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Abstract: The emergence of diverse peptide derivatives has been due to constant efforts to find
a specific peptide with pronounced biological activity for effective application as a therapeutic.
Spinorphin-peptide products have been reported to possess various applications and properties.
In the present study, spinorphin peptides with a rhodamine residue and a modification in the
amino acid backbone were synthesized by a solid-phase method using Fmoc chemistry. The results
obtained from the spectral and electrochemical techniques used: Scanning electron microscopy
(SEM), UV-vis, fluorescence, infrared spectroscopy (IR), and voltammetry were used to elucidate the
structural characteristics and some physicochemical properties to gain insight into their behavior in
the solid state and in aqueous solutions with different pHs. Both Rh-S5 and Rh-S6 had compound
anticonvulsant effect comparable to Rh-S against psychomotor seizures at the highest dose of 20 µg.
Furthermore, Rh-S6 showed a strong ability to inhibit seizure propagation and had a similar threshold
to Rh-S against the intravenous pentylenetetrazol induced clonic seizure in mice; one of the three
hybrid spinorphin analogs tested when screened for anticonvulsant activity. Biological tests against
several bacterial pathogens such as Staphylococcus aureus, Escherichia coli, and Bacillus cereus showed
similar results to negative control of the new peptide derivatives. The compounds also showed
weak activity against Candida albicans fungus. The antioxidant testing results revealed more than 50%
activity by reviewing the radical deterrence capabilities of 2,2-diphenyl-1-picrylhydrazyl (DPPH).
The results are indicative of the ongoing search for universal antimicrobial agents with pronounced
synergism when used simultaneously as anticonvulsant, antibacterial, and antifungal agents.

Keywords: spinorphin analogs; rhodamine peptides; biological activity; anticonvulsant activity;
electrochemistry; fluorimetry

1. Introduction

Spinorphin or LVV-hemorphin-4 with an amino acid sequence Leu-Val-Val-Tyr-Pro-
Trp-Thr is an endogenous, non-classical opioid peptide of the hemorphin family [1]. These
hemoglobin-derived peptides were identified and isolated from the bovine spinal cord [2]
and act as regulators of enkephalin-degrading enzymes [3]. Like other hemorphins, the
heptapeptide spinorphin is an angiotensin-converting enzyme (ACE) antagonist and in-
hibits enkephalinases such as neutral endopeptidase (NEP), aminopeptidase N (APN), and
dipeptidyl peptidase III (DPP3) [3]. Moreover, spinorphin possesses an analgesic effect for
morphine-resistant pain pathways [1,4] and significantly inhibits bradykinin (BK)-induced
nociceptive flexor responses [5]. Spinorphin demonstrated numerous physiological effects
such as antinociceptive, antiallodynic, and anti-inflammatory properties [6].

Rhodamine B is a xanthene derivative with high lipophilicity that is often used in
medicine, biology, and biotechnology as a coloring reagent in fluorescence microscopy, flow
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cytometry, fluorescence correlation spectroscopy, and ELISA. Its application in practice is
due to its ability to bind covalently to biomolecules and thus can be used as a marker in
bioassays [7,8]. Therefore, Rhodamine B derivatives are essential for studying more complex
biochemical processes and activities. Such kinds of noncytotoxic fluorescence-based probes
of bioactive molecules possess desirable features and excellent spectral characteristics and
relatively facile syntheses [9–11].

Recently, Todorov et.al. synthesized and studied a series of new hemorphin peptide
derivatives to find more potent anticonvulsants and analgesics with no side effects [12–14].
In the present study, further attempts were carried out to synthesize and fully characterize
three new N-modified analogs of spinorphin with rhodamine B and their structure–property
relationships in biological action examined. Given the above mentioned properties of
biopeptide spinorphin and fluorescent rhodamine dye, it was expected that the newly
obtained hybrid peptide compounds would possess a synergistic effect. However, no data
are available in the literature or are scarce for spinorphin and its analogs. Therefore, the
synthesis, characterization, neuropharmacological evaluation, acid-base properties, and
electrochemical behavior of new hybrid spinorphin analogs modified at the N-terminus
with rhodamine B are presented in this study with the aim to discover a new type of
bioactive signaling molecule.

Spinorphin has shown a wide range of biological effects, but it is still not well devel-
oped and has few prepared synthetic analogs to date. As already mentioned, spinorphin
belongs to the hemoglobin-derived peptides and, more specifically, to the non-classical
opioid peptides of the hemorphin family [15–17]. Our group is one of the leading pioneers
in designing, synthesizing, and characterizing these novel biopeptides. The synthesis and
detailed survey of new analogs of spinorphin were conducted with several modifications
in the peptide skeleton. The design and synthesis of different peptide analogs have led to
significant changes in both peptide activity and affinity for different types of receptors or
enzymes [18]. Therefore, a modification of natural spinorphin was executed via changes
in its N-terminus with the fluorescent xanthene dye rhodamine B, expecting a synergistic
effect in the newly synthesized hybrid peptide compounds (Rh-S, Rh-S5, Rh-S6). Since it
is known that the amino acid proline is crucial for the exhibition of biological effects, a
study of the structure–activity relationship was carried out by replacing natural proline
with unnatural steric restricted amino acids such as 1-aminocyclopentanecarboxylic acid
(Ac5c) and 1-aminocyclohexane carboxylic acid (Ac5c) (neuropeptides Rh-S5 and Rh-S6).
Conformationally restricted amino acids such as Ac5c and Ac6c are increasingly used
in medicinal chemistry as they stabilize the desired conformation required for biological
activity [19,20]. According to Blishchenko et al., the amino acid sequence Tyr-Pro-Trp is
responsible for selective binding to opioid receptors [20]. Therefore, the aim was to stabilize
the desired conformation required for biological activity and evaluate the effect of proline
on the biological activity of the new spinorphin analogs.

