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Abstract: Blockers of angiotensin II type 1 receptor (AT1R) exert antidepressant-like effects by
indirectly facilitating the activation of the angiotensin II type 2 receptor (AT2R), which leads to
increased surface expression and transactivation of tropomyosin-related kinase B receptors (TRKB).
Compound 21 (C21) is a non-peptide AT2R agonist that produces neuroprotective effects. However,
the behavioral effects of C21 and its involvement with the brain-derived neurotrophic factor (BDNF)-
TRKB system still need further investigation. The aim of the present study was to assess the effect
of C21 on the activation of TRKB and its consequences on conditioned fear. The administration of
C21 (0.1–10 µM/15 min) increased the surface levels of TRKB but was not sufficient to increase the
levels of phosphorylated TRKB (pTRKB) in cultured cortical neurons from rat embryos. Consistent
with increased TRKB surface expression, C21 (10 µM/15 min or 3 days) facilitated the effect of BDNF
(0.1 ng/mL/15 min) on pTRKB in these cells. In contextual fear conditioning, the freezing time
of C21-treated (administered intranasally) wild-type mice was decreased compared to the vehicle-
treated group, but no effect of C21 was observed in BDNF.het animals. We observed no effect of C21
in the elevated plus-maze test for anxiety. Taken together, our results indicate that C21 facilitated
BDNF effect by increasing the levels of TRKB on the cell surface and reduced the freezing time of
mice in a BDNF-dependent manner, but not through a general anxiolytic-like effect.

Keywords: compound 21; angiotensin 2 type 2 receptor (AT2R); neurotrophin receptor type 2 (NTRK2);
renin-angiotensin system (RAS); fear conditioning

1. Introduction

The renin-angiotensin system (RAS) has been historically implicated in cardiovascular
and peripheral fluid homeostasis. However, an increasing number of studies suggest that
RAS also plays a role in the central nervous system (CNS). In fact, all RAS components
are found within the CNS and function independently of the periphery [1–3]. Briefly, the
precursor angiotensinogen is cleaved by renin to angiotensin I, which is further converted
into angiotensin II (Ang II) by the angiotensin-converting enzyme (ACE).

The majority of ANG2 actions are usually mediated by angiotensin II type 1 and type
2 receptors (AT1R, AT2R). Both receptors are constitutively expressed in brain areas such
as the frontal cortex [3,4], which is crucial to the control of the behavioral consequences
of stress [5,6]. Accordingly, either acute or chronic stress is sufficient to increase both

Pharmaceuticals 2021, 14, 773. https://doi.org/10.3390/ph14080773 https://www.mdpi.com/journal/pharmaceuticals

https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com
https://orcid.org/0000-0002-2523-0748
https://orcid.org/0000-0002-1402-2791
https://orcid.org/0000-0002-1090-4631
https://doi.org/10.3390/ph14080773
https://doi.org/10.3390/ph14080773
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ph14080773
https://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/article/10.3390/ph14080773?type=check_update&version=3


Pharmaceuticals 2021, 14, 773 2 of 10

Ang II and AT1R levels in structures of the hypothalamic-pituitary-adrenal (HPA) axis [7].
Interestingly, inhibitors of the angiotensin-converting enzyme (ACEi) and AT1R antagonists
counteract the behavioral consequences of stress exposure [8–10], while animals lacking
angiotensinogen presented an antidepressant-like phenotype [11].

There is evidence indicating that RAS can modulate the brain levels of both brain-
derived neurotrophic factor (BDNF) and its receptor tropomyosin-related kinase B (TRKB).
For instance, chronic treatment with telmisartan (AT1 antagonist) prevented retinal damage
and a decrease in BDNF levels in an animal model of induced diabetes [12]. Another AT1R
antagonist, candesartan, prevented neurological deficits and decreased the infarct brain
volume of animals submitted to middle cerebral artery occlusion while increasing TRKB
protein and mRNA brain levels [13], and valsartan counteracted the stress consequences
on hippocampal and frontal cortex BDNF levels [14]. The facilitation of BDNF/TRKB
signaling is crucial for neuroplasticity, including cell differentiation, growth, and synapse
formation, and its function has been linked to the mechanism of action of antidepressant
drugs [15–18].

Recently, the antidepressant-like effect of losartan, another AT1R antagonist, has been
described to involve TRKB transactivation and increase on the cell surface, an effect likely
linked to an indirect AT2R activation after AT1R blockade [19]. However, the evidence of a
direct effect from AT2R agonists on behavior and BDNF/TRKB signaling remains limited.
Therefore, understanding the functional interaction between AT2R and BDNF/TRKB
signaling may facilitate development of new AT2R agonists able to reinstate plasticity in
the adult brain, as described for classical antidepressants [17,20,21].

