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Abstract: Asthma is characterized by chronic inflammation and a variable degree of airway hyperre-
sponsiveness (AHR). Our previous papers documented a role for Nociceptin/Orphanin FQ (N/OFQ)
and its receptor N/OFQ peptide (NOP) in AHR. Therefore, the aim of this study was to improve the
bioavailability of N/OFQ by developing solid lipid nanoparticles (SLNs). N/OFQ-loaded SLNs were
prepared by the Quasi Emulsion Solvent Diffusion (QESD) technique and then characterized. Brown
Norway rats were sensitized to ovalbumin (OVA) and treated with an intratracheal administration
of saline solution or N/OFQ-SLN. Then, 24 h after the last challenge, functional histological and
molecular evaluations were performed. SLNs showed a mean diameter of 233 ± 0.03 nm, a poly-
dispersity index (PDI) value around 0.28 ± 0.02 and a drug release percentage of 84.3. The in vitro
release of N/OFQ from SLNs showed that the release of the peptide starts already after two hours
of incubation. Animals receiving N/OFQ-SLN showed a significative decrease in allergen-induced
AHR compared to the control group. These results showed the positive effects of N/OFQ-SLNs
on the inflammatory process and on the mechanical properties of the airways, suggesting that the
innovative nanotechnological approach may be therapeutically beneficial for asthmatic patients.

Keywords: SLNs; N/OFQ; AHR; airway inflammation

1. Introduction

Asthma is a complex heterogeneous disease characterized by variable degrees of
airflow obstruction, chronic airway inflammation, airway remodeling and airway hy-
perresponsiveness (AHR). Asthma represents a significant public health problem for its
increasing prevalence in a growing percentage of people worldwide [1,2]. The lack of a
resolution therapy for their treatment makes necessary the identification of new targets
with therapeutic potential [3,4].

Nociceptin/orphanin FQ (N/OFQ) is the endogenous peptide activator of the N/OFQ
(NOP) receptor, which is widely expressed at central and peripheral levels [5]. Since the
discovery of the NOP receptor and its deorphanization, numerous studies have highlighted
within the N/OFQ-NOP receptor system some intriguing pharmacology [6–8]. The N/OFQ-
NOP receptor system has been reported to play an important role in various central
functions as well as in the periphery on the cardiovascular, renal, gastrointestinal and
airway systems [9].
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Our previous in vivo studies, in an animal model of allergic asthma, documented the
activation of NOP receptors by N/OFQ as a beneficial event upon asthma immunopathol-
ogy and AHR [10–12]. Moreover, our further research documented N/OFQ immunomod-
ulatory and bronchodilator activity in healthy and asthmatic human airway tissues, sug-
gesting its potential role in the pathogenesis of asthma. Notwithstanding this appreciable
properties, the therapeutic use of N/OFQ is strongly compromised due to its low water
solubility related to its peptide nature [13–15]. In fact, reduced protein stability dur-
ing aerosolization and the pulmonary microenvironment represent major obstacles to its
pulmonary administration [16–18]. This has spurred the development of selective NOP
receptor agonists, including non-peptide molecules [6,19] and carrier systems for N/OFQ
improving the therapeutic efficacy [20,21].

The widespread availability of increasingly sophisticated nanotechnology carriers
has provided the possibility to overcome this obstacle, ensuring the achievement of high
concentrations of the active ingredient at the site of interest, increasing its efficacy and
safety [22–25]. Notably, solid lipid nanoparticles (SLNs) represent a promising alternative
to conventional drug delivery systems. They are submicron-sized particles with diameters
ranging from 50 to 1000 nanometers. SLNs are composed of a solid lipid matrix stabilized
by surfactants in which the nature of the drug to be incorporated can be varied [26].
SLNs possess chemical–physical properties useful to improve the solubility, selectivity,
efficacy, pharmacokinetics and toxicity of encapsulated active ingredients loaded in high
percentages, favoring a high pulmonary deposition and reducing the amount of drug to be
administered [27,28].

With the aim to improve the bioavailability and targeting abilities of N/OFQ, we
developed SLNs loaded with a drug, as an active pharmaceutical ingredient, evaluating its
efficacy in a validated animal model of allergic asthma [29,30].

2. Results
2.1. SLN Formulation and Characterization

Since N/OFQ is a hydrophilic compound, SLN-N/OFQ was formulated via the
Quasi Emulsion Solvent Diffusion (QESD) method with some modifications. This method
has been widely tested in our previous studies for the delivery of other hydrophilic
molecules [22].

