
pharmaceuticals

Review

Retinoids Delivery Systems in Cancer: Liposomal Fenretinide
for Neuroectodermal-Derived Tumors

Veronica Bensa † , Enzo Calarco † , Elena Giusto, Patrizia Perri, Maria Valeria Corrias , Mirco Ponzoni ,
Chiara Brignole *,‡ and Fabio Pastorino *,‡

����������
�������

Citation: Bensa, V.; Calarco, E.;

Giusto, E.; Perri, P.; Corrias, M.V.;

Ponzoni, M.; Brignole, C.; Pastorino, F.

Retinoids Delivery Systems in Cancer:

Liposomal Fenretinide for

Neuroectodermal-Derived Tumors.

Pharmaceuticals 2021, 14, 854.

https://doi.org/10.3390/ph14090854

Academic Editor: Abdelwahab Omri

Received: 12 August 2021

Accepted: 24 August 2021

Published: 26 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
veronicabensa@gaslini.org (V.B.); enzocalarco@gaslini.org (E.C.); ele0696@alice.it (E.G.);
perripatrizia@gaslini.org (P.P.); mariavaleriacorrias@gaslini.org (M.V.C.); mircoponzoni@gaslini.org (M.P.)
* Correspondence: chiarabrignole@gaslini.org (C.B.); fabiopastorino@gaslini.org (F.P.);

Tel.: +39-10-56363533 (C.B.); +39-10-56363541 (F.P.)
† These authors share first authorship.
‡ These authors share last authorship.

Abstract: Retinoids are a class of natural and synthetic compounds derived from vitamin A. They
are involved in several biological processes like embryogenesis, reproduction, vision, growth, inflam-
mation, differentiation, proliferation, and apoptosis. In light of their important functions, retinoids
have been widely investigated for their therapeutic applications. Thus far, their use for the treat-
ment of several types of cancer and skin disorders has been reported. However, these therapeutic
agents present several limitations for their widespread clinical translatability, i.e., poor solubility and
chemical instability in water, sensitivity to light, heat, and oxygen, and low bioavailability. These
characteristics result in internalization into target cells and tissues only at low concentration and,
consequently, at an unsatisfactory therapeutic dose. Furthermore, the administration of retinoids
causes severe side-effects. Thus, in order to improve their pharmacological properties and circulating
half-life, while minimizing their off-target uptake, various retinoids delivery systems have been
recently developed. This review intends to provide examples of retinoids-loaded nano-delivery
systems for cancer treatment. In particular, the use and the therapeutic results obtained by using
fenretinide-loaded liposomes against neuroectodermal-derived tumors, such as melanoma, in adults,
and neuroblastoma, the most common extra-cranial solid tumor of childhood, will be discussed.

