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Abstract: Rheumatoid arthritis (RA) is a chronic disease characterized by bone joint damage and
incapacitation. The mechanism underlying RA pathogenesis is autoimmunity in the connective
tissue. Cytokines play an important role in the human immune system for signal transduction and
in the development of inflammatory responses. Janus kinases (JAK) participate in the JAK/STAT
pathway, which mediates cytokine effects, in particular interleukin 6 and IFNγ. The discovery of
small molecule inhibitors of the JAK protein family has led to a revolution in RA therapy. The novel
JAK inhibitor upadacitinib (RinvoqTM) has a higher selectivity for JAK1 compared to JAK2 and JAK3
in vivo. Currently, details on the molecular recognition of JAK1 by upadacitinib are not available. We
found that characteristics of hydrogen bond formation with the glycine loop and hinge in JAKs define
the selectivity. Our molecular modeling study could provide insight into the drug action mechanism
and pharmacophore model differences in JAK isoforms.

Keywords: upadacitinib; Janus kinase; JAK inhibitor; rheumatoid arthritis; molecular modeling

1. Introduction

Janus kinases (JAKs) are tyrosine kinases associated with cytoplasmic regions of
type I and II cytokine receptors. Receptor multimerization occurs when a ligand binds
to the receptor [1]. JAKs are involved in the JAK/STAT signal transducer and activator
of transcription (STAT) signaling pathway, activation of the immune system, cytokine
receptors, and polarization of T-helper cells [1]. This signaling pathway is regulated by a
variety of factors, including suppressor of cytokine signaling, protein STAT inhibitors, and
protein tyrosine phosphatase, which determine the initiation, duration, and termination of
signaling cascades. Dysregulation of the JAK/STAT pathway in T-helper cells can lead to
immune disorders [1].

The human JAK family includes four isoforms: JAK1 (P23458), JAK2 (O60674), JAK3
(P52333), and Tyrosine kinase 2 (TYK2, P29597), with molecular weights ranging from
120 kDa to 140 kDa [2]. Each JAK isoform has several domains. The N-terminal domain of
FERM (F for 4.1 protein, E for ezrin, R for radixin, and M for moesin) consists of the F1, F2,
and F3 subdomains, which structurally resemble the domains that bind ubiquitin and CoA
and pleckstrin-phosphotyrosine, respectively [3]. FERM is responsible for protein–protein
interactions, such as interactions with membrane-bound proteins [4]. The second SH2 (Src
homology 2) domain contains 100 amino acid residues. The SH2 domain activates and
dimerizes STAT proteins [5]. The central pseudokinase domain is homologous to the protein
tyrosine kinase domain; however, it lacks a catalytic function and plays a regulatory role [6].
Finally, the conserved protein tyrosine kinase domain is located at the C-terminus and
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contains 250–300 amino acid residues and an ATP-binding site in the immediate vicinity of
the catalytic region. The domain is responsible for the phosphorylation of tyrosine residues
in target proteins [7].

For all the JAK isoforms, a fairly high level of amino acid sequence identity was
observed, which amounted to 22.7% (287 amino acid residues, Clustal Omega [8] multiple
alignment algorithm). The highest similarity was observed in the isoforms JAK2 and JAK3,
as well as JAK1 and TYK2.

The activation of the JAK/STAT signaling pathway by proinflammatory cytokines is
crucial in the pathogenesis and progression of rheumatoid arthritis (RA) [1,9]. Normally,
the JAK/STAT signaling pathway is inhibited by a negative linkage mechanism, including
suppressors of cytokine signaling and the protein STAT inhibitor. However, in RA, neither
of these regulators is involved. Continuous activation of JAK/STAT signaling in synovial
joints in RA leads to an increase in the expression level of the matrix metalloproteinase
gene, frequency of apoptotic chondrocytes, and resistance to apoptosis in the inflamed
synovial tissue [10].