2. Results and Discussion
2.1. Chemistry

The synthetic route for obtaining the novel spinorphin peptides: rhodamineB-Leu-Val-
Val-Tyr-Pro-Trp-Thr-NH2 (Rh-S), rhodamineB-Leu-Val-Val-Tyr-Ac5c-Trp-Thr-NH2 (Rh-S5),
and rhodamineB-Leu-Val-Val-Tyr-Ac6c-Trp-Thr-NH2 (Rh-S6) is shown in Scheme 1. The
peptides were synthesized by the most widely used and proven method in peptide chem-
istry, the solid-phase peptide synthesis (SPPS)-Fmoc (9-fluorenylmethoxycarbonyl) strategy.
The basic concept of this procedure is the stepwise construction of the peptide chain assem-
bled on an insoluble polymeric carrier, Rink-Amide MBHA (4-methylbenzhydrylamine)
resin. The chain extension starts from the C-terminal residue. The preparation of C-
terminal amides is a widely used approach in the preparation of biologically active peptide
molecules, as it thus increases the resistance of peptides to enzymatic degradation [21–23].
The peptide formation undergoes a repetitive amidation reaction between an activated
carboxyl group of one amino acid and an amino group of the other, as shown in Scheme 1.
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This strategy is based on the reaction between rhodamine B with the N-terminal amino
group of the spinorphin analogs directly to the resin. Herein, the coupling is accomplished
by activation with (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium tetrafluoroborate)
(TBTU) and hydroxybenzotriazole (HOBt) in the presence of N,N-diisopropylethylamine
(DIPEA). The Fmoc group protects the amino group of all used amino acids. The Fmoc-
group was easily removed with a 20% piperidine solution. The final stage of the synthesis
is the cleavage of the synthesized peptides from the resin by trifluoroacetic acid (TFA),
triisopropylsilane (TIS), and water.
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Scheme 1. Schematic presentation of the SPPS–Fmoc chemistry of new spinorphin peptide-based
analogs bearing rhodamine B side-chain (Rh-S, Rh-S5, and Rh-S6).

The three spinorphin derivatives were purified and their structures proved by appro-
priate modern methods and techniques described in detail in the experimental part. The IR
analysis of the studied compounds showed the main vibrational characteristic lines for func-
tional groups and bonds as follows: 3336 (N–H stretching vibration (νNH)), 1664 (s) NCO
(amide) stretching and 1678–1722 cm−1 a high-intensity peak of νC=O, 1539–1531 cm−1

(δNH) (Figure 1). The physicochemical data (m/z, tR, dissociation constants and isoelectric
points) of the newly synthesized neuropeptide analogs are shown in Table 1. SEM analyzes
of the compounds isolated in pure form were also carried out (Figure 2). The results
of SEM measurement showed that the Rh peptide derivative morphology was a porous
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material and hence probably hydrophilic. The morphological evolution of Rh-S, Rh-S5, and
Rh-S6 shows an increase in mass density and the size and distribution of pores that change
drastically (Figure 2).
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Figure 1. FTIR transmission spectra of Rh-S, Rh-S5, and Rh-S6. 

Table 1. Analytical data of new synthetic spinorphin peptides. 

Code Molecular formula a [MH]+ calculated a [MH]+ observed b tR, min LogP pKa1 pKa2 pI 

Rh-S C73H95N11O11 1301,7213 1302,7199 41.34 0.54 7.09 4.56 5.82 

Rh-S5 C74H97N11O11 1315,7369 1316,7357 43.21 −0.168 5.11 5.36 5.23 

Rh-S6 C75H99N11O11 1329,7526 1330,7515 44.05 −0.197 6.35 4.94 5.65 
a The mass ion (MH+) was obtained by electrospray ionization mass spectrometry (ESI-MS); b tR is 

the retention time determined by HPLC. 

 

Figure 1. FTIR transmission spectra of Rh-S, Rh-S5, and Rh-S6.

Table 1. Analytical data of new synthetic spinorphin peptides.