Thus, to extend our previous findings regarding the interaction between AT2R and
TRKB [19], we investigated the effects of the AT2R agonist C21, which stimulates neu-
ronal plasticity [22], on the surface exposure and activation of TRKB in vitro, and on the
behavioral consequences of exposure to stress.

2. Results
2.1. C21 Exposes TRKB on the Cell Surface and Facilitates BDNF Effect on TRKB

The administration of C21 increased the levels of TRKB detected on the cell surface
[Kruskal-Wallis H(3)= 58.50, p < 0.0001]. All doses of C21 (0.1, 1, and 10 µM) were dif-
ferent from the control group (Dunn’s p < 0.05; Hedges’ g, 0.1 µM = 1.862; 1 µM = 1.930;
10 µM = 1.418], Figure 1A.

The two-way ANOVA indicated a significant interaction between C21 and BDNF
administration at the levels of pTRKB [F(1,33) = 7.144, p = 0.0116]. While longer administra-
tion of C21 (3 days) increased pTRKB levels per se [treatment: F(1,44) = 423.5, p < 0.0001],
the facilitation of the BDNF effect was still present [interaction: F(1,44) = 10.22, p = 0.0026],
Figure 1B,C.

2.2. C21 Reduces Behavioral Consequences of Stress

The two-way ANOVA with repeated measures indicated a significant interaction
between C21 treatment, genotype and trials even considering the total distance traveled as
covariant on freezing time [F(2,58) = 3.631, p = 0.033]. Then, we proceeded with two-way
ANOVA for each trial individually, as seen in Figure 2, treatment with C21 did not affect the
consequences of exposure to shocks in the conditioning session [interaction: F(1,30) = 0.145,
p = 0.706, Figure 2A]. Two-way ANOVA also indicated a significant interaction between
genotype and treatment for the freezing observed in context A (familiar) [F(1,30 = 5.012,
p = 0.033, Figure 2C] but not in context B (unfamiliar) [F(1,30) = 0.033, p = 0.856, Figure 2B].
C21 effectively reduced the time spent in freezing in the familiar context in wt (Fisher’s
LSD, p < 0.05; Hedges’ g = 2.989) but not in BDNF.het mice (Fisher’s LSD, p > 0.05; Hedges’
g = 0.556).
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Figure 1. In vitro effects of C21 on TRKB surface exposure and activation. (A) Acute administration of C21 (shades of red 
bars, 0.1–10 μM/15 min) increased the surface exposure of TRKB in cultured cortical cells from rat embryos (n = 19–
24/group). (B) Administration of C21 (10 μM/15 min) facilitated the effect of an ineffective dose of BDNF (0.1 ng/mL/10 
min, red bars). (C) The longer administration of C21 (10 μM/3 days) increased pTRKB levels per se but still facilitated the 
effect of BDNF (0.1 ng/mL/10 min, red bars). Data expressed as mean ± SEM from ctrl/ctrl or 0 groups. * p < 0.05 from 
ctrl/ctrl or 0 group; # p < 0.05 from C21/ctrl (n = 8–12/group: Fisher’s LSD). 
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Figure 1. In vitro effects of C21 on TRKB surface exposure and activation. (A) Acute administration of C21 (shades
of red bars, 0.1–10 µM/15 min) increased the surface exposure of TRKB in cultured cortical cells from rat embryos
(n = 19–24/group). (B) Administration of C21 (10 µM/15 min) facilitated the effect of an ineffective dose of BDNF
(0.1 ng/mL/10 min, red bars). (C) The longer administration of C21 (10 µM/3 days) increased pTRKB levels per se but still
facilitated the effect of BDNF (0.1 ng/mL/10 min, red bars). Data expressed as mean ± SEM from ctrl/ctrl or 0 groups.
* p < 0.05 from ctrl/ctrl or 0 group; # p < 0.05 from C21/ctrl (n = 8–12/group: Fisher’s LSD).
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Figure 2. Effects of C21 in wild-type and BDNF haploinsufficient animals (BDNF.het) in contextual fear conditioning. (A) 
Administration of C21 (red bar, 0.3 mg/kg, intranasal) did not affect the freezing reaction at the end (last 2 min) of the 
conditioning session. (B) Treatment with C21 did not affect the freezing reaction in the unfamiliar context but decreased 
the freezing in familiar context on wild-type animals. Hatched area: mean ± SEM of the freezing time of vehicle-treated 
animals in the last 2 min of the conditioning session. (C) Treatment with C21 did not exert any effect in BDNF.het mice. 
Hatched area: mean ± SEM of the freezing time of vehicle-treated animals of each genotype in the last 2 min of the 
conditioning session. Data expressed as mean ± SEM of the time spent in freezing (s). * p < 0.05 from the vehicle-treated 
group at the same trial, # p < 0.05 from the freezing time in the unfamiliar context in the same group (n = 6–12/group). 
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As described in Table 1, treatment with C21 did not change any of the parameters 

assessed in the elevated plus-maze (percent time in the open arms, %OAT: t(10) = 0.914, p 
= 0.383, Hedges’ g = 0.318; percent entries in the open arms, %OAE: t(10) = 1.097, p = 0.298, 
Hedges’ g = 0.227; number of entries in the enclosed arms, EAE: t(10) = −1.351, p = 0.206, 
Hedges’ g = 0.759; total distance traveled: t(10) = 0.032, p = 0.975, Hedges’ g = 0.018). 