Keywords: retinoids; fenretinide (4-HPR); nanotechnology; liposomes

1. Introduction

Retinoids are a family of compounds related to vitamin A (retinol), essential for the
life of all chordates. They are signaling molecules that, after binding to the nuclear retinoic
acid receptors (RARs) and retinoic X receptors (RXRs), activate genetic networks involved
in important biological and physiological processes, such as cell proliferation, cell differ-
entiation, apoptosis, and fetal development [1–3]. The term “retinoids” was introduced
in 1976 by Sporn and colleagues [4], and in 1981, the IUPAC-IUB Joint Commission on
Biochemical Nomenclature (JCBN) defined retinoids: (i) compounds composed of four iso-
prenoid units joined head-to-tail; (ii) derived from a monocyclic molecule; (iii) containing
five carbon-carbon double bonds and a functional terminal group at the end of the acyclic
portion. According to this definition, the retinoids family includes the natural forms of
vitamin A and their synthetic derivatives ([1] and http://publications.iupac.org) (accessed
on 15 March 2021). To date, more than 1500 different related compounds have been discov-
ered and tested. Retinoids have raised interest within the scientific community thanks to
their beneficial effects in vision [5], skin disorders (acne, psoriasis, and keratinization disor-
ders) [6], and cancer [7–9]. Specifically, in the oncology field, retinoids attracted researchers’
attention due to their known anti-tumor properties. In particular, they were demonstrated
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to be effective in inducing differentiation and/or apoptosis of tumor cells, as well as cell
growth inhibition [10–13]. Moreover, they also showed chemo-preventive effects in ex-
perimental animal models of chemically-induced cancer [14]. The most frequently tested
vitamin A derivatives in cancer medicine are represented by all-trans retinoic acid (ATRA,
tretinoin), 9-cis retinoic acid (9-cis-RA, alitretinoin), and 13-cis retinoic acid (13-cis-RA,
isotretinoin) [7]. Clinically, the most encouraging therapeutic results were obtained by the
use of ATRA and 13-cis-RA following bone marrow transplantation in patients affected
by acute promyelocytic leukemia and high-risk neuroblastoma (NB), respectively [15–17].
In contrast, the initial enthusiasm derived from several pre-clinical studies faded after
their clinical application because of toxicity-driven limitations. Indeed, long-term and
therapeutic-dosage administrations of natural retinoids caused liver toxicity, dry skin and
irritation, bone damage, lipid alterations, and teratogenicity [7,18–20]. Further, retinoids are
sensitive to oxygen, heat, and light and present poor solubility in water, all characteristics
that reduce their bioavailability drastically and, consequently, their therapeutic efficacy [18].
Finally, they are characterized by a short lifetime due to the degradation by the cytochrome
P450-dependent monooxygenase system [18]. Consequently, the development of less toxic
and more bioavailable vitamin A-related compounds became necessary.

At present, there are four generations of retinoids differing from each other by the
modifications of the vitamin A molecular structure [21–23] (Table 1). Among others, the syn-
thetic derivative of ATRA, the amide analog of retinoic acid, N-(4-hydroxyphenyl)retinamide
(fenretinide/4-HPR), belonging to the third generation of retinoids, deserved great atten-
tion (Table 1). Developed at the beginning to treat skin disorders, it was then investigated
for its potential as a novel anti-cancer therapeutic. 4-HPR represented, indeed, one of
the most promising drugs because of its favorable toxicological profile, characterized by
minimal systemic toxicity, good tolerability, and high anti-tumor efficacy [24,25]. Due to
its preferential accumulation in the mammary gland, it initially seemed very efficacious
against breast cancer [26]. Successively, in vitro and pre-clinical experiments first and
clinical trials later demonstrated that fenretinide was active against several types of cancers,
including bladder, lung, ovary, prostate, melanoma, and NB [10,11,27]. Evidence shows
that 4-HPR exerts anti-tumor effects on both premalignant cells by inhibiting the carcino-
genesis process, and on transformed cells, by activating apoptosis, making fenretinide a
promising compound for clinical application, both as a chemo-preventive agent and an
anti-cancer drug [24,28].

A different strategy to reduce side-effects related to free retinoids administration while
increasing their bioavailability and maximizing their therapeutic index is also represented
by the design and development of appropriate Drug Delivery Systems. With this aim,
several formulations loaded with retinoids have been developed [18,29].

Table 1. Retinoids classification: retinoids are classified into four generations based on their chemical modification [20–22].

First Generation Second Generation Third Generation Fourth Generation

Features

� Non aromatics
� Naturally occurring
� Modifications in the polar

end group

� Mono-aromatics
� Modifications in the

cyclic ring
� More lipophilics and

bioavailable

� Polyaromatics
� Cyclized polyene

side chain
� Pyranones
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2. Drug Delivery Systems for Cancer Therapy