Code Molecular
Formula

a [MH]+ calculated a [MH]+ observed b tR, min LogP pKa1 pKa2 pI

Rh-S C73H95N11O11 1301,7213 1302,7199 41.34 0.54 7.09 4.56 5.82
Rh-S5 C74H97N11O11 1315,7369 1316,7357 43.21 −0.168 5.11 5.36 5.23
Rh-S6 C75H99N11O11 1329,7526 1330,7515 44.05 −0.197 6.35 4.94 5.65

a The mass ion (MH+) was obtained by electrospray ionization mass spectrometry (ESI-MS); b tR is the retention
time determined by HPLC.
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Figure 2. Morphological images (SEM) of the obtained rhodamine derivatives: (a) Rh-S, (b) Rh-S5,
and (c) Rh-S6.
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2.2. Physicochemical Characterization
2.2.1. Determination of Partition Coefficient

The effectiveness of biomolecules is mainly due to specific structural and physico-
chemical properties. In principle, the properties of peptides/proteins are very diverse and
directly related to their bioactivity. So for example, solubility is an important factor when
preparing solutions for introducing peptides into the body, as some peptides dissolve in
water, others in dilute salt solutions, and there are also entirely insoluble ones, exhibiting
more lipophilicity. With the manifestation of hydrophilic properties, the occurrence of
a hydration process is possible; swelling, increasing their mass and volume, while it is
possible to partially limit the solubility of the molecule, in which case the peptide molecule
becomes more unstable. At the isoelectric point, peptides have the least ability to bind
water, i.e., to hydrate; the hydration shell around the peptide molecules breaks down so
that they combine to form, for example, aggregates. When the pH of the medium changes,
the peptide macromolecule is charged, and its hydration capacity changes. The rhodamine
peptide derivatives showed properties as neutral molecules with partition coefficient values
from 0.54 to −0.2, determined by the “shake-flask method” in a 1-octanol/buffer system
(pH 7.4) (Figure 3). Due to the obtained values, the studied compounds can be arranged
in the following sequence from hydrophilic to hydrophobic (lipophilic): Rh-S > Rh-S5 >
Rh-S6. This corresponds to the data from the morphology of the compound, where an
analogous order of increasing porosity/hydrophilicity was found (Figure 3). It can be seen
that the replacement of natural proline with unnatural steric restricted amino acids such as
1-aminocyclopentanecarboxylic acid (Ac5c) and 1-aminocyclohexanecarboxylic acid (Ac6c)
(neuropeptides Rh-S5 and Rh-S6) leads to an increase in lipophilicity, which would assist
passage through the brain barrier and increase the efficiency of the molecule. This can be
seen in the study of anticonvulsant activity at the subsequent point in this manuscript.
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2.2.2. Determination of Acid-Base Constant (pKa) and Isoelectric Point (pI) by
Spectral Methods

The amino acid sequences in the spinorphin derivatives and the rhodamine moiety
show identical absorption characteristic bands in the UV–Vis region for chromophoric groups
present in similar peptide compounds (Figure 4) [24]. The spectra related to the absorp-
tion of electromagnetic radiation of the spinorphin derivatives have four well-shaped ab-
sorption peaks in phosphate buffer solution, with different intensities depending on the
structure of the compounds; located at λmax ≈ 233 and ≈275 nm, 315 nm and 557 nm,
respectively (Figure 4). As known in the literature these are the intrinsic absorption max-
ima for the π→π∗ transitions of >C=O in peptide bonds (180 to 230 nm), the absorp-
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tion of the π-electron systems of the aromatic groups of the indole side chains of Trp,
the phenolic rings of Tyr and rhodamine (≈300 nm), and n-π∗ transitions in rhodamine
(561 nm) [25,26]. The molar extinction coefficients at the long-wavelength absorption maxi-
mum are, respectively: Rh-S (ε = 2.14 × 106 cm.mol.L−1); Rh-S5 (ε = 2.28 × 106 cm.mol.L−1);
Rh-S6 (ε = 3.22 × 106 cm.mol.L−1) (Table 2). As can be seen, the Rh-S6 exhibits the high-
est sensitivity.
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Figure 4. The UV–Vis absorbance spectra of equal concentration of Rh-S, Rh-S5, and Rh-S6 at pH
7.413 (phosphatic buffer solution) against water.

Table 2. Photophysical characterizations of rhodamine-peptide derivatives.