As reported in Table 1, photon correlation spectroscopy (PCS) data showed good
technological parameters with a homogeneity index (PDI) of 0.28 and an average particle
size of 249 nm for unloaded SLN, while SLN-N/OFQ showed a PDI of 0.479 and a particle
size of 240 nm; therefore, both formulations are suitable for pulmonary administration. The
slight difference in terms of PDI between unloaded and N/OFQ-loaded SLN was probably
due to the encapsulation of the compound, although both values are within the optimal
range (PDI < 0.5). Furthermore, the nanoformulation exhibited a zeta potential (ZP) around
−28 mV, predicting a good long-term stability (Figures S1 and S2). The drug loading was
about 65%. Moreover, the morphology of the SLN-N/OFQ was performed using Scanning
Electron Microscopy (SEM) (Figure 1). In agreement with the PCS data, the SEM images
showed that the lipid nanoparticles are suitable for pulmonary administration (particle size
around 250 nm) (Figures 1 and S3).

Table 1. Characterization of the SLN-N/OFQ formulation: the values of Z-Ave, PDI and ZP for
unloaded and SLN-N/OFQ recorded at 20 ◦C.

Formulation Z-Ave
(nm ± SD)

PDI
(-) ± SD

ZP
(mV ± SD)

Unloaded SLN 248.6 ± 0.10 0.289 ± 0.16 −27.6 ± 0.32

SLN-N/OFQ 239.6 ± 0.12 0.479 ± 0.18 −29.5 ± 0.30
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Figure 1. Scanning electron microscopy of N/OFQ-loaded SLNs.

2.2. In Vitro Release of N/OFQ from SLN

First, 2 mL of sample were collected from the receptor compartment at different
incubation times and characterized by means of liquid chromatography-mass spectrometry
(LC-MS) experiments to verify the presence of the released peptide. The sample collected
from the receptor compartment at time 0 did not contain sufficient N/OFQ concentration to
observe signals at the LC-MS instruments, while it was possible to detect the presence of the
N/OFQ signal already in the sample collected after 2 h of incubation (Figure 2). Given the
nature of the peptide (i.e., the absence of reliable chromophores; N/OFQ does not contain
any Tyr or Trp residues) and the low concentrations at which the experiments have been
conducted, we resorted to qualitatively compare the samples at different releasing times
by means of circular dichroism (CD) spectroscopy (Figure 3). The CD spectra recorded
as a function of time are consistent with the reported spectra of N/OFQ in water [31],
thus further supporting the LC-MS results in indicating in each sample the presence of
the peptide.

As it is possible to appreciate (Figure 4), the maximum peptide amount, estimated by
evaluating the CD signal at 218 nm, is reached after 22 h followed by a small decrease in
the concentration, thus indicating a possible plateau [32]. At 6 h of incubation, 76% of the
total released amount of the peptide has been already reached.

2.3. Functional and Cell Count Evaluations

Ovalbumin (OVA)-sensitized animals that were not treated with N/OFQ-SLN showed
a significant increase in acetylcholine (Ach)-induced bronchoconstriction. Endotracheal
pretreatment with the N/OFQ-SLNs 30 min prior to allergen administrations caused a
significant reduction in allergen-induced hyperreactivity to ACh (p < 0.05), restoring normal
lung function (Figure 5).
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Moreover, OVA sensitization induced a significant increase in total inflammatory
cell numbers (p < 0.01) that was significantly reduced by essential thrombocythaemia
(e.t.) treatment with N/OFQ-SLNs (p < 0.01), returning the total cell count to values
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comparable to those of the control group (Figure 6). Notably, e.t. treatment with N/OFQ-
SLNs showed a less prominent grade of inflammation in the proportion of lymphocytes,
polymorphonucleated cells, eosinophils and macrophages, which were all cells significantly
involved in asthma pathogenesis (Figure 7).

Pharmaceuticals 2022, 15, 1210 5 of 13 
 

 

2.3. Functional and Cell Count Evaluations 
Ovalbumin (OVA)-sensitized animals that were not treated with N/OFQ-SLN 

showed a significant increase in acetylcholine (Ach)-induced bronchoconstriction. Endo-
tracheal pretreatment with the N/OFQ-SLNs 30 min prior to allergen administrations 
caused a significant reduction in allergen-induced hyperreactivity to ACh (p < 0.05), re-
storing normal lung function (Figure 5). 