Drug Delivery Systems (DDSs) refer to formulations able to transport and deliver
active molecules/drugs to cell/tissue targets in order to achieve a specific and hopefully
increased therapeutic effect compared to the free drug while minimizing its potential side
effects. The use of DDSs in cancer therapy lies in the possibility of increasing the therapeutic
index of the encapsulated drugs by delivering them to tumor cells through both passive
and active targeting. Passive targeting of tumor cells exploits the so-called “Enhanced
Permeability and Retention” effect (EPR) [30]. It is well known that the newly formed
blood vessels of solid tumors present altered permeability, rendering them more permeable
compared to those of healthy tissues [30]. In these circumstances, the leaky blood vessels
allow for the non-selective extravasation of macromolecules (larger than 40 kDa) and small
particles (ranging from 50 to 500 nm) into the tumor stroma, finally leading to tumor cells
killing [30,31]. However, the passive targeting capability of DDSs only leads to a modest
increased delivery of the encapsulated drug to the target site, and it is strictly dependent
on different factors such as size and circulation time of the carrier, as well as on tumor
biology features, such as vascularity of the tumor and leakiness of the vessels [31]. On the
other hand, the passive targeting capability of DDSs can be further optimized by coupling
moieties (e.g., monoclonal antibodies, peptides etc.) on their external surface, with the aim
to specifically recognize and target tumor-associated antigens [18,31–34].

The most relevant DDSs used in pre-clinical studies of cancer therapy are nanodisks
(NDs), polymeric micelles, dendrimers, and liposomes (Figure 1). In these formulations,
retinoic acids can be either entrapped into the inner core or mixed with the outer surface [18].
Below, some examples of each mentioned retinoids carrying DDSs are presented.
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Figure 1. Generic structure of nanodisks (A), polymeric micelles (B), dendrimers (C), and
liposomes (D).

2.1. Nanodisks (NDs)

NDs are self-assembled nanoscale carriers composed of a phospholipid bilayer sur-
rounded by amphipathic apolipoproteins that stabilize the structure, serving as a scaf-
fold [35,36] (Figure 1A). This composition allows the encapsulation and the delivery of
hydrophobic molecules, such as amphotericin B and ATRA [35,37]. NDs have the advan-
tages of being very small in size (8–20 nm in diameter) and fully soluble in water [36]. Singh
and colleagues used NDs to encapsulate ATRA for treating cell culture models of mantle
cell lymphoma (MCL). Compared to free ATRA, they demonstrated that ATRA-NDs were
more effective in inducing MCL cells apoptosis and G1 cell cycle arrest in vitro [38]. Then,
they optimized the formulation by adding the single chain variable antibody fragment
against CD20 on the surface in order to improve the selective targeting of CD20-positive
MCL cells. In this case, NDs were loaded with either ATRA (ATRA-NDs) or curcumin
(curcumin-NDs) and the combination therapy was able to induce higher tumor apoptosis
compared to each single treatment [38,39]. Importantly, these anti-CD20 NDs, although
developed for treating MCL cells, may be useful for any other CD20-expressing tumors [39].
In another study, Buehler et al. engineered vault nanoparticles in order to encapsulate
ATRA, using a vault-binding lipoprotein complex that creates a lipid bilayer NDs [40]. Test-
ing hepatocellular carcinoma cell viability after ATRA-vaults treatment, they demonstrated
that ATRA-NDs caused increased tumor cells killing compared to that obtained by free
ATRA [40].

2.2. Polymeric Micelles

Polymeric Micelles are composed of amphiphilic polymers, which self-associate
when added to an aqueous solvent. After self-assembly in the aqueous environment,
the hydrophilic polymers (e.g., poly(ethylene glycol), chitosan, dextran, and hyaluronic
acids) face the aqueous medium forming a hydrophilic shell, while the hydrophobic ones
(e.g., poly(lactide) (PLA), poly(caprolactone) (PCL), poly(lactide-co-glycolide) (PLGA),
polyesters, poly(amino acids), and lipids) form the hydrophobic core (Figure 1B). Similar to
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NDs, Polymeric Micelles can be employed to encapsulate hydrophobic drugs [41]. The anti-
cancer agents can be conjugated to the distal ends of polymer to prepare pharmacologically
active polymeric systems that enhance solubility and stability of the conjugates, providing
an opportunity for combined drug delivery [41]. Specifically, an efficient intracellular drug
delivery system is represented by the use of biocompatible polymeric micelles (BPMs),
which allow the administration of retinoic acid (RA), protecting RA from metabolic de-
activation while reducing RA-mediated toxicity [42]. For instance, the apoptotic effects
induced by RA, either free or encapsulated into BPMs, were compared on colon cancer cell
lines. When loaded into BPMs, RA led to a stronger effect with respect to the free admin-
istration, also despite the lower dose used [42]. Furthermore, Orienti et al. developed a
nano-micellar formulation entrapping 4-HPR into the inner core, called bionanofenretinide
(Bio-nFeR) [43]. This system increased fenretinide bioavailability, showing anti-tumor
activity against lung, colon, and melanoma cancer stem cells, both in vitro and in tumor
xenografts. Interestingly, Bio-nFeR showed lower toxicity when compared to NCI-FeR,
an oral formulation of 4-HPR, consisting of soft gelatin capsules, actually available at the
National Cancer Institute, and administered in clinical trials [43].