Symptoms of RA, including pain, are mediated by inflammatory and non-inflammatory
mechanisms and negatively affect quality of life [10]. Recently published data from a Phase
III clinical trial (RA-BEAM; NCT01710358) showed that RA patients treated with JAK1 and
JAK2 inhibitors achieved significantly higher pain relief than patients treated with a tumor
necrosis factor blocker [10]. Stronger pain relief upon inhibition of JAK1 and JAK2 may
reflect the effect on several cytokines involved in the regulation of pain in RA, as opposed
to the effect on a single cytokine in the case of TNF blocking [10].

Synthetic JAK inhibitors represent a relatively new class of low-molecular-weight oral
drugs, and offer an alternative to RA patients who are unresponsive to conventional or bio-
logical therapies. Upadacitinib is a JAK inhibitor with a high selectivity for JAK1 [10]. The
drug was recently approved by the US Food and Drug Administration and the European
Medicines Agency for use in patients with moderate to severe RA [1].

JAK inhibitors act as competitive inhibitors of ATP and prevent it from binding to
the JAK tyrosine kinase domain. Upadacitinib was developed to selectively inhibit ATP
binding to JAK1 based on structural differences in the ATP-binding site between JAK1 and
JAK2 [1]. The active site of JAKs is formed by several subdomains (Figure 1A,B). These
are the β-hairpin of the glycine loop, disordered regions of the hinge, and catalytic and
activation loops. Upadacitinib selectively targets JAK1-dependent disease factors, such as
IL-6 and IFNγ [1].
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that participate in upadacitinib binding are highlighted by magenta. (B): JAK kinase domain 
organization. Glycine loop, hinge, and catalytic and activation loops are colored in magenta, orange, 
dark blue, and green. Phosphorylated Y residues of the activation loop are shown as sticks. 

Upadacitinib contains several condensed heterocycles (imidazole) and is a fluorine 
derivative of urea (Figure 2). The pharmacophore properties of the molecule are due to its 
physicochemical characteristics. The molecule can act as a donor of two hydrogen bonds 
(NH group, hydrogen bond donor) and an acceptor of six hydrogen bonds (hydrogen 
bond acceptor) according to the number of nitrogen atoms with a lone electron pair. 
Currently, experimental and computational insights into upadacitinib binding with JAK 
isoforms are unavailable. The aim of our study was the establishment of structural and 
dynamic characteristics upon upadacitinib binding to JAK enzyme isoforms that could 
explain this drug selectivity via molecular modeling methods. 

Figure 1. Cont.



Pharmaceuticals 2022, 15, 30 3 of 12

Pharmaceuticals 2022, 15, x FOR PEER REVIEW 3 of 13 
 

 

 
(A) 

 
(B) 

Figure 1. (A): JAK kinase domain amino acid sequence alignment was performed in Clustal Omega 
[8] on the UniProt webserver (*, :, ., and space symbols means 100%, 75%, 50%, 0% match between 
sequences, respectively). Significant subdomains are highlighted in red. Key amino acid residues 
that participate in upadacitinib binding are highlighted by magenta. (B): JAK kinase domain 
organization. Glycine loop, hinge, and catalytic and activation loops are colored in magenta, orange, 
dark blue, and green. Phosphorylated Y residues of the activation loop are shown as sticks. 

Upadacitinib contains several condensed heterocycles (imidazole) and is a fluorine 
derivative of urea (Figure 2). The pharmacophore properties of the molecule are due to its 
physicochemical characteristics. The molecule can act as a donor of two hydrogen bonds 
(NH group, hydrogen bond donor) and an acceptor of six hydrogen bonds (hydrogen 
bond acceptor) according to the number of nitrogen atoms with a lone electron pair. 
Currently, experimental and computational insights into upadacitinib binding with JAK 
isoforms are unavailable. The aim of our study was the establishment of structural and 
dynamic characteristics upon upadacitinib binding to JAK enzyme isoforms that could 
explain this drug selectivity via molecular modeling methods. 

