiology (spasms, tonic and atonic seizures, hypermotor seizures, focal
dyscognitive seizures, febrile seizures, generalized seizures, status epilepticus, myoclonic
seizures, etc.) [74]. Reportedly, up to half of GRIN1 mutations are loss-of-function mu-
tations, with the rest being gain-of-function mutations. Hence, the co-existence of both
hypo-functioning and hyper-functioning NMDARs within the same disease phenotype
invariably contributes to electrophysiological imbalance [10,12]. However, this relation of
NMDAR function to the pathogenesis of epilepsy still needs further clarification. GRIN2A
mutations, which can alter the GluN2A receptor, occur more so than any other of the
NMDAR subunit mutations [75]. About 70% of GRIN2A variants are likely to lead to
the development of epilepsy, whereas 30% of individuals with GRIN2B variants have
epilepsy [76,77]. GluN2 subunit mutations may control epileptiform abnormalities arising
from the hippocampus [78]. GRIN2D mutations are associated with treatment refractory
epileptic encephalopathy [79].

Various alterations in subunits in different brain regions are, thus, held accountable
for seizure development in different types of epilepsies. Identifying receptor mutations
has, hence, been implicated to contribute to a personalized medicine approach in epilepsy
treatment. Modeling NMDAR dysfunction with neurons derived from human induced
pluripotent stem cells (iPSCs), as well as identifying signaling pathways, has been suggested
to further contribute to the development of drugs targeting the NMDAR complex of gene
regulatory variants [80].

3.2. Anti-NMDAR Encephalitis

Autoimmune encephalitis from anti-NMDAR antibodies has gained significant at-
tention over the past decade [81,82] to the extent of being regarded as its own entity of
epilepsy [83,84]. Anti-NMDA-NR2A/B antibodies are present in ~20% of patients with
epilepsy [8]. The autoantibodies against NMDARs can cause a reversible loss of NMDAR
function on the surface of neurons [85]. Several mechanisms are involved:

(a) Internalization of NMDAR,
(b) Disruption of interaction of NMDAR with EphB2R,
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(c) Decreased long-term potential (LTP), which can lower the threshold for seizures [86–89].

Reductions in excitatory neurotransmission caused by NMDAR antibodies in an vitro
rat model may play a role in NMDA encephalitis [90]. These mechanisms invariably
result in a state of excitatory and inhibitory chemical imbalance contributing to seizures
in a significant number of patients. These are typically improved by the prompt use of
immunomodulatory therapy [91]. A marked decrease in anti-NMDA-NR1 antibody titers
was seen following the administration of steroids, intravenous immunoglobulin G (IVIG),
or plasmapheresis/plasma exchange, which are part of the first-line management strategies,
and following the administration of steroid-sparing agents: rituximab, cyclophosphamide,
or both [85,92,93].

4. NMDAR Modulators Currently in Use
4.1. Ketamine

Ketamine acts as a noncompetitive NMDA antagonist and has low affinity for the
NMDAR at the phencyclidine site within the ionotropic channel [94]. It was first syn-
thesized in 1962. Conventionally used as an anesthetic agent due to its rapid onset of
action and short half-life, ketamine induces a state of “dissociative anesthesia” resulting
from an overall CNS depressant effect rather than an inhibitory effect [66,95]. The anticon-
vulsant effects of ketamine can augment the seizure protective effect of benzodiazepine
loading [96,97]. This therapeutic benefit may result from the upregulation of NMDARs
during prolonged seizures at the same time when there is an overall decrease in sensitivity
to GABA agonists [98–100].

Animal models have consistently shown the synergistic anticonvulsant effects of
ketamine therapy in combination with other antiepileptic medications demonstrating both
dose- and time-dependent adjuvant effects [101,102]. A multicenter retrospective study
provided preliminary data on the safety and efficacy of intravenous ketamine use in the
treatment of refractory status epilepticus, which is defined as seizure activity that does not
respond to two antiepileptic drugs at appropriate doses [103]. High-dose and the early
initiation of ketamine infusions (2.2 mg/kg/h) were associated with a decrease in seizure
burden in patients with super-refractory status epilepticus (SRSE) [104]. The favorable
effect on the hemodynamic profile, which is due to ketamine’s sympathomimetic properties,
unique benefits of conscious sedation, and overall efficacy in treating refractory seizures,
makes ketamine an agent to consider using in the management of patients with severe
acute traumatic brain injury [105–107]. In critically ill patients where polypharmacy is a
concern, ketamine use can limit the need for the further escalation of sedation and thereby
help to avoid the need for intubation [108,109]. Further prospective randomized control
trials are required to establish a consensus statement on dosing ketamine in refractory
epilepsy management in adult and pediatric populations.