2.3. Dendrimers

Dendrimers are polymeric molecules composed of multiple repetitive branches aris-
ing radially from a central core. The terminal groups of every branch provide modifiable
functionalities. The number of repeated branching units determines the generation of
the dendrimer [44,45] (Figure 1C). Dendrimers are widely used as carriers for the deliv-
ery of several therapeutics compounds, including retinoids [46]. They present several
advantageous features such as high water solubility, monodispersity, biocompatibility, and
low immunogenicity [47]. Moreover, pH-sensitive formulations have been developed in
order to be stable at physiological pH and to dissociate in the acid environment of the
endosomal and lysosomal tumor compartments, resulting in an enhanced cellular uptake
into target cells. For instance, Wang et al. synthesized pH-sensitive nanoparticles based
on poly(amidoamine) (PAMAM) dendrimers encapsulating ATRA. They tested the formu-
lation in vitro on human hepatocellular liver carcinoma cells, demonstrating its ability to
arrest tumor cell proliferation and increase tumor cell death, compared to free ATRA [48].
Yalçın et al. loaded gemcitabine together with ATRA into PAMAM dendrimer-coated
magnetic nanoparticles (DcMNPs) in order to simultaneously target gemcitabine-resistant
pancreatic cancer cells and pancreatic stellate cells (PSC), stromal cells that support tumori-
genesis, and form a fibrotic barrier against therapeutic agents [49,50]. They firstly proved
that the DcMNPs were successfully internalized by pancreatic cancer cell lines and by
primary human PSC. Then, overcoming pancreatic cancer cell’s resistance to gemcitabine,
showed that the increased gemcitabine- and ATRA-loaded DcMNPs accumulation into
tumor cells and tumor stroma caused a significant cell death compared to that obtained by
ATRA or gemcitabine administered separately [49].

2.4. Liposomes

Liposomes are spherical-shaped vesicles composed of a hydrophilic aqueous space
surrounded by one or more phospholipid bilayers, making them similar to the cell mem-
brane structure [51,52] (Figure 1D). They can entrap both hydrophobic and hydrophilic
compounds. The ability of liposomes to encapsulate “drugs” characterized by different
solubility in water and to specifically target organs, tissues, and cells makes them attractive
candidates for drug delivery [53]. They can be classified on the basis of: (i) size; (ii) lipid
composition; (iii) surface modification. Due to their good features, such as biocompat-
ibility, biodegradability, and low toxicity, liposomes are the first DDSs that have been
translated to clinical application [54–56]. Further, they are the most frequently used for-
mulations for drugs encapsulation and, at present, several liposomal formulations have
been approved by the FDA, and different products are available for clinical application
(e.g., Doxil®, Ambisome®, DepoDur™, DaunoXome®, etc. [54–56]). Moreover, liposomes