Moreover, OVA sensitization induced a significant increase in total inflammatory cell 
numbers (p < 0.01) that was significantly reduced by essential thrombocythaemia (e.t.) 
treatment with N/OFQ-SLNs (p < 0.01), returning the total cell count to values comparable 
to those of the control group (Figure 6). Notably, e.t. treatment with N/OFQ-SLNs showed 
a less prominent grade of inflammation in the proportion of lymphocytes, polymorpho-
nucleated cells, eosinophils and macrophages, which were all cells significantly involved 
in asthma pathogenesis (Figure 7). 

 

 
Figure 5. Absolute (A) and percentage (B) expression of lung resistances (RL) on ACh-induced bron-
choconstriction. Endotracheal pretreatment of N/OFQ-SLNs causes a significant reduction in ACh-
induced bronchoconstriction with respect to vehicle-treated rats (A,B). Data are means ± SEM (n = 
10). * p < 0.05. 

Figure 5. Absolute (A) and percentage (B) expression of lung resistances (RL) on ACh-induced
bronchoconstriction. Endotracheal pretreatment of N/OFQ-SLNs causes a significant reduction in
ACh-induced bronchoconstriction with respect to vehicle-treated rats (A,B). Data are means ± SEM
(n = 10). * p < 0.05.

Pharmaceuticals 2022, 15, 1210 6 of 13 
 

 

 
Figure 6. Effect of N/OFQ-SLNs on inflammatory cells. In the bronchoalveolar lavage (BAL) fluid, 
samples treatment with N/OFQ-SLNs significantly reduces the total number of inflammatory cells 
compared to the control group. Data are means ± SEM (n = 10). ** p < 0.01. 

 
Figure 7. Effect of N/OFQ-SLNs on inflammatory cells. In the BAL fluid, samples treatment with 
N/OFQ-SLNs reduces significantly the percentage of eosinophils and increases the percentage of 
macrophages, compared to the control group. Data are means ± SEM (n = 10). ** p < 0.01, *** p < 0.001. 

3. Discussion 
For the first time, in the present study, we reported positive effects of N/OFQ encap-

sulated in SLNs on the inflammatory process and mechanical properties of the airways. 
In our previous study, we demonstrated that intraperitoneally, N/OFQ treatment 

mitigating inflammation, airway remodeling and oxidative stress protect the murine air-
way against allergic asthma OVA-induced damages [10–13]. Indeed, the OVA sensitiza-
tion model is the most frequently used to reproduce hallmarks of human AHR involving 
the infiltration of eosinophils, mast cells, neutrophils, and lymphocytes [29,30]. However, 
the peptide nature of N/OFQ limits its bioavailability and clinical efficacy. Therefore, 

Figure 6. Effect of N/OFQ-SLNs on inflammatory cells. In the bronchoalveolar lavage (BAL) fluid,
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compared to the control group. Data are means ± SEM (n = 10). ** p < 0.01.
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Figure 7. Effect of N/OFQ-SLNs on inflammatory cells. In the BAL fluid, samples treatment with
N/OFQ-SLNs reduces significantly the percentage of eosinophils and increases the percentage of
macrophages, compared to the control group. Data are means ± SEM (n = 10). ** p < 0.01, *** p < 0.001.

3. Discussion

For the first time, in the present study, we reported positive effects of N/OFQ encap-
sulated in SLNs on the inflammatory process and mechanical properties of the airways.

In our previous study, we demonstrated that intraperitoneally, N/OFQ treatment
mitigating inflammation, airway remodeling and oxidative stress protect the murine airway
against allergic asthma OVA-induced damages [10–13]. Indeed, the OVA sensitization
model is the most frequently used to reproduce hallmarks of human AHR involving the
infiltration of eosinophils, mast cells, neutrophils, and lymphocytes [29,30]. However, the
peptide nature of N/OFQ limits its bioavailability and clinical efficacy. Therefore, looking
for a carrier system for N/OFQ could solve these problems and be a good strategy for
asthma treatment.

For this purpose, SLNs have been investigated as suitable inhaled drug delivery [33].
SLNs can be used to deliver treatments for a variety of diseases; in particular, SLNs

have been considered for pulmonary delivery [34–36]. Their advantages are sustained drug
release, biocompatibility and biodegradability, lower toxicity and better stability compared
to previously formulated particle systems. The use of SLNs for pulmonary applications
is able to produce an increase in the local drug concentration but also a reduction in the
systemic side effects. Therefore, their use can achieve higher bioavailability for systemic
therapies [37]. In particular, SLNs reduce the toxicity of drugs, increase the solubilities of
hydrophobic drugs, and improve control over drug release [31,38,39].