The adverse effects of ketamine infusions include neuropsychiatric symptoms, such as
hallucinations and delirium, and arrhythmias. There has been a rare report of new-onset
seizures in a pediatric patient [100]. Ketamine has been found to induce dose-dependent
neuronal injury in animal models through apoptosis, particularly in the frontal cortex and
hippocampal regions [110,111]. This, at the same time, is offset by the neuroprotective
effect conferred by ketamine through an increase in regional cerebral blood flow volumes,
thereby limiting the damage from an incomplete cerebral ischemia [112,113]. More recently,
the therapeutic effect of ketamine has been explored in targeted therapy on spreading de-
polarizations, which represent a unique pathophysiology contributing to secondary injury
progression in severe acute brain injury [114–116]. Furthermore, an interplay between
seizures and spreading depolarizations has been suggested [116,117]. This further empha-
sizes the fact that NMDARs are involved in this epiphenomenon of secondary brain injury
progression. The prevention of secondary brain injury spread has potential to improve
outcomes in critically ill patients with sub-arachnoid hemorrhage, traumatic brain injury,
and malignant ischemic strokes.
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4.2. Memantine

Memantine is a noncompetitive, open-channel NMDAR antagonist that blocks NM-
DAR ion channels by binding to or near Mg2+ binding sites preferentially when the receptor
channel is open, thereby inhibiting the prolonged influx of Ca2+ ions with near-normal
physiological NMDA activity [118]. The efficacy of memantine as an anticonvulsant for
both monotherapy and in combination with other AEDs was explored in preclinical work
in the early 1980s [119–121].

In a lithium–pilocarpine mice model, memantine prevented cognitive impairments
post-status epilepticus [122]. In a pentylenetetrazole (PTZ) model of seizures, memantine
prevented convulsions and the development of morphological changes [123]. Memantine
had a significant neuroprotective effect on hippocampal and cortical neurons in culture
against glutamate and NMDA excitotoxicity [124]. A mice model showed evidence of
a decrease in the frequency of induced seizures with the addition of memantine [125].
However, the addition of memantine to the AED regimen in GRIN2B-mutation-related
encephalopathy did not result in any significant decrease in the frequency of seizures in a
group of six patients [126].

Given the paucity of clinical data, more clinical trials testing the anticonvulsant effects
of memantine as an add-on therapy on seizure types in patients with epilepsy are needed.

4.3. Amantadine

Amantadine was originally used in the management of influenza. It acts by increasing
the release and inhibiting the reuptake of dopamine in the brain. In addition to the several
other pharmacological actions of amantadine, its role in NMDAR blockage by increasing
the rate of channel closure was demonstrated in the early 1990s [127].

The safety and efficacy of amantadine as an add-on therapy in pediatric refractory
generalized seizures was first evaluated in a small case series of four patients by Shahar et al.
in 1993 [128,129]. In a larger retrospective review of 13 patients, a target amantadine dose of
4 to 7 mg/kg/day was utilized in conjunction with other AEDs. A total of 58% of patients
had at least a 50% seizure reduction, with the majority (nearly 86%) of responders sustaining
a seizure reduction greater than 90% at 12 months following treatment initiation [130]. Of
note, no renal, hepatic, or hematologic toxicity was noted in this study, and other adverse
effects included vomiting, behavioral changes, headache, dizziness, and weight loss.

Its favorable pharmacological profile, including the potential improved effects on
cognitive recovery [131–133], make amantadine a promising agent of choice to explore in
critically ill patients with refractory epilepsy. Further larger, multicenter trials are needed
to study the efficacy of amantadine add-on therapy in refractory epilepsy.

4.4. Magnesium Sulphate

The potential for convulsions to occur in states of Mg2+ depletion prompted some
researchers to investigate the metabolism of this metal in epilepsies [134]. Experiments have
shown that Mg2+ blocks Ca2+ within the NMDAR channel, which, in turn, is relieved by
cellular depolarization [135]. The anticonvulsant effects of the systemic administration of
Mg2+ have been studied in animal models [136]. An increase in brain Mg2+ concentrations
in rat brains has been found to be associated with an increased seizure threshold and
resistance to NMDA-stimulated hippocampal seizures [137]. The inhibition of NMDARs is
central to Mg2+ anticonvulsant effects [138].