Pharmaceuticals 2021, 14, 854 6 of 15

are the only nanosystems used in clinical trials for the delivery of retinoids in solid cancer
(https://clinicaltrials.gov/) (accessed on 15 March 2021). To date, pre-clinical evaluations
of retinoids-encapsulating liposomes have been testing against several types of cancer,
including lung, thyroid, and liver cancers, as well as on neuroectodermal-derived tumors
such as melanoma and NB [57–62]. In particular, the anti-tumor effects of cationic liposomes
encapsulating ATRA were also tested in pre-clinical animal models of lung cancer [57].
Interestingly, in this study aimed at investigating ATRA-driven reactivation of the tumor
suppressor protein retinoic acid receptor beta (RAR-β), it was shown that, compared to free
ATRA, the treatment with ATRA-loaded liposomes led to an enhanced RAR-β expression,
thus becoming a useful molecular target therapy for lung cancer [57]. In another study,
with the aim to reduce ATRA photo-degradation during administration as a free drug, and
consequently to increase its anti-cancer activity, a different liposomal formulation was de-
veloped [58]. The authors demonstrated that the liposomes protected ATRA and increased
its anti-proliferative properties due to the improvement of its cellular uptake, becoming
a useful formulation for the treatment of anaplastic thyroid carcinoma [58]. Moreover,
Kawakami and colleagues demonstrated that ATRA incorporated into cationic liposomes
was efficiently internalized into ATRA-resistant human lung cancer cells in vitro [59].
Specifically, the interaction between the positive charges of the liposomes and the negative
charges of the tumor cell membranes allowed the specific internalization of ATRA, thus
overcoming tumor cell resistance and producing pro-apoptotic and cytotoxic effects [59].

As already mentioned in the introduction, fenretinide (4-HPR) is a synthetic retinoic
acid derivative, endowed with anti-tumor properties and characterized by favorable phar-
macological profile, with lower systemic toxicity and better tissue distribution compared
to its natural analogue [24]. Nevertheless, the main limitation for the clinical application of
4-HPR derives from its poor bioavailability [27]. Indeed, plasma levels of 4-HPR in patients
receiving the maximum tolerated dose (MTD) of the drug (200 mg) were less than 1 µm,
not sufficient to produce the desired anti-tumor effects [27]. To overcome such limitation
and, consequently, to improve fenretinide performance, efforts to develop proper DDSs
have been made in our laboratory. The results achieved, with particular attention on the
use of liposomal fenretinide for neuroectodermal-derived tumors, are summarized below.

2.4.1. Neuroectodermal-Derived Tumors

During embryonic development, the three germ layers, endoderm, mesoderm, and
ectoderm [63,64], give rise to all the tissues of the adult [65]. The endoderm creates the
respiratory system, the digestive system, and some inner organs, such as the thyroid,
the thymus, and the liver [66]. The mesoderm produces the musculoskeletal system,
the cardiovascular system and the connective tissues [65]. The ectoderm gives rise to
the surface ectoderm, the neural tube, and the neural crest [67]. The surface ectoderm
generates the epidermis, the cutaneous annexes, the surface epithelium of the mouth
and nose, the anterior pituitary gland, the tooth enamel, and the olfactory/optical/optic
placodes [67]. The neural tube and the neural crest constitute the neuroectoderm, the
first step in the development of the nervous system [68]. The neural tube produces the
brain (rhombencephalon, mesencephalon, and prosencephalon), the spinal cord and the
motor neurons, the retina, and the posterior pituitary [68]. The neural crest generates
the pigment cells in the skin, the ganglia of the autonomic nervous system, the dorsal
root ganglia, the facial cartilage, the pulmonary aortic septum of the developing heart
and lungs, the ciliary body of the eye, the parafollicular cells (thyroid C cells) and the
adrenal medulla [69,70]. In this contest, mutations in mature cells of neuroectoderm may
reactivate the embryonic developmental pathways and initiate oncogenesis [71]. Among
neuroectodermal-derived tumors, medullary thyroid carcinoma in the thyroid C cells,
pheochromocytoma in the chromaffin cells of the adrenal medulla, ganglioneuroma in
peripheral nervous system ganglia, malignant peripheral nerve sheath tumor (MPNST)
in Schwann cells, melanoma in melanocytes and NB in sympathoadrenal precursors, are
among the most frequently reported [71]. In particular, malignant melanoma, the most

https://clinicaltrials.gov/
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lethal form of skin cancer [72], affects adult population, with a mean age at diagnosis of
65 years, representing a clinical challenge. Indeed, although progresses have been obtained
by immune check point blockade [73], the prognosis for metastatic and/or refractory
disease is poor [74], and new therapeutic interventions appear necessary. NB is the most
common extra-cranial solid tumor of pediatric age, and it accounts for approximately 15%
of all oncology-related pediatric deaths [75,76]. Significant progress has been made in
the cure of NB. However, despite the application of aggressive treatment strategies also
including differentiation therapies based on the use of 13-cis retinoic acid, the clinical
outcome for high-risk NB patients remains poor [77]. As for melanoma, new therapeutic
approaches and more effective drugs are needed.