SLN-N/OFQs were prepared with Lutrol F68 as surfactant and Softisan100 (Hydro-
genated Coco-Glycerides) as lipid. We decided to use these materials after a screening
to identify the most suitable components for the incorporation of N/OFQ. In particular,
we chose Softisan 100 to prepare the lipid nanoparticles, since it is characterized by a low
melting point (35 ◦C); this feature allows the use of a low temperature, avoiding the thermal
degradation of the N/OFQ. Furthermore, in preliminary studies, it has shown that these
materials had a high affinity toward N/OFQ. In our work, we encapsulated N/OFQ in
SLNs, showing DPI, diameter, and zeta potential values suitable for the pulmonary delivery
of N/OFQ, ensuring the good long-term stability of the system. In addition, the small
size of the SLNs ensures a large surface area that allows water molecules to surround the
particles, increasing the solubility of the peptide compound in biological fluids [40,41].
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N/OFQ-SLNs endotracheally administered in a rat model of OVA-induced AHR were
significantly effective to alleviate inflammatory process and to improve the mechanical
properties of the airways, suggesting the endotracheal administration of N/OFQ-SLNs
as an excellent inhaled drug delivery in the treatment of pulmonary diseases for its im-
proved sustained release properties and targeting abilities. Indeed, the administration of
the endotracheal N/OFQ-SLNs system prior to OVA sensitization restored normal pul-
monary reactivity, significantly reducing pulmonary resistances, probably through the
following mechanisms:

(1) N/OFQ encapsulation into SLNs enhanced the lung bioavailability of N/OFQ
and wielded a profound influence on the pharmacokinetics of the drug as documented
by our LC-MS analysis, which estimated a significant release of the drug (76%) already
after 6 h of incubation, (2) endotracheal administration of N/OFQ-SLNs resulted in a
higher accumulation of N/OFQ in lungs so that more drugs reached the inflamed tissue to
exert their therapeutic effect; this hypothesis is supported by the size of the nanoparticles
(250 nm) obtained through SEM images, which describe their ability to selectively deposit
in peripheral airways and alveoli.

Chuanfeng et al. testified that curcumin loaded in SLNs represses the AHR and inflam-
matory infiltration in the treatment of asthma and improves its drug bioavailability, not
only improving the drugs’ solubility in nanoformulations but also their bioavailability [42].
Wang et al. [43] also reported that curcumin–SLN administration is more effective than
curcumin in attenuating asthma progression. Additionally, other authors have proven that
proanthocyanidins–SLNs allow them to play a better role in oxidative stress, suppressing
airway epithelial cells [44,45]. Together, these studies indicate the potential of SLNs to
improve therapeutic drug efficacy as a drug delivery vehicle.

Thus, the sustained release properties and targeting ability obtained with the innova-
tive nanotechnology (SLN) system could be therapeutically useful for asthmatic patients
due to the enhancement of pharmacological effects. Therefore, it is possible to reach a
reduction and/or optimization of the dose and frequency of drug administration for achiev-
ing the minimum effective concentration, and limited distribution of the therapeutic agent
to other areas, reducing the associated side effects and promoting greater patient adherence
to therapy. In this way, it will be possible to optimize the therapeutic benefits of N/OFQ on
inflammation and airway mechanical properties in asthma.

4. Materials and Methods
4.1. SLN Formulation

SLN-N/OFQ were prepared by the QESD method with some modifications [22].
Briefly, N/OFQ (0.08 mg) was added to 5 mL of water heated to 45 ◦C. The obtained
solution was dispersed to lipid phase (45◦) composed by Softisan 100 (0.816 g), ethanol
(18 mL) and water (4 mL) using a high shear homogenizer (UltraTurrax T25; Darmstadt,
Germany) at 15,000 rpm for 5 min. Thus, the obtained dispersion was slowly added to hot
(45 ◦C) surfactant solution (Lutrol F68 7.8% w/v). Then, the quasi-emulsion was cooled in
an ice bath for 5 min under high-speed homogenization.

4.2. SLN Characterization

PCS was employed to determine the Z-ave, PDI and ZP. Analyses were performed at
20 ◦C using a Zetasizer Nano ZS ZS90 (Malvern Instrument Ltd., Worcs, England) with
a detection angle of 90◦ and a He–Ne laser of 4 mW at 633 nm. Before measurements,
each sample was 10-fold diluted with deionized water. All measurements were taken
in triplicate.