In two patients with juvenile-onset Alpers’ syndrome, intravenous Mg2+ treatment
reduced refractory epilepsy with recurring status epilepticus and bouts of epilepsia partialis
continua [139]. Furthermore, in infants with infantile spasms, the addition of magnesium
sulphate to adrenocorticotropic hormone (ACTH) showed significantly improved dura-
tions of seizure-free periods in an open-label, randomized, controlled study [140]. In
humas, systemic administrations of magnesium sulphate are the standard of care in the
management of eclampsia in pregnancy [141]. Concerns remain over the possibilities of
hypermagnesemia toxicity in eclampsia treatment [142].
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4.5. Felbamate

Felbamate is a propanediol dicarbamate derivative that was first approved as an ASM
by the U.S. Food and Drug Administration (FDA) in 1993 [143]. Several mechanisms, in-
cluding the blockage of voltage-gated sodium channels and dual actions on both excitatory
(NMDA) and inhibitory (GABA) mechanisms, have been postulated to contribute to the
anticonvulsant effect of felbamate [144].

In addition, the specific selectivity of felbamate to the NR2B subunit of NMDA has
been noted. NR2B mutations have been implicated to play a role in epileptogenesis
in mouse models [145]. Felbamate’s efficacy as add-on therapy is well-established for
intractable partial seizures, infantile spasms, and Lennox-Gastaut syndrome [146,147].
Serious adverse effects of aplastic anemia and liver failure have been reported, which has
limited the use of felbamate as add-on therapy in partial epilepsy [148].

4.6. Remacemide

Remacemide is a noncompetitive, low-affinity, NMDAR antagonist. A rapid and
reversible inhibition of the NMDA current was first observed in rat forebrain mem-
branes [149]. Its anticonvulsant effects in animal models of epilepsy were observed in
a dose range of 6–60 mg/kg [150]. Remacemide hydrochloride was shown to have thera-
peutic activity in patients with medically refractive epilepsy at a dose of 600 mg/day [151].
Chadwick et al. [152] and Jones et al. [153] evaluated the role of the remacemide QID
regimen as an add-on in medically refractory epilepsy.

It is worth noting that in patients with newly diagnosed epilepsy, when compared to
other AEDs, such as carbamazepine, remacemide had no benefit as monotherapy [154]. A
double-blind, parallel-group trial comparing remacemide with carbamazepine in partial or
generalized tonic–clonic seizures showed a better cognitive and psychomotor profile at the
cost of inferior seizure recurrence with the use of remacemide [155]. Some common adverse
effects observed are dizziness, somnolence, and gastrointestinal symptoms. Diplopia and
fatigue have been observed when used as adjunctive therapy with conventional AEDs [156].

4.7. Riluzole

2-Amino-6trifluoromethoxy benzothiazole (riluzole) was first noted to have anticon-
vulsant effects in the 1980s [157]. Several mechanisms involving glutamate modulation
were noted. The presynaptic release of glutamate was reduced by the inhibition of voltage-
gated Na+ currents in hippocampal neurons [158]. Riluzole can prevent Ca2+ entry via the
NMDA channel, thereby blocking NMDAR activation [159]. A modulatory effect of riluzole
on glutamate clearance has also been noted on the glutamate transporters expressed on
neurons and glia [160].

Preclinical data have shown anticonvulsant effects in a variety of seizure models; in
the rat dentate gyrus of both pilocarpine- and GBL-induced seizure models, riluzole was
found to be more effective in reducing seizure activity than VPA [161]. Riluzole reduced
seizure duration in a rat electroconvulsive shock model of epilepsy [162]. Furthermore,
the inhibition of spontaneous glutamine transport by riluzole was demonstrated in hip-
pocampal neurons [163]. In a CA3 in vitro rat slice model, the sodium channel blockage
of riluzole resulted in decreased hippocampal epileptiform activity [164]. Despite the
evidence from animal models, the effects of riluzole in human patients with epilepsy are
yet to be evaluated in any clinical study.