2.4.2. Development, Characterization, and Functionality of Fenretinide-Loaded Liposomes

Sterically stabilized, namely Stealth Liposomes (SL) encapsulating 4-HPR (SL-HPR)
were developed and characterized [61,62]. SL are characterized by long circulation into the
bloodstream, thanks to the use of the phospholipid 1,2-Distearoyl-sn-glycero-3-
phosphorylethanolamine (DSPE) functionalized with polyethylene glycol (PEG), which
confers to the liposomes stealth features. Following this method of composition, the recog-
nition of liposomes by the cells of the reticulum endothelial system is reduced, in turn
conferring them an increased blood circulation capability and an enhanced possibility to
target the tumor [78,79]. SL-HPR showed a chemo-preventive action in the early stages of
rat hepatocarcinogenesis, with anti-proliferative effects and apoptosis induction of initiated
cells [60]. Moreover, as reported into details below, the same formulation, additionally
decorated with an antibody recognizing the disialoganglioside GD2, exerted potent anti-
tumor effects against the GD2-expressing neuroectodermal-derived tumors, melanoma
and NB [61,62,80].

Attracted from the good properties demonstrated by 4-HPR and on the basis of
its in vitro anti-tumor effect obtained when administered as free agent against NB and
melanoma cells [10,11], at the end of 90’s, we focused on the development of SL-HPR. The
aim was to enhance its bioavailability in vivo and, consequently, the anti-tumor potential.
The idea to entrap 4-HPR into liposomes arose also from the fact that the in vitro anti-
tumor effects mentioned above were obtained using a dosage 2–10 times higher than that
reachable in vivo [81,82].

2.4.3. Fenretinide-Loaded Liposomes for Tumor Targeting

SL-HPR were synthesized following the thin-film hydration method, which consists
of making a thin lipid film by organic solvent removal, addition of the dispersion buffer
and extrusion through 0.2–0.08 µm-pore size polycarbonate membranes, obtaining ho-
mogeneous small liposomes [83,84]. In order to increase tumor targeting, SL-HPR were
then decorated with the anti-GD2 antibody (a-GD2 moAb), specifically recognizing the
disialoganglioside GD2 highly expressed on the cell surface of melanoma and NB cells,
and whose expression on healthy tissues is very limited and restricted to cerebellum and
peripheral nerves [85,86]. This new formulation was consequently named GD2-Stealth
ImmunoLiposomes (GD2-SIL-HPR) (Figure 2), and its functionality on neuroectodermal-
derived tumors was firstly assessed on GD2-positive melanoma cells. By competition
experiments, cellular association resulted specific and 10 to 15-fold higher compared to that
obtained by the untargeted formulation [61]. From a therapeutic point of view, cell prolifer-
ation assays revealed that GD2-SIL-HPR were more effective in inhibiting melanoma cell
proliferation, compared to both free 4-HPR and SL-HPR. As a note of worth, the anti-tumor
efficacy was strictly dependent on the GD2 expression. Indeed, experiments performed on
melanoma cells with different degree of GD2 expression showed different response rates to
GD2-SIL-HPR treatment, with high response achieved in cell lines expressing high levels
of GD2 [61].
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NL: NanoLiposomes.

The anti-tumor functionality of GD2-SIL-HPR was then evaluated, and extended,
against GD2-expressing NB models. Again, in tumor cell binding and uptake studies,
the formulation resulted highly selective for GD2-expressing NB cells [62]. Compared
to non-targeted liposomes, cellular association of GD2 targeted SIL-HPR resulted 10- to
20-fold higher. As an important note about the carrier integrity, this formulation was able
to maintain its ability to bind to GD2-positive cells for at least one week, when stored at
4 ◦C [61,62].