4.3. Scanning Electron Microscopy

SLN-N/OFQ morphology was performed using Scanning Electron Microscopy (SEM;
FEI Quanta 200 SEM, Eindhoven, The Netherlands). The acceleration voltage was set at
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5–20 kV. A drop of formulation was deposited onto aluminum SEM stubs. After drying,
the specimen was sputter-coated with a 10 nm thick gold palladium alloy.

4.4. Determination of Drug Loading

The determination of N/OFQ loading in the lipid nanoparticles was performed
through the tangential ultra-filtration system (Millipore) using a Pellicon XL (MWCO
1,000,000 Da). An amount of retained material was analyzed by High-Performance Liquid
Chromatography (HPLC) to quantify the drug content. Chromatographic analysis was
performed on a Phenomenex Kinetex C18 analytical column (50 mm × 2.1 mm, 2.1 µm).
Isocratic elution was carried out using 0.1% trifluoroacetic acid (TFA) as a mobile phase,
which was purged with helium for 30 min. The elution flow rate was set at 0.2 mL/min.

4.5. In Vitro Release Study

The release of N/OFQ was evaluated using a pre-hydrated dialysis membrane (Spec-
tra/Por 3 Dialysis Membrane, MWCO 3.5 kD). The bag was loaded with 5 mL of SLN-
N/OFQ formulation, while the receptor compartment is a beaker filled with water (40 mL)
and placed in a bath at 37 ◦C, under magnetic stirring. Then, 2 mL of sample were taken
from the receptor compartment every 2 h for 24 h (0, 2, 4, 6, 8, 22 and 24 h) and replaced
with the same volume of water. Each experiment was run in duplicate.

4.6. In Vitro Release Profile of N/OFQ from SLN by LC-MS

Liquid chromatography–mass spectrometry (LC-MS) analyses were performed on
a LC-MS Thermo Finnigan with an electrospray source (MSQ) on a Phenomenex Jupiter
5 m C18 (300 Å, 150 mm × 460 mm) column with a flow rate of 0.250 mL min−1 at
room temperature. Samples were analyzed by LC-MS on a LC-MS Agilent Technologies
6230 ESI-TOF on a Phenomenex Jupiter 3µ C18 (150 mm × 2.0 mm) column with a flow
rate of 0.2 mLmin−1 and with a gradient of CH3CN (0.1% TFA) in H2O (0.1% TFA) from
5 to 50% in 20 min.

4.7. N/OFQ

Calculated mass (Da): [M+H]+ = 1806.2432; [M+2H]2+ = 904.1216;
Found (Da): [M+H]+ = 1806.8826; [M+1H]1+: 1807.8826; [M+2H]2+: 904.4106;
Circular dichroism spectra were recorded using a JASCO J-815 CD spectropolarimeter

equipped with Peltier temperature control. Data were collected with a bandwidth of 1 nm,
a data pitch of 1 nm, and a scanning speed of 50 nm/min using a quartz cuvette with a
0.1 cm path length in the 200–260 nm wavelength range. Two duplicates were acquired for
every measurement, and all the spectra were subtracted from the buffer contribution.

4.8. Animal Study

The experimental protocol was approved by the Animal Care and Use Committee
of the University of Campania “Luigi Vanvitelli” (828/2019-PR 06.12.2019). Animal care
complied with the EU guidelines (2010/63/EU). The experiments were performed on n.
30 outbred male Brown Norway (Charles River Laboratories, Milan, Italy), body mass
230–250 g, housed in the University of Campania “Luigi Vanvitelli” Animal Facility, in
standard cages, two animals per cage. Food and water were supplied ad libitum. Room
temperature was set at 21–23 ◦C, 50–60% of relative humidity, and the day/night cycle was
12 h/12 h. For 7 days before initial treatment, rats were acclimated.

4.9. Sensitization and Treatment

We used a rat model of asthma developed by OVA (lyophilized powder, purity ≥98%
by agarose gel electrophoresis, Sigma-Aldrich, St. Louis, MO, USA), sensitization and
inhalation. On days 0 and 7, rats were systemically sensitized with an intraperitoneal
injection of 1 mL alum-precipitated Ag in Phosphate-Buffered Saline (PBS) which contained
10 µg of OVA mixed with 3.3 mg aluminum hydroxide. Three weeks after the sensitization,
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the rats were placed in a perspex exposure chamber and were exposed to aerosolized OVA
(1% in PBS) for 30 min/day on 3 consecutive days. The aerosol was delivered by a De
Vilbiss nebulizer (De Vilbiss Health Care Ltd, Tipton, UK). The rats in the control group
received the same volume of PBS. Vehicle or SLN-N/OFQ (1 µM; 15 µg/kg) (100 µL) (purity
≥ 98% by HPLC, Calbiochem Sigma-Aldrich, Darmstadt, Germany) was administered
endotracheally, on days 0 and 7, 30 min before each allergen injection.