Compounds ε, [L/(mol.cm)]
at 275 nm

ε, [L/(mol.cm)]
at 557 nm

λem [nm]
at λex = 275 nm

λem [nm] at
λex = 560 nm

Stokes shift
[cm−1] against
λabs = 557 nm

Rh-S 3.73 × 106 2.14 × 106 356 585 859

Rh-S5 6.19 × 106 2.28 × 106 356 584 860

Rh-S6 6.54 × 106 3.22 × 106 356 585 859

When studying the fluorescence properties, the emission spectra were recorded upon
excitation at two wavelengths: λex = 275 nm where tryptophan/tyrosine fluoresces, and at
λex = 560 nm where excitation of the rhodamine moiety is possible (Figures 5 and 6). As
can be seen, the structure of the studied compounds contains two of the known fluorescent
amino acids, tryptophan and tyrosine [27–29]. With both amino acids present in the indi-
cated complex mixture, the fluorescence in the 300–400 nm range is more likely to originate
from the indole group of the tryptophan residue, which is known to emit at ~350 nm at
an excitation wavelength of 280 nm [28]. Moreover, spectra were recorded at different
pHs of the medium to determine the study compounds’ acid constants and isoelectric
points. All compounds show similar behavior of fluorescence properties with minimal
difference in wavelength where the compound absorbs in the visible region (1–2 nm). A
strong decrease in the intensity of the emission maximum at λem = 585 nm is observed with
an increase in the pH of the medium, which is due to the structural changes associated
with the closure of the spirolactam ring at rhodamine [30]. pH also affects the fluorescence
emission intensity of the tryptophan/tyrosine spectral line [31]. The fluorescence emission
intensities of tryptophan and tyrosine were highest when the pH ranged from 6.5–7.5 and
sharply decreased at pH > 7.5 [30]. In our case, we observed a sharp decrease in emission
intensity occurs at pH > 9, as shown in Figure 5, which may be influenced by the presence of
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a rhodamine moiety. The obtained emission spectra at different pHs helped us to determine
the acidity constants of the obtained compounds. pK values were obtained by selecting the
inflection points of the I/pH curve at two wavelengths: 275 nm, where tryptophan emits,
and 575 nm for the rhodamine part, respectively (Figures 5 and 6, inserted graphs). At these
points the concentrations of conjugated acid and base are equal, i.e., [HRh-S] = [Rh-S-], and
according to the known relationship рН = pKa + [Rh-S-]/[HRh-S] at this point pKa = рН.
Equations (1) and (2) given in the experimental part were also used to calculate the acid
constants to confirm the values. Table 1 shows the average values of the constants from the
repeatable results. As can be seen, the acid properties increase in the order: for pKa1: Rh-S
< Rh-S6 < Rh-S5 and for pKa2: Rh-S5 < Rh-S6 < Rh-S, and in general the values for pKa2 are
close to those under basic conditions and lower than those of similar rhodamine-peptide
compounds [24]. The proven higher values of the constants given in [24] are due to the
influence of the –OH group of tyrosine, located near the spirolactam ring of rhodamine
and leading to its more effortless opening. Here, significantly, the tyrosine residue is in a
more distant position, and its influence on “ring Open-ON” is attenuated. Based on the
obtained values of the protolytic constants, the isoelectric points were calculated where the
compounds would show zero charge and reduced solubility (Table 1). The results showed
that despite the different pK values, the compounds have relatively similar isoelectric point
values (~5.50), a fact that should be considered when treating them as agents with potential
anticonvulsant activity when introducing them into a biological test environment. Stokes
shift, showing the differences between the structure of the fluorophore in the ground S0
state and in the first excited state S1, was also determined as an essential feature for the
rhodamine peptide derivatives (Figure 5, Table 2). The Stokes shift for all compounds at
the rhodamine moiety is ~859 cm−1, which is consistent with the rhodamine derivatives
known in the literature [32].
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Figure 5. Emission spectra of spinorphin derivatives at λex = 560 nm and different pHs. The inset
plots represent I(emission)/pH obtained from the emission spectra of the respective compounds.
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2.2.3. Voltamperometric Characterization

A cyclic voltametric study to demonstrate the preservation of the integrity of the
rhodamine-spinorphin molecule in contact with charged surfaces was performed in a phos-
phate buffer solution medium with a pH close to the physiological pH. Our study revealed
that in an electrochemical environment spinorphin derivatives are reduced/oxidized lead-
ing to the production of two reduction peaks located at Ep~1.70 and −1.00 V (Table 3,
Figure 7). The peak at the more negative values of the potential can be attributed to the
reduction of the rhodamine part, as the difference between the potentials of the anodic
and cathodic peaks is <10 mV (∆Ep = Epc − Epa) [33] as well as the ratio of peak heights:
Ipc/Ipa > 1 suggesting the quasi-reversible nature of the electrode process. The reversibility
of the electrode reaction is also evidenced by the fact that the current intensity increases
with the increase of scan rate from 0.2 to 1.60 V.s−1 (Figure 7). The second peak is due to
the electrochemical exchange of electrons from the amino acid sequence, most likely occur-
ring from the tyrosine moiety. The regression equations of the function Ipc = nFACoksh
(Reinmuth expression, where: Ipc is peak current, n—the number of electrons in the redox
reaction of a molecule, A—the electroactive surface area, C0—the concentration of analyte)
were used to evaluate the heterogeneous electron transfer rate constants at the rhodamine
moiety. The obtained value with the order of 10−6 cm s−1 (higher than 5.0 × 10−6 cm s−1)
characterizes the rhodamine reduction process as quasi-reversible (Table 4). The diffusion
coefficients (D) of all compounds (Table 4) were determined using the Randles–Secik equa-
tion and the number of electrons, n = 2 [34]. The (D) values of peptide molecules varied in
the sequence: Rh-S > Rh-S5 > Rh-S6 demonstrating the hypothesis that bulky molecules
move at a lower speed towards the charged electrode surface.
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Table 3. Voltamperometric characteristic of investigated peptides: Rh-S (1.36 × 10−5mol L−1), Rh-S5
(1.00 × 10−5 mol L−1), and Rh-S6 (1.14 × 10−5 mol L−1) at HMDE and scan rate 1.00 V s−1.