The in vitro anti-tumor efficacy of GD2-SIL-HPR was studied through cell prolifera-
tion experiments, which demonstrated that this formulation significantly inhibited NB cell
proliferation compared to HPR, either free or encapsulated in untargeted liposomes. Also
in this case, the degree of cell proliferation inhibition correlated with the extent of GD2 ex-
pression. NB cell lines expressing higher amount of GD2 better responded to the treatment
with GD2-SIL-HPR [62]. A further confirmation of the specificity of the anti-tumor efficacy
derived from the treatment of cell lines not expressing GD2. Cell proliferation of these cells
was not affected by GD2-tageted-SIL-HPR [62].

Furthermore, to give a translational relevance to the findings obtained in vitro, the
GD2-targeted liposomal formulation of HPR was then tested in a metastatic mouse model
of human NB, where NBs cells are injected intravenously in the mice tail [87]. This model
is clinically relevant, because it mimics both the dissemination of the disease at distant
sites, characteristic of patients affected by stage M high-risk NB, and a state of minimal
residual disease [87,88]. Treatment with GD2-SIL-HPR determined a complete inhibition
of tumor micrometastases development in liver, kidney and ovaries, compared to mice
receiving placebo (vehicle buffer only) or free HPR [62]. Survival studies confirmed and
supported the above findings. While free HPR and SL-HPR treatments showed a partial
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anti-tumor response, GD2-SIL-HPR led to long-term survivors, paving the way for future
clinical application [62].

2.4.4. Fenretinide-Loaded Liposomes for Tumor Vasculature Targeting

A further study conducted in our laboratory, was aimed at developing and testing
a liposomal formulation of HPR, specifically targeted to the aminopeptidase N (CD13)
receptor expressed by the neo-angiogenic vessels of solid tumors, including NB [33,89,90].
The idea to target tumor vessels within the mass of a solid NB tumor, arises from two
main observations; first, high vascular index in NB is associated to poor prognosis [91,92];
second, therapeutic strategy based on the use of liposomal vectors decorated with tumor
vasculature-homing and -penetrating peptides might help anti-cancer drugs to overcome
many of the physiological barriers present in the abnormal tumor vasculature and on its
interstitial matrix, likely increasing their therapeutic effects [34,93].

The new HPR-entrapping, sterically stabilized liposomal formulation, called hereafter
NanoLiposomes-HPR (NL-HPR) was developed according to the reverse phase evaporation
method [94] and its chemical and structural properties compared to those belonging to
the liposomes synthesized and developed for tumor targeting, and following the thin-film
hydration method. The reverse phase evaporation method was chosen with the aim to
optimize the previously synthesized formulation and because the method used to prepare
liposomes can also significantly impact on the physicochemical properties of the payload
itself. Size of liposomes was here determined by the dynamic light scattering technology.
Compared to SL-HPR, the average size of NL-HPR was smaller (179 ± 4 nm vs 142 ± 3 nm,
respectively) and the HPR trapping efficiency was slightly increased (62 ± 7% vs 69 ± 5%,
respectively) (Figure 2). The two formulations were also compared in terms of integrity
of the vehicle. Importantly, leakage experiments demonstrated that NL-HPR were able
to retain the entrapped drug for longer time with respect to SL-HPR. Specifically, while
about 50% of HPR was released from SL-HPR in a time of 5 days, the same percentage of
release from NL-HPR was reached in 14 days (Figure 2). In summary, the reverse phase
evaporation method ameliorated all the liposomal features, rendering the new formulation
potentially more performing.

NL-HPR were then decorated with an NGR-motif containing peptide that specifically
targets CD13-positive neo-angiogenic tumor blood vessels [95] (Figure 2). Of note, coupling
on the external surface of the targeting moiety did not alter the physicochemical properties
of the resulting NGR-NL-HPR formulation [80].