4.10. Experimental Design

The rats were randomly grouped as follows: control group, receiving subcutaneous
injection of vehicle on days 0 and 7, sacrificed after 24 days (n = 10); OVA group, rats
receiving a subcutaneous injection of the allergen OVA on days 0 and 7, challenged with
OVA from day 21 to 23 and sacrificed at day 24 (n = 10); OVA + SLN-N/OFQ group, rats
receiving a subcutaneous injection of OVA at day 0 and 7 and treated with an endotracheal
(e.t.) administration of N/OFQ-loaded SLNs (1 µM; 15 µg/kg) (100 µL), challenged with
OVA from day 21 to 23 and sacrificed at day 24 (n = 10). The rats were sacrificed to perform
functional and cellular evaluations.

The protocol for the sensitization, challenge and drug administration is summarized
in Figure 8.
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4.11. Measurement of Airway Hyperresponsiveness (AHR)

Lung reactivity was assessed in an isolated and perfused lung system for rat (IPL-2),
Hugo Sachs Elektronik—Harvard Apparatus, as described in detail previously [46–48].

The animals were anesthetized with ketamine hydrochloride (100 mg/kg) (Akorn,
Lake Forest, IL, USA) and medetomidine (0.25 mg/kg) (OrionPharma, Espoo, Finland)
intraperitoneally administered. Registration of hyperresponsiveness (AHR) parameters
in rats was performed by using a Hugo Sachs Electronik Haemodyn (Harvard Apparatus
GmbH, March, Germany). All data were transmitted to a computer and analyzed with
Pulmodyn software (Hugo Sachs Elektronik, March, Germany) through the following
formula: P = V·C − 1 + RL·dV·dt − 1, where P is chamber pressure, C is pulmonary
compliance, V is tidal volume, and lung resistance is RL. Successively, the lung resistance
value registered was corrected for the resistance of the pneumotachometer. Successively, a
repetitive dose–response curve to acetylcholine chloride (Ach HCl, purity ≥ 99% by TLC,
Sigma-Aldrich, St. Louis, MO, USA, 10−8 to 10−3 mol/L) in all experimental groups was
obtained. The dose–response curve of Ach was administered as bolus.

4.12. Preparation and Analysis of Bronchoalveolar Lavage Fluids (BALF)

Then, 24 h following the last allergen challenge, animals were anesthetized with a
ketamine (100 mg/kg) and medetomidine (0.25 mg/kg) intraperitoneal injection (i.p.).
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A 16-gauge cannula was inserted into the trachea, and lungs were gently rinsed and
aspirated three times with 2 mL of sterilized normal saline containing 2% bovine serum
albumin (BSA). The collected lavage fluid was centrifuged at 1000× g at 4 ◦C for 10 min.
The supernatants were harvested and stored at −80 ◦C. The pellets were resuspended in
1 mL PBS for cell count and classification.

4.13. Total and Differential Cell Count

Total cell count (TCC) was performed using the Countess automated cell counter
(Invitrogen). We expressed TCC as total number of recovered cells (×106). The differential
cell count was evaluated in light microscopy on Diff-Quik (Reagena, Italy) stained cytospin.
Three hundred cells were counted for differential cell count analysis.

4.14. Statistical Analysis

Data are presented as mean ± SEM. All normally distributed data were analyzed by
one-way analysis of variance (ANOVA) followed by Bonferroni post hoc test adjustment for
multiple comparisons [49]. Post-test adjustments consider the potential error introduced as
a consequence of multiple comparisons [50]. GraphPad Prism 9.0 was used for all statistical
analyses. Values of p < 0.05 were considered significant.

5. Conclusions

In conclusion, due to the structural formulation and technological characteristics,
which confer a high and proven safety profile, SLNs could represent an excellent strategy
for the administration of N/OFQ, nominating them as potential regulators of AHR and
bronchial inflammation in inflammatory airway diseases, offering an additional approach
to the treatment of asthma.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/ph15101210/s1; Figure S1: DLS curves of unloaded SLN; Figure S2:
DLS curves of SLN-N/OFQ; Figure S3: Empty SLN.
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