Compounds EPc, V EPa, V −Ipc, A Ipa, A ∆Epc = Epc −
Ep1/2, mV

Nature of the
Reduction Process

Rh-S Epc1 = −0.995
EpC2 = −1.572 Epa2 = −1.567

2.13 × 10−7

1.85 × 10−6 1.85 × 10−7 5 QR *

Rh-S5 Epc1 = −1.00
EpC2 = −1.575 Epa2 = −1.570

2.26 × 10−7

1.97 × 10−6 1.85 × 10−7 5 QR

Rh-S6 Epc1 = −1.05
EpC2 = −1.595 Epa2 = −1.586

2.72 × 10−7

2.18 × 10−6 1.73 × 10−7 9 QR

* QR-quasi-reversible.
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Figure 7. Cyclic voltammograms of spinorphin derivative (Rh-S5) in pH 6.86 phosphate buffer
solution (0.1 mol L−1) at HMDE working electrode and Ag/AgCl, KCl as reference electrodes and
(A) at different concentrations; (B) different scan rate from 0.2 to 1.60 V s−1.

Table 4. Equation of regression of Ipc vs. concentration (C, mol L−1); heterogen rate constant and
diffusion coefficient of Rh-S, Rh-S5, and Rh-S6 peptide derivatives at HMDE electrode (with electrode
area, A = 0.030 cm2).

Compound Regression Equation of ipc, A = f(C, mol L−1) ko
sh × 10−6 cm s−1 D × 10−3 cm2 s−1

Rh-S Ip = 2.50 × 10−8+ 0.0348(±0.0023) × C, R2 = 0.991 6.01 3.23

Rh-S5 Ip = 8.03 × 10−8+ 0.0511(±0.0010) × C, R2 = 0.998 8.82 4.28

Rh-S5 Ip = 8.67 × 10−8+ 0.0533(±0.0022) × C, R2 = 0.995 9.21 4.34
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2.3. Biological Analysis
2.3.1. Anticonvulsant Activity
Six Hz Test for Psychomotor Seizures

Dose-dependent study of the activity in the 6-Hz test of new hybrid spinorphin analogs
modified at the N-terminus with rhodamine B demonstrated that close to the heptapeptide
Rh-S they have a protective effect against the 6-Hz-induced psychomotor seizures (Table 5).
Although, Rh-S exhibited significant protection at the three doses used (5, 10, and 20 µg)
(p ≤ 0.05 compared to control), both Rh-S5 and Rh-S6 had a significant anticonvulsant
effect at the highest dose of 20 µg (p ≤ 0.05 compared to control).

Table 5. The activity of Rh-S, Rh-S5, and Rh-S6 in the 6 Hz test in mice.

Group Dose µg/10 µL No. of Animals Protected/
No. of Animals Tested % Protection

control 0 0/8 0

Rh-S 5 4/6 67 *

10 6/6 100 *

20 4/6 67 *

Rh-S5 5 1/6 17

10 2/6 33

20 5/6 83 *

Rh-S6 5 2/6 33

10 3/6 50

20 4/6 67 *
Statistical analysis was performed using Fisher’s exact test. * p ≤ 0.05 compared to control.

Maximal Electroshock Test

Unlike the 6-Hz test, the new hybrid spinorphin analog Rh-S6 was the most potent
compound against tonic seizures (Table 6). This spinorphin analog exhibited 100% pro-
tection in the MES test at the three doses studied (5, 10 and 20 µg) (p ≤ 0.05 compared
to control) with no mortality. The other hybrid spinorphin analog RhS5 modified at the
N-terminus with rhodamine also showed stronger protective potency compared to the
heptapeptide Rh-S against tonic seizures at a dose of 20 µg (p ≤ 0.05 compared to control),
suggesting that insertion of a fluorescent rhodamine dye at the N-terminus of biopeptide
spinorphin increase the potency of the modified analog against generalized seizures.

Intravenous Pentylenetetrazole Seizure (ivPTZ) Test

The potency to elevate the seizure threshold against the three seizure phases (my-
oclonic, clonic, and tonic) induced by ivPTZ of the two new hybrid spinorphin analogs
was explored and compared to that of the bioactive heptapeptide Rh-S. It is known that the
clonic seizure is the most critical phase determining the ivPTZ-induced seizure suscepti-
bility [35]. While insertion of rhodamine dye did not affect the seizure threshold against
myoclonic and tonic seizures, it led to a similar activity to Rh-S of RhS6 against the clonic
phase (p ≤ 0.05 compared to control) (Figure 8A–C).
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Table 6. The activity of Rh-S, Rh-S5, and Rh-S6 in MES test in mice.