Figure 1. (A): JAK kinase domain amino acid sequence alignment was performed in Clustal Omega [8]
on the UniProt webserver (*, :, ., and space symbols means 100%, 75%, 50%, 0% match between
sequences, respectively). Significant subdomains are highlighted in red. Key amino acid residues that
participate in upadacitinib binding are highlighted by magenta. (B): JAK kinase domain organization.
Glycine loop, hinge, and catalytic and activation loops are colored in magenta, orange, dark blue,
and green. Phosphorylated Y residues of the activation loop are shown as sticks.

Upadacitinib contains several condensed heterocycles (imidazole) and is a fluorine
derivative of urea (Figure 2). The pharmacophore properties of the molecule are due to its
physicochemical characteristics. The molecule can act as a donor of two hydrogen bonds
(NH group, hydrogen bond donor) and an acceptor of six hydrogen bonds (hydrogen bond
acceptor) according to the number of nitrogen atoms with a lone electron pair. Currently,
experimental and computational insights into upadacitinib binding with JAK isoforms
are unavailable. The aim of our study was the establishment of structural and dynamic
characteristics upon upadacitinib binding to JAK enzyme isoforms that could explain this
drug selectivity via molecular modeling methods.
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2. Results
2.1. Molecular Docking

During re-docking, an approximate coincidence of the conformations of co-crystallized
and predicted conformations by the criterion of the RMSD (root-mean-square deviation)
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value was observed during the alignment of the protein-ligand complexes. This allowed
us to validate the applicability of the chosen docking path for upadacitinib docking to
the active JAK sites (Table 1). The following results were obtained: in the active site,
upadacitinib formed three hydrogen bonds with JAK1 (with E883, E957, L959), with JAK2
and JAK3, two hydrogen bonds each (with E930/903 and L932/905, respectively), and
only one with TYK2 (V981). An additional hydrogen bond of upadacitinib occurred on the
JAK1 glycine loop. A positive correlation was found between the experimental IC50 values
and the Vina score (see Table 1). In addition, all native ligands of protein experimental
structures showed higher affinity energies than those of upadacitinib. We found that for
all compounds, the interaction with amino acid residues of the hinge region, in particular
with E and L, was critical. This was a common protein pharmacophore for the binding of
JAK inhibitors and experimental crystal structures.

Table 1. Results of molecular docking.

Kinase
Co-Crystallized

Native Ligand Vina
Score, kcal/mol 1

RMSD between Re-Docked
and Co-Crystallized

Ligand, nm

IC50 of
Upadacitinib,

nM 2

Upadacitinib
Vina Score,
kcal/mol 1

JAK1 −9.4 0.007 43 −8.5
JAK2 −9.1 0.006 120 −8.1
JAK3 −9.6 0.009 2300 −7.9
TYK2 −10.9 0.000 4700 −6.0

1 Lower value is better. 2 Literature data [1].

2.2. Molecular Dynamics

To confirm the results of molecular docking, we searched for common and unique
characteristics in the binding of upadacitinib to JAK isoforms by performing molecular
dynamics (MD) simulations of protein-ligand complexes. MD trajectories were efficiently
clustered and correlated with the calculated RMSD values for upadacitinib (in all runs, the
MD RMSD did not change by more than 0.13 nm) to capture the most preferred modes of
drug binding to targets. Figure 3 shows the average of conformations of the protein-ligand
complexes generated in the MD trajectory clustering procedure.

2.2.1. Number of Intermolecular Hydrogen Bonds

The number of intermolecular hydrogen bonds (H-bonds) served as a criterion for the
stability of the intermolecular complex during the simulation (Figure 4). It did not change
significantly in the JAK isoforms, except in the upadacitinib/TYK2 complex, which may
indicate a suboptimal conformation obtained in molecular docking.