4.8. Dizocilpine or MK-801

MK-801 is a noncompetitive NMDA antagonist that was first demonstrated to have
antiepileptic effects in a model of induced seizures through the low-frequency kindling
technique by Minabe et al. in 1992 [165]. MK-801 is a special NMDAR antagonist due to
its well-demonstrated effects in both use-dependent and voltage-dependent manners via
the blockade of ion permeation [166–169]. A large number of preclinical investigations
have demonstrated its anticonvulsant properties in several models, including seizures
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induced by NMDA, quinolinic acid, lindane, 4-aminopyridine, caffeine, picrotoxin, bicu-
culline, cocaine, kainic acid, strychnine, pentylenetetrazole (PTZ), or hyperbaric oxygen
in rodents [170–181]. However, more recent evidence based on the stargazer mice trial
suggests that MK-801 has a paradoxical pro-seizure effect [182].

In tetramethylenedisulfotetramine (TMDT)-induced tonic–clonic seizures, the com-
bination of diazepam and MK-801 had a synergistic anticonvulsant effect [183]. Status
epilepticus was aborted, and mortality was eliminated with the combination of diazepam
and dizocilpine in a rat model of SE induced by very high doses of lithium and pilo-
carpine [178], as well as in a model of soman-induced SE [184,185]. These observations
suggest the possibility of clinical benefits of combinations of MK-801 and other anti-seizure
medications. Due to concerns regarding the schizophrenia-like behaviors frequently noted
in animal models, MK-801 has not been explored in human subjects [186].

4.9. Dextromethorphan

Initially introduced as an anti-tussive agent, owing to its several mechanisms of
actions, dextromethorphan has found potential use as both an analgesic and anticonvulsive
agent [187–189]. Dextromethorphan was noted to have noncompetitive NMDAR blocking
effects with an efficacy similar to that of controlled substances, such as phencyclidine and
ketamine, at high doses.

Dextromethrophan, added to existing AEDs at doses of 40 mg and 50 mg every 6 h (160
and 200 mg/day, respectively) for 8 weeks, resulted in significant improvements in seizure
control in patients with drug-resistant, localization-related epilepsies [189]. Furthermore, a
randomized, open-label trial of dextromethorphan in Rett’s syndrome showed evidence
of significant dose-dependent improvements in clinical seizures [190]. This preliminary
evidence needs further validation in larger cohorts.

The adverse effects of dextromethorphan include nystagmus, slurred speech, light-
headedness, and fatigue at high doses [191]. In addition, sudden tonic–clonic movements
and confusion have been reported to be caused by the toxicity associated with dextromethor-
phan in a case report [192].

4.10. Ifenprodil

Ifenprodil (4-[2-(4-benzylpiperidin-1-yl)-1-hydroxypropyl]phenol) is a selective an-
tagonist of the GluN2B subtype of NMDARs [193]. The anticonvulsant effect of ifenprodil
has been investigated in several animal models of epilepsy, including induced seizures
by NMDA, spermine, lindane, and PTZ in rodents [194–198]. Furthermore, both age-
dependent and activation-dependent anticonvulsant actions of ifenprodil were noted [199].
In five human patients with refractory epilepsy caused by malformations of cortical de-
velopment (MCD), ifenprodil had specific antiepileptic effects by reducing pyramidal cell
neural excitability [200]. More recently, in temporal lobe epilepsy medicated by the GluN2B
subtype of NMDARs, intraperitoneal ifenprodil administration (20 mg/kg) resulted in the
suppression of a number of chronic seizures and an anti-ictogenic effect [201].

When used in combination with other AEDs, the threshold for seizures was increased
without influencing the anticonvulsant actions of other drugs (carbamazepine, diphenylhy-
dantoin, phenobarbital, and valproate) [202].

5. Preclinical Studies with Newer NMDAR Modulators

A variety of NMDR modulators have been investigated in preclinical studies us-
ing various seizure models [11]. More recent studies have also tested newer agents that
modulate NMDARs (Table 1). In a mouse model on clonic seizures induced by PTC,
the involvement of the NMDAR pathway in the anticonvulsant effect of licofelone (dual
5-lipoxygenase/cyclooxygenase inhibitor) was demonstrated by combining the noncom-
petitive NMDAR antagonist MK-801 with licofelone (5 mg/kg) [203]. In addition, a lower
dose of licofelone did not have an anticonvulsant effect [203]. Recently, the use of GNE-0723
(a positive allosteric modulator of GluN2A-subunit-containing NMDARs) reduced low-
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frequency oscillatory and epileptiform activities in J20 mice [204]. The GluN2B-selective
antagonist Ro 25-6981 suppressed the tonic phase of generalized tonic–clonic seizures in a
PTZ model of infantile rats [205].

Table 1. Anticonvulsive effects of newer NMDAR antagonists in pre-clinical studies.