Group Dose µg/
10 µL

No. of Animals
Protected/No. of Animals

Tested
% Protection % Mortality

Control 0 0/6 0 67

Rh-S 5 3/6 50 50

10 3/6 50 0

20 4/6 67 * 33

Rh-S5 5 5/6 41 17

10 5/12 42 17

20 4/6 67 * 17

Rh-S6 5 6/6 100 * 0

10 6/6 100 * 0

20 6/6 100 * 0
Statistical analysis was performed using Fisher’s exact test. * p ≤ 0.05 compared to control.
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Figure 8. The anticonvulsant activity of Rh-S, Rh-S5, and Rh-S6 on the threshold for myoclonic (A),
clonic (B), and tonic (C) seizures induced by the iv PTZ in mice. Statistical analyses were performed
using one-way ANOVA: *p ≤ 0.05, **p < 0.01, and ***p < 0.001 compared to the control group.

2.3.2. Antibacterial Activity Test of Rh-S, Rh-S5, and Rh-S6

Antibacterial activity of peptide samples was carried out by using bacteria of Staphylo-
coccus aureus, Escherichia coli, and Bacillus cereus. Based on Figure 9A,B,D the average result
in the diameter of the inhibitory zone for each treatment was higher than the negative
control and lower when compared to the positive control.
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2.3.3. Antifungal Activity Test

Antifungal activity in the new spinorphin analogs modified at the N-terminus with
rhodamine B was carried out by diffusion to observe the diameter of the inhibitory zone
found around the paper disc (Figure 9C). The results of antifungal activity testing with
Candida albicans test fungi showed Rh-S, Rh-S5, and Rh-S6 peptides had almost the same
antifungal activity, but slightly higher than the negative control.

2.3.4. Antioxidant Activity

The antioxidant activity of the new peptide analogs was estimated by reviewing
the radical deterrence ability of DPPH (Figure 10). Compared to the positive control the
investigated peptides possessed similar (Rh-S and Rh-S6) or weak (Rh-S5) activity, which
was higher than 50%.
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3. Materials and Methods
3.1. Synthesis

All reagents and solvents were analytical or HPLC grade and were bought from
Fluka or Merck and used without further purification. The protected amino acids, 1-(9-
fluorenylmethyloxycarbonylamino)-cyclopentyl-1-carboxylic acid (Fmoc-Ac5c-OH), 1-(9-
fluorenylmethyloxycarbonylamino)-cyclohexyl-1-carboxylic acid (Fmoc-Ac6c-OH), and
Fmoc (9-fluorenylmethoxycarbonyl)-Rink Amide MBHA (4-methylbenzhydrylamine) Resin,
were purchased from Iris Biotech (Germany). Rhodamine B is from Sigma-Aldrich (Ans-
bach, Germany). The 3-functional amino acids were embedded as follows: Tyr as Nα-
Fmoc-Tyr(tBu)-OH, Thr as Nα-Fmoc-Thr(t-Bu)-OH, and Trp as Nα-Fmoc-Trp(Boc)-OH.
The molecular mass and purity of the compounds were confirmed by high-resolution elec-
trospray mass spectrometry (Thermo Fisher Scientific Inc., USA) and as well some spectral
analyses were performed: IR (KBr with a Varian 660 FTIR spectrophotometer in the range
4400–600 cm−1), UV–Vis (Varian-Cary), SEM (SEM/FIB LYRA I XMU SEM (TESCAN), EDX
detector: Quantax 200 by BRUKER), and fluorimetry (Cary Eclipse Spectrophotometry,
Agilent, USA) and the detailed characteristics were previously described by us in [28].

General Procedure for the Peptide Synthesis of Compounds (Rh-S, Rh-S5, Rh-S6)

All N-modified peptide analogs of spinorphin were synthesized manually by the solid-
phase method using Fmoc chemistry and the procedure and used reagents are given in [24].
Peptides were synthesized on Fmoc-Rink-Amide MBHA resin (loading 0.71 mmol/g resin;
cross-linking 1% DVB; 100–200 mesh). Peptide chains were elongated in consecutive cycles
of deprotection and coupling (see Scheme 1). The coupling reactions were performed
using amino acid/TBTU/HOBt/DIPEA/resin with a molar ratio of 3/2.9/3/6/1, in a 1:1
mixture of DMF/DCM [24]. The peptides were obtained as white powders with a purity of
>97% as determined by analytical HPLC. The structures were confirmed by high-resolution
electrospray mass spectrometry. Peptide purity was monitored on a reversed-phase high-
performance liquid chromatography (RP-HPLC), column: SymmetryShieldTM RP-18, 3.5 µ,
(50 × 4.6 mm), flow: 1 mL/min, H2O (0.1% TFA)/CH3CN (0.1% TFA), gradient 0→100%
(45 min) and 100% (5 min). The crude peptides were purified by semi-preparative HPLC
on column XBridgeTM Prep C18 10 µm (10 × 250 mm), flow: 5 mL/min, H2O (0.1%
TFA)/CH3CN (0.1% TFA), gradient 20→100% (50 min). All analytical data are summarized
in Table 1.