For an accurate assessment of intermolecular H-bonds, we calculated them in the most
populated cluster. The number of intermolecular H-bonds by upadacitinib in the most
populated cluster of MD trajectories was 2.3 ± 0.8, 2.5 ± 1.0, 2.3 ± 0.8, 1.7 ± 1.1 with JAK1,
JAK2, JAK3, and TYK2, respectively. The number of H-bonds (JAK2 > JAK1 ≈ JAK3 >
TYK2) compared with IC50 values (JAK1 < JAK2 < JAK3 < TYK2; Table 1) did not reveal a
direct correlation. This indicates the presence of some characteristics specific to JAK1.

2.2.2. Distribution of Hydrogen Bonds

The intermolecular H-bonds were analyzed in detail. We generated a heatmap for
H-bonds arising between upadacitinib and JAK isoforms, and calculated the occurrence
of non-covalent interactions. All kinases interacted with the hinge region (Figure 5A–D).
However, four H-bonds with hinge JAK1 (E957 backbone oxygen, L959 backbone amide
proton, S963 sidechain oxygen, and E966 sidechain oxygens) were found in upadacitinib
(Figure 5A), versus two with JAK2 (E930 backbone oxygen, L932 backbone amide proton)
(Figure 5B), JAK3 (E903 backbone oxygen, L905 backbone amide proton) (Figure 5C), and
TYK2 (E979 and V981 oxygen atoms) (Figure 5D). For TYK2, the binding of the hinge region
significantly differed, which was confirmed experimentally [11], wherein, in another small
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molecule, binding occurred with V981. Moreover, upadacitinib interacted with the glycine
loop in JAK1 (E883 backbone oxygen) and JAK2 (N859 backbone amide proton). No H-
bond formation was observed in the glycine loops of other JAKs. Thus, the general pattern
of binding to E and L amino acid residues of the hinge JAKs was confirmed; however, only
the MD experiment revealed the unique property of the protein pharmacophore JAK1.

2.2.3. Changes in the JAK Structure upon Binding of Upadacitinib

We selected changes in the RMSF (root-mean-square fluctuations) Cα atoms of amino
acid residues as a measure of the mobility of JAK subdomains upon binding of upadac-
itinib. Interaction with upadacitinib reduced glycine loop mobility in JAK1 and JAK2
compared to other kinases (Figure 6A). Moreover, additional H-bonds reduced the hinge
mobility of JAK1 (Figure 6B). In contrast, only one intermittent H-bond of TYK2 bound
with upadacitinib correlated with the highest hinge mobility of this kinase.
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2.2.4. Free Binding Energy Estimation via MM-PBSA Method

Free binding energies (∆Gbind) of upadacitinib with JAKs were distributed as follows:
JAK1 < JAK3 < JAK2 < TYK2 (Table 2). The free binding energy does not directly correlate
with the experimental IC50 values because of the estimation of the entropy contribution in
the experimental and calculation methods. However, the binding energy of the drug to
JAK1 was the most favorable. Additional information can be obtained from contributions
of the binding energy. Thus, the energy of van der Waals interactions was lower for JAK1
compared to other JAKs. The catalytic and activation loops formed a hydrophobic pocket.
However, the van der Waals interaction was only present in upadacitinib/JAK1 binding,
where L1010 was important. The highest energy of electrostatic interaction was observed for
TYK2 with upadacitinib. This correlated with the low number of intermolecular H-bonds
(Figure 5D).

Table 2. Binding energies of upadacitinib with JAKs and contributions to them.

Kinase
van der Waals

Energy 1,
kcal/mol

Electrostatic
Energy 1,
kcal/mol

Polar Solvation
Energy 1,
kcal/mol

SASA
Energy 1,2,
kcal/mol

Binding
Energy 1,
kcal/mol

JAK1 −45.0 ± 3.5 −12.6 ± 3.5 38.8 ± 6.7 −4.4 ± 0.2 −23.2 ± 4.2
JAK2 −39.3 ± 0.3 −21.0 ± 0.4 48.6 ± 0.8 −4.3 ± 0.0 −16.0 ± 0.4
JAK3 −42.4 ± 0.3 −15.7 ± 0.2 41.5 ± 2.8 −4.4 ± 0.0 −20.9 ± 0.3
TYK2 −35.8 ± 0.3 −10.9 ± 0.3 38.2 ± 0.6 −4.1 ± 0.0 −12.6 ± 0.3