Substance Effect on NMDARs Seizure Model Effect Ref.

GNE-0723 Positive allosteric modulator
of GluN2A

Mouse model of Dravet
syndrome

↓ Low-frequency oscillatory and
epileptiform activities [204]

Ro 25-6981 Selective GluN2B antagonist
PTZ model in infantile

(12-day-old, P12) and juvenile
(25-day-old, P25) rats

↓ PTZ-induced seizures in infantile,
but not juvenile, rats [205]

PEAQX Selective GluN2A antagonist PTZ-induced generalized
seizures

Age-dependent differences in
anticonvulsant effects in PTZ-induced
seizures and epilepsy after discharge

[206]

DDBM Both GluN1 and GluN2
antagonist Rat ECS model of epilepsy ↓ Seizure behaviors in rats [162]

DDBM, l indolyl, [2-(1,1-Dimethyl-1,3-dihydro-benzo[e]indol-2-ylidene)-malonaldehyde]; ECS, electroconvulsive
shock; PTZ, pentylenetetrazole.

6. Adverse Effects of NMDAR Antagonist in Clinical Settings

The inhibition of the major excitatory neurotransmitter glutamate is bound to have
adverse effects that can potentially limit its potential for clinical application. In a clinical
investigation, the competitive NMDAR antagonist D-CPP-ene increased seizures in three
out of eight patients with epilepsy, raising the possibility that a sudden decline in NMDAR
function could lead to an imbalance between the excitatory and inhibitory systems [207].
A selective blockade of NMDARs without affecting normal function remains a necessity
for acceptability in clinical practice. An ideal agent should hence serve the role of an
“uncompetitive” antagonist by relying on prior receptor activation by the agonist [208].

Adverse effects, such as hallucinations, lightheadedness, dizziness, fatigue, headaches,
out-of-body sensation, and sensory changes, have been reported with NMDA antagonists.
Early memory impairments and schizophrenia-like symptoms have been linked to NMDAR
hypofunction with the use of antagonists [209]. An early blockade of NMDARs in rat brains
has been found to trigger apoptotic neurodegeneration [210]. Brain growth, long-term
potentiation, neuronal migration, and synaptic pruning are all significantly influenced by
NMDAR activity [211]. Accordingly, the in utero use of NMDA antagonists may disrupt
brain development by contributing directly to the disconnection of circuits between the
hippocampus and frontal cortex [212].

Impairments in learning ability and memory as the result of NMDAR antagonist
therapy, especially in early life, have been extensively studied in rat models [213,214]. These
were notably more evident upon direct NMDAR antagonist injection into the amygdala
and hippocampus [215]. In human subjects, following ketamine infusions, disruptions in
frontal and hippocampal responses contributing to working memory were demonstrated
through the use of fMRI imaging [216]. However, it is worth noting that NMDAR blockade
impaired learning consolidation without having any effect on the memory retrieval of
previously learned tasks [217,218].

Furthermore, in addition to intravenous administration, as extensively previously
discussed, other routes of administration can affect the appearance of specific cytotoxic
side effects. For example, spinal cord pathology has been noted with intrathecal adminis-
tration [219]. The intrathecal administration of ketamine in a therapeutically appropriate
concentration and dosage had a deleterious effect on rabbits’ central nervous systems [220].
In dogs, the subarachnoid administration of ketamine was found to be associated with
histological spinal cord alterations, including gliosis, axonal edema, central chromatolysis,
lymphocyte infiltration, and fibrous thickening of the dura mater [221]. Additionally, a
terminally ill patient with cancer who had continuous intrathecal ketamine infusions at
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a rate of 5 mg/day for a period of 3 weeks was reported by Karpinski et al. to have
post-mortem CNS histological abnormalities of subpial spinal cord vacuolation [222].

7. Conclusions and Perspectives

Overwhelming evidence now indicates that the NMDAR complex plays a critical role
in seizure disorders. This comes from both preclinical and clinical studies that have found
alterations in NMDAR expression and function in seizure models, as well as in patients
with epilepsy. Accordingly, various NMDAR modulators have been tested in various
animal models of seizures, and in these studies, they have shown efficacy in suppressing
different types of seizures. Although few NMDAR antagonists have been evaluated in
clinical trials in epileptic patients, the results are promising overall and have opened a new
avenue for the treatment of epilepsy. However, long-term therapy with a newer class of
NMDAR antagonists warrants further longitudinal studies, especially to assess their safety
in this patient population.
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