3.2. Analytical Characterizations

All chemicals used were of high purity (analytical grade) and deionized water was used
to prepare the solutions. Aqueous solutions of the rhodamine peptide compounds were
prepared with concentrations as follows: 1.906 × 10−3 mol L−1 Rh-S, 1.405 × 10−3 mol L−1

Rh-S5, and 1.591 × 10−3 mol L−1 Rh-S6. The solutions for the physicochemical studies
were prepared by appropriately diluting aliquots of the stock solutions with the indicated
concentrations.

3.2.1. Determination of Partition Coefficient

The partition coefficients of the spinorphin-rhodamine derivatives were determined in
a 1-octanol/phosphate buffer system (NaH2PO4/Na2HPO4, pH 7.41 ± 0.01). To obtain mu-
tual saturation in both the buffer (3 mL) and 1-octanol phases (5 mL), an amount of the test
compounds (2.00 mL standard water solutions) was added to 8 mL previously vigorously
stirred for 12 h at a room temperature (25 ◦C) distribution system. After separation, the
absorbance and emission of the solutions of the two phases were measured and the amount
of dissolved analyte was determined by the method of standard additions. Peptide stock
solutions were used as standards to determine the analytical function coefficients. The
partition coefficient was calculated by the following equation: P = Coct/buf/Cbuf/oct, where
Coct/buf and Cbuf/oct are the molar concentrations of the solute in the mutually saturated
phases of 1-octanol and buffer.
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3.2.2. Voltamperometric Analysis

For the voltammetric characterization of the compounds, a cyclic and differential pulse
mode of a computer-controlled electrochemical system was used: a Metrohm 797 VA trace
analyzer with a 797 VA stand with a three-electrode cell of a working mercury electrode,
a reference electrode (Ag/AgCl, KCl (3.0 mol L−1) and a carbon auxiliary electrode. The
measurement of signals was performed in phosphate buffer solution (0.100 mol L−1, pH
6.865 ± 0.1) as a supporting electrolyte and in a high-purity nitrogen atmosphere at room
temperature (25± 1 ◦C). The analysis procedure was as follows: A volume of the phosphate
buffer solution (7.00 mL) was added to a glass voltametric cell (50 cm3) and the voltametric
curve was recorded to determine interference signals. Aliquots of the standard peptide so-
lutions (50–400 µL) were sequentially added to the electrolyte solution previously degassed
with high purity nitrogen for 10 min. The results presented are reported as the mean of
three independent measurements.

3.2.3. pK and pI Determination

Acid base constants and isoelectric points were determined fluorimetrically and con-
firmed by UV–Vis analyses. Absorption and emission spectra were recorded on a series of
solutions with the same concentration of the peptide derivatives at different pHs (from 1
to 12). The assay data (intensity/absorbance versus pH) were processed with Origin8Pro
mathematical software. The pK value were determined using the following equations:

log [(Amax − A)/(A − Amin)] = pH − pKa (1)

log [(IF max − IF)/(IF − IF min)] = pH - pKa (2)

where the minimum (Amin) and the maximum (Amax) absorbances are at 275 nm and
557 nm, respectively, A is the absorbance at the given pH value [36]; Fmax and Fmin are the
maximum and minimum fluorescence emission intensity at 356 and 585 nm, respectively, F
is the fluorescence intensity at the given pH value [37].

3.3. Pharmacology In Vivo Experiments
3.3.1. Animals

The screeing test for anticonvulsant activity of drugs was perfomed on male ICR mice
(25–30 g), purchased by the vivarium of the Institute of Neurobiology, BAS. They were
kept in standard laboratory conditions and cages in groups of 5–6 per cage with ad libitum
access to commercial pellets for rodents and water. After a week of adaptation, all mice
were allocated in groups of 6 according to their treatment and test procedure. Each mouse
was used only for one experiment. All procedures were performed in agreement with
the European Communities Council Directive 2010/63/EU. The experimental design was
approved by the Bulgarian Food Safety Agency (#300/№ 5888–0183).

3.3.2. Drugs and Treatment

The new hybrid spinorphin analogs were dissolved in CSF (pH = 7.4) and infused
intracerebroventricularly (i.c.v.) (5 µL/ventricle) at doses of 0.6; 1.2, and 2.5 µg/mouse,
respectively, as described in our previous studies [38,39]. The test for anticonvulsant activity
was carried out 10 min after drug administration.

3.3.3. Tests for Anticonvulsant Activity
Six Hz Psychomotor Seizure Test

The test for assessment drug effect against psychomotor seizures was performed
via a constant current device and corneal electrodes as previously [38,39]. The criterion
for assessing the anticonvulsant activity was restoration of normal posture 10 s after
stimulation. Controls (mice treated with vehicle) were unable to resume normal behavior
and stimulation trigger different stereotypic responses and automatism such as sniffing,
vibrissae, locomotion, Straub tail, or clonic seizures.
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Maximal Electroshock Test (MES Test)

The MES test was carried out with the device used for the 6-Hz test according to the
protocol reported in [38,39]. The criterion for protection was accepted when the mouse had
clonic seizures. About 99% of controls injected with a vehicle exhibit tonic-clonic seizures
with hind or forelimb extension.