1 Lower value is better. 2 Solvent accessible surface area.

3. Discussion

The JAK family of human enzymes includes JAK1, JAK2, JAK3, and TYK2 isoforms.
JAK enzymes are important molecules for cytokine and growth factor signaling [1]. Iso-
forms of the JAK family function in combination; however, under certain conditions,
independent activity of a JAK isoform may prevail over another. A striking example of the
latter is signaling via the proinflammatory mediator IL-6 in RA. IL-6 leads to the activation
of all JAK isoforms; however, a dominant role is observed in JAK1 [2]. JAK3, together with
JAK1, is an important component in signaling for common gamma cytokine receptors IL-2,
IL-4, IL-7, IL-9, IL-15, and IL-21 [3]. These cytokines are involved in many physiological
processes, including T cell survival, Th2 responses, and natural killer (NK) cell survival.
JAK2 is involved in the regulation of hematopoietic cell differentiation through signaling
via IL-3, IL-5, granulocyte-macrophage colony-stimulating factor, erythropoietin, throm-
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bopoietin, growth hormone, and leptin. TYK2 is involved in the differentiation of Th1 and
Th17 cells through IL-12 and IL-23 [4].

JAK enzymes play an important role in the pathogenesis of RA [5]. Although the
molecular mechanisms of RA pathogenesis remain unelucidated, the disease is accom-
panied by dysregulation of immune responses and production of autoantibodies and
cytokines. Monocytes, T cells, and B cells play an important role in the pathogenesis of
RA [6]. Dysregulation of the JAK/STAT signaling pathway in circulating immune cells
mediates a chronic inflammatory response [5,7].

To date, tofacitinib, baricitinib, pecitinib, upadacitinib, and filgotinib, which are JAK
enzyme inhibitors, have been developed and are actively used in pro-rheumatic therapy [4].
JAK inhibitors are targeted low-molecular-weight synthetic disease-modifying antirheumatic
drugs. JAK inhibitors suppress the action of intracellular JAK kinases [4]. Padacintinib is a
selective inhibitor of JAK1. The selectivity of the interaction of upadacitinib predominantly
with the JAK1 isoform was confirmed by experimental studies. The results of the enzy-
matic studies confirmed the high selectivity of upadacitinib for JAK1. IC50 values were
obtained for the JAK isoforms, indicating a decrease in the selectivity for the binding of the
pharmacophore/enzyme in decreasing order of JAK1 > JAK2 > JAK3 > TYK2 [9].

In the present study, assessing the molecular dynamics, we characterized features
of the geometry of the active binding sites of the JAK enzymes and mapped amino acid
residues involved in the formation of the complex with upadacitinib. Further, we explained
the binding selectivity of upadacitinib to JAK1 using the following observations.

We developed structural models for the four JAK isoforms using experimental data
from the PDB database (Table 3). The amino acid sequences of proteins of the JAK family
were highly conserved; the homology of amino acid residues in the binding site of the
pharmacophore for JAK1 and JAK2 was 85% (Figure 1). The formation of H-bonds with
E and L is a common interaction with the hinge region in all previously studied isoforms.
Previously, the work of Michael Friedman’s scientific group revealed that the glycine loop
in the binding site of the JAK1 pharmacophore forms a closed conformation, in contrast to
JAK2. This could be attributed to differences in the amino acid sequences [10]. Parmentier
performed a structural analysis of the binding sites of JAK1 and JAK2, which showed that
the trifluoroethyl group occupies the space under the glycine loop [1].