NL-HPR and NGR-NL-HPR were then tested in the clinically relevant orthotopic
mouse model of human NB, where a primary tumor mass and metastases at distant sites
grow after tumor cells injection in the adrenal gland of mice [96,97]. When compared to
control mice and those treated with free HPR, both NL-HPR and NGR-NL-HPR determined
a significant increase in life span. However, NGR-NL-HPR led to a significant increase
in life span if compared to the untargeted formulation, highlighting the impact of active
targeting on the achieved anti-tumor effects. As a consequence, NGR-NL-HPR was the
only therapy able to lead a 20% of long-term survivors [80]. These results were explained
by the histological analyses performed on tumor samples derived from control and treated
animals. As assessed by the staining with the proliferation marker Ki-67, NGR-NL-HPR
determined a significant reduction of NB tumor growth compared to both free HPR and
NL-HPR. In line with the known mechanism of action of HPR as apoptosis inducer [10,98],
TUNEL assays performed on tissue sections from treated mice revealed that the percent-
age of apoptotic cells was drastically increased when HPR was delivered through the
NGR-decorated liposomal formulation. Finally, immunofluorescence staining performed
by using anti-CD31, -αSMA, -VEGF, -MMP-2 and -MMP-9 antibodies demonstrated a
significant reduction of tumor angiogenesis and capability of tumor invasion, when HPR
was administered through NL-HPR and, at a greater extent, through NGR-NL-HPR [80].
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3. Discussion

Retinoids are a class of natural and synthetic compounds derived from vitamin A,
which have raised interest within the scientific community thanks, among others, to their
beneficial effects in cancer [7–9]. More specifically, the synthetic retinoic acid derivative
fenretinide (4-HPR) is endowed with anti-tumor properties and characterized by a favor-
able pharmacological profile, with lower systemic toxicity and better tissue distribution
compared to its natural analog [24]. However, despite substantial in vitro cytotoxicity,
response rates in early clinical trials with 4-HPR have been less than anticipated, likely as
the consequence of its low bioavailability. To improve bioavailability of 4-HPR, oral pow-
der (LYM-X-SORB®, LXS) and intravenous lipid emulsion (ILE) formulations have been
tested in early-phase clinical trials [27]. On the other hand, improving pharmacological
properties and circulating half-life of retinoids while minimizing their off-target uptake,
several delivery systems have been recently developed.

Here, the physicochemical features and the anti-tumor potential of 2 different, steri-
cally stabilized, fenretinide-loaded liposomal formulations developed in our laboratory are
summarized. Specifically, these two formulations were different from each other both for
the method of preparation (thin-lipid film and reverse phase methods) and for the ligand
associated at their external surface to obtain liposomes with the ability to selectively target
either the tumor or the tumor vasculature of the neuroectodermal-derived melanoma and
neuroblastoma (NB) tumors. Both formulations were found to have optimal physicochemi-
cal characteristics, allowing for improving the half-life of the encapsulated 4-HPR drug. Of
note, the tumor vasculature-targeted formulation developed following the reverse phase
method resulted slightly better than the formulation developed according to the thin-lipid
film method in terms of size, polydispersity, drug loading efficiency and drug retention.
Indeed, unlike the thin-lipid film method, in which the drug is added after the formation
of the liposomes [61,62], the reverse phase method basically involves the initial mixing of
the lipids with the fenretinide, the subsequent sonication, and the final evaporation. In this
way, more drug was trapped both within the lipid core and at the level of the lipid bilayer
itself (see Figure 2), making the vasculature-targeted nanoliposomes more drug-laden,
and with a greater retention capacity. However, both 4-HPR-loaded formulations have
been shown to exert a potent anti-tumor effect, both in vitro and in vivo. This therapeutic
achievement, significantly higher than that obtained by the use of 4-HPR administered in
free form or encapsulated in liposomes without targeting, might allow hypothesizing their
clinical use in the future.

The use of liposomes as drug delivery has the main purpose of increasing the pharma-
cological half-life and, at the same time, trying to enhance the tumor-targeting, compared
to that obtained by using the same drug but administered in free form. Regarding the
delivery of retinoids by liposomes, this will not represent the panacea for all ills, nor will it
totally abolish possible side effects. On the other hand, in the last 20 years, we were able to
demonstrate that targeted liposomes can ameliorate the drug’s half-life and increase its
therapeutic potential [34,87,96,99–104]. Moreover, targeted liposomal formulations are well
tolerated, and the reduced side effects, compared to free drugs, were demonstrated [105].
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