Intravenous Pentylenetetrazole Seizure (ivPTZ) Test

The convulsant pentylenetetrazole (PTZ) (1%), dissolved in saline, was infused
(0.005 mL/s) into a tail vein as earlier [38,39]. The activity to raise the threshold of ivPTZ-
induced myoclonic, clonic, and tonic seizures and concentration, quantity of infusion (mL),
and mouse body weight were recorded.

Test for Neurotoxicity Rotarod Test

The neurotoxicity of each compound was estimated in the rotarod test for mice accord-
ing to the protocol used in previous studies [38,39].

3.4. Statistics

For the 6-Hz test and MES a Fisher’s exact test (two-tailed) was applied. A one-way
ANOVA of variance was used for the ivPTZ test and a Dunnet post hoc test in case of
significance. Statistical significance was accepted at p ≤ 0.05 vs. control (Fisher’s exact test).
The calculations were carried out with SigmaPlot program (11.0 version) and Graph Pad
Prizm (Version 7.04) (GraphPad Software, San Diego, CA, USA).

3.5. Test for Antibacterial Activity

To test the antibacterial activity of the peptide samples, 100 µL of bacterial spectrum
(10 CFU/mL bacteria) was spread on medium nutrient agar (NA), placed onto a paper disc
(6 mm in diameter), and dripped with Rh extract of 20 µL with an extract concentration of
50 mg/mL. As a positive control, we used chloramphenicol 10 µg on paper discs. DMSO
10% was used as a negative control according to peptide solvents. The treatment was
repeated three times, and then the cells incubated for 24 h at a temperature of 37 ◦C. After
that, the inhabitation of bacterial growth was carried out by measuring the diameter of the
clear zone formed.

3.6. Antifungal Activity Test

Tests were carried out on the Candida albicans fungus. The concentration of the extract
tested was 50 mg/mL. The culture of each test fungus was taken to be tilted using an
asepticose needle and rejuvenated in a liquid medium. In each medium, there is a spore
density of 10 CFU/mL. The prepared medium Sabouraud Agar (SA) in a petri dish with
each culture was scratched on the top, then placed on the paper disc (paper disc), and then
a peptide sample of 20 µL was placed on the paper disc. It was further incubated for 24 h
and the resistance zone formed measured.

3.7. Antioxidant Activity

The determination of the antioxidant activity of the new peptide derivatives was
carried out by inserting 77 µL of hL extract into a test tube, then adding 3 mL of DPPH
solution, homogenizing, and incubating for 30 min in a dark room. The measurement of
antioxidant activity was performed by a spectrophotometer with a wavelength of 517 nm.
The treatment was carried out three times. The determination of activity for the standard
solution was conducted by first diluting 0.025 BHT (butylated hydroxytoluene) with 1 mL
of methanol. Then 3 mL of DPPH was added to 77 µL of BHT solution in a test tube,
homogenized, and incubated for 30 min in a dark room. The treatment was repeated
three times. For the blank, only 77 µL of methanol plus 3 mL of DPPH were used, then
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homogenized and incubated for 30 min in a dark room. According to Millauskas et al.
(2004) [40], the free radical scavenging activity of the sample was calculated by the formula:

DPPH radical concentration (%) =
Acontrol − Asample

Acontrol
× 100 (3)

where Acontrol is the absorbance value of the control reaction and Asample is the absorbance
value in the presence of the tested extracts sample.

4. Conclusions

Three new polar solvent-soluble spinorphin analogs modified at the N-terminus with
rhodamine B were synthesized in high yields via a traditional solid-phase Fmoc strategy.
All compounds are colored and soluble in physiological pH exhibiting absorptions at
557 nm. The modification in the spinorphin amino acid sequence by introducing the two
unnatural steric restricted amino acids makes the excitation centers and electrochemical
electron transfer more readily accessible. This was proved by an increase in the intensity
of absorption and emission lines and current peaks in the spectral and voltametric char-
acterization of the compounds. The data showed that at physiological pH the peptide
derivatives were in the ionic form with increasing value of the distribution coefficient in
the order: Rh-S6 < Rh-S5 < Rh-S. Based on the screening of the new hybrid spinorphin
analogs modified at the N-terminus with rhodamine B in three seizure tests with a different
mechanism of action in mice, we can suggest that the modification at the N-terminus
with fluorescent dye rhodamine of the bioactive peptide spinorphin Rh-S6 has a strong
capability to inhibit seizure spread while having comparable activity to the heptapeptide
Rh-S against drug-resistant psychomotor seizures with the potency to elevate the threshold
for clonic seizure. Biological tests against some bacterial pathogens such as Staphylococcus
aureus, Escherichia coli, and Bacillus cereus showed that all peptide derivatives were similar
to the negative control results. The compounds also showed weak activity against Candida
albicans fungus. The results indicate the ongoing search for universal antimicrobial agents
with pronounced synergism when used simultaneously as anticonvulsant, antibacterial,
and antifungal agents.
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