We obtained structural models of binding sites for the four isoforms of JAK and
identified structural features that were not previously characterized. Our results indicated
that in the active sites of JAK1 and TYK2, the 2,2,2-trifluoroethyl group of upadacitinib
was not located under the glycine loop (Figure 5A,D). In contrast, JAK2 and JAK3 showed
the possibility of the 2,2,2-trifluoroethyl group being located under the glycine loop. This
behavior was similar to that of the analog compounds used in this study [12]. There
were obstructions created by the imidazole cycle of histidine in the glycine loop during
visual inspection of the MD trajectories. In place of histidine in the glycine loop, there
was an E, which did not create such steric hindrances, and the 2,2,2-trifluoroethyl group
could be located there. A more accurate assessment of this impact will be required in the
future. In addition, molecular docking and MD experiments revealed a different binding
mode to TYK2. Upadacitinib was “flipped” 180 degrees compared to the pose in the other
kinases studied.

This study evaluated the binding energies of upadacitinib with JAKs. We assume that
some inaccuracy exists in the estimation of free binding energies; however, calculations
of some contributions to binding energy have been used to characterize the protein phar-
macophore. For the most accurate estimate of ∆Gbind, methods with the calculation of the
potential of the potential of mean force, or perturbations of free energies, should be used.

4. Materials and Methods
4.1. Initial Molecular Structure Preparation

The geometrically optimized structure of upadacitinib with unit atoms was obtained
from the Automated Topology Builder 3.0 server (Molid: 515309) (accessed on 2 October
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2021) [13,14]. Structures of the kinase domain were obtained from the RCSB Protein Data
Bank (accessed on 2 October 2021) (Table 3). Heteromolecules (including water) were
manually removed using PyMol software (Schrödinger, LLC). Missing residues JAK1
and TYK2 were reconstructed in the SWISS-MODEL server from the primary amino acid
sequence of the original structures [15].

Table 3. Information about investigated kinase domains.

Protein
Molecule UniProt ID PDB ID Native Ligand Amino Acids PTM

(Phosphotyrosine) Reference

JAK1 P23458 6N7A
N-[3-(5-chloro-2-methoxyphenyl)-1-methyl-

1H-pyrazol-4-yl]-2-methyl-2H-pyrazolo
[4,3-c]pyridine-7-carboxamide

865–1154 1034, 1035 [16]

JAK2 O60674 4YTH
N~2~-[2-(5-chloro-1H-pyrrolo[2,3-b]pyridin-3-
yl)-5-fluoropyrimidin-4-yl]-2-methyl-N-(2,2,2-

trifluoroethyl)-D-alaninamide
842–1130 1007, 1008 [17]

JAK3 P52333 5LWN

(2~{S})-2-cyano-~{N},~{N}-dimethyl-3-[5-[3-
[(1~{S},2~{R})-2-methylcyclohexyl]-3,5,8,10-

tetrazatricyclo[7.3.0.0ˆ{2,6}]dodeca-1,4,6,8,11-
pentaen-4-yl]furan-2-yl]propanamide

814–1103 - [18]

TYK2 P29597 3LXP
4-tert-butyl-15-fluoro-3,5,10-

triazatetracyclo[11.4.0.02,6.07,12]heptadeca-
1(13),2(6),4,7(12),8,14,16-heptaen-11-one

888–1178 1054 [11]

4.2. Molecular Docking

The protein structures of JAKs, co-crystallized native ligands, and the structure of
upadacitinib were prepared for molecular docking in AutoDockTools 1.5.6 by adding
partial charges according to the Gasteiger method for all molecules [19] and torsions for
small molecules only. Grid maps of the receptor for one of the ligands were generated
as 30 × 30 × 30 Å dimensions of a box placed on the active sites of JAKs through x,
y, and z coordinates, respectively. Docking was performed in AutoDock Vina 1.1.2 in
10 replicates [20]. The Vina scores and ligand conformations were ranked.

4.3. Molecular Dynamics

The best binding modes of upadacitinib in the active sites of JAKs from molecular
docking were selected for assessing the molecular dynamics (MD) of protein-ligand com-
plexes. MD simulations were performed using the GROMACS 2020.4 software [21]. The
modified GROMOS96 54A7 force field [22] was used with non-standard amino acid residue
parameter sets [23]. Upadacitinib topology was obtained from Automated Topology Builder
3.0 (Molid: 515309) [13,14]. DFT/B3LYP/6-31G* quantum mechanics optimization, and
Merz–Singh–Kollman partial charges were applied. MD simulations were performed in an
explicit solvent under periodic boundary conditions. Each initial structure was centered in
a cubic box of sufficient size so that the minimum distance to period images was 1.0 nm.
A simple point-charge water model was employed for the simulations. The system was
neutralized with Na+ ions. The compositions of the built systems are presented in Table 4.
Proteins with upadacitinib and non-protein atoms were coupled to their temperature baths
set at 311 K using the V-rescale algorithm [24]. The pressure was maintained isotropically at
1 Bar using a Berendsen barostat [25]. A time step of 2 fs was used. Each system underwent
energy minimization using the steepest descent algorithm (1000 steps), followed by gradual
heating from 5 K to 311 K during a 200 ps MD run with fixed heavy atoms of structural
elements. The initial atom velocities were obtained from a Maxwellian distribution at
311 K, and the bond lengths were constrained using LINCS [26]. A 1.4 nm cut-off was
used for Lennard-Jones interactions, and dispersion corrections for energy and pressure
were applied. Electrostatics were calculated using the particle-mesh Ewald method with a
0.12 nm grid-spacing and a 1.4 nm real-space cut-off. Each trajectory was run for 150 ns in
three replicates, with a total simulation time of 1.8 µs.
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Table 4. System composition and analysis details.

Simulated System Composition MD Duration, ns Clustering Cut-Off Values, nm

JAK1
Protein(1)/Upadacitinib(1)/Water(11173)/Na+(4) 3 × 150 0.10

JAK2
Protein(1)/Upadacitinib(1)/Water(10721)/Na+(4) 3 × 150 0.12

JAK3
Protein(1)/Upadacitinib(1)/Water(10919) 3 × 150 0.12

TYK2
Protein(1)/Upadacitinib(1)/Water(11456)/Na+(7) 3 × 150 0.10

4.4. Molecular Dynamics Trajectories Analysis

The computed MD trajectories were analyzed using the built-in GROMACS software
and custom utilities. The trajectories in each run were merged. Preferred conformations
of upadacitinib in JAK active sites were determined using the cluster module of the GRO-
MACS package (GROMOS clustering method with cut-off values presented in Table 4).
The largest clusters were extracted from the MD trajectories for the subsequent analysis.
The dynamic behavior and stability of the studied systems were assessed by root-mean-
square deviation (RMSD) and root-mean-square fluctuation (RMSF) calculations. Hydrogen
bonds (H-bonds) were analyzed in the GROMACS hbond module and in the originally
developed software.

4.5. Molecular Mechanics Poisson–Boltzmann Surface Area (MM-PBSA) Free Binding
Energy Estimation

Two hundred random frames from the most populated cluster were extracted into a
new trajectory for each JAK/upadacitinib complex from MD simulations. The molecular
mechanics Poisson–Boltzmann surface area (MM-PBSA) method was used for the free
binding energy (∆Gbind) estimation in the g_mmpbsa tool [27].

5. Conclusions

In the present study, structural models of the organization of binding sites for the JAK
family enzymes and for the pharmacophore model were developed in order to substantiate
the selectivity of upadacitinib for JAK1 using experimental structures of JAK proteins.
We believe that the highest affinity of upadacitinib was due to the formation of four
hydrogen bonds with JAK1 hinge region amino acid residues, against two bonds with
other JAK isoforms. We attribute the stabilization of the molecule in the hinge region to
structural features of the JAK1 binding site, such as S963 and E966, which are distinctive
residues of this tyrosine kinase isoform. The affinity was also positively influenced by
the hydrogen bond with the amino acid residues of the glycine loops in JAK1 (E883) and
JAK2 (N859) with upadacitinib. Our study can help with the development of selective
and efficient next-generation JAK inhibitors, hence, improving the treatment of various
cytokine-mediated diseases.
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