Table 1. Effect of C21 (0.3 mg/kg, intranasal) in the elevated plus-maze. 

 Vehicle C21 
%OAT 45.08 ± 7.30 41.25 ± 7.22 
%OAE 49.20 ± 5.39 46.01 ± 4.66 

EAE (number) 54.50 ± 9.75 60.67 ± 5.47 
dist trav (cm) 1838.28 ± 333.71 1833.49 ± 154.58 

Data expressed as mean ± SD (n = 6/group). 
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The present study demonstrates that the AT2R agonist C21 is able to increase the 
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different classes of antidepressants, but not with structurally-related compounds devoid 
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Figure 2. Effects of C21 in wild-type and BDNF haploinsufficient animals (BDNF.het) in contextual fear conditioning.
(A) Administration of C21 (red bar, 0.3 mg/kg, intranasal) did not affect the freezing reaction at the end (last 2 min) of the
conditioning session. (B) Treatment with C21 did not affect the freezing reaction in the unfamiliar context but decreased the
freezing in familiar context on wild-type animals. Hatched area: mean ± SEM of the freezing time of vehicle-treated animals
in the last 2 min of the conditioning session. (C) Treatment with C21 did not exert any effect in BDNF.het mice. Hatched
area: mean ± SEM of the freezing time of vehicle-treated animals of each genotype in the last 2 min of the conditioning
session. Data expressed as mean ± SEM of the time spent in freezing (s). * p < 0.05 from the vehicle-treated group at the
same trial, # p < 0.05 from the freezing time in the unfamiliar context in the same group (n = 6–12/group).
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2.3. C21 Lacks Anxiolytic-like Effect

As described in Table 1, treatment with C21 did not change any of the parameters
assessed in the elevated plus-maze (percent time in the open arms, %OAT: t(10) = 0.914,
p = 0.383, Hedges’ g = 0.318; percent entries in the open arms, %OAE: t(10) = 1.097,
p = 0.298, Hedges’ g = 0.227; number of entries in the enclosed arms, EAE: t(10) = −1.351,
p = 0.206, Hedges’ g = 0.759; total distance traveled: t(10) = 0.032, p = 0.975, Hedges’
g = 0.018).

Table 1. Effect of C21 (0.3 mg/kg, intranasal) in the elevated plus-maze.

Vehicle C21

%OAT 45.08 ± 7.30 41.25 ± 7.22

%OAE 49.20 ± 5.39 46.01 ± 4.66

EAE (number) 54.50 ± 9.75 60.67 ± 5.47

dist trav (cm) 1838.28 ± 333.71 1833.49 ± 154.58
Data expressed as mean ± SD (n = 6/group).

3. Discussion

The present study demonstrates that the AT2R agonist C21 is able to increase the
surface levels of TRKB in vitro. Interestingly, the treatment of primary neurons with dif-
ferent classes of antidepressants, but not with structurally-related compounds devoid
of antidepressant activity, also increases TRKB surface levels [23]. Consistent with our
findings, the AT2R antagonist PD123319 decreased the surface levels of TRKB in cul-
tured cortical neurons [19]. In contrast, acute treatment with C21 did not change the
levels of pTRKB on cortical cells as observed with another AT2R agonist CGP42112 [19].
The difference between the effect of these AT2R agonists cannot be explained by the
small discrepancy of their respective binding affinities: CGP42112 Ki = 0.24 nM [24,25],
C21 Ki = 0.4 nM [26,27]. Moreover, even though CGP422112 has 2-fold while C21 only
has 20% of Ang II affinity to AT2R, C21 was nevertheless equally effective as Ang II in
triggering AT2R-mediated signaling [27]. However, kinetic differences may explain the
lack of acute effectiveness of C21 on pTRKB. For instance, AT2R signaling triggered by the
C21 administration is slower and shorter in magnitude than by Ang II [28], while CGP
422112 was able to induce comparable effects to Ang II-induced pTRKB [19].

Although not able to activate TRKB per se, we observed that acute administration of
C21 enabled the activation of TRKB by an ineffective dose of BDNF in vitro. However, the
level of pTRKB was increased when C21 treatment was continued for 3 days. Given the
acute effect of C21 on TRKB surface levels, it is plausible that increased levels of TRKB
on the cell surface would facilitate the effect of endogenous BDNF along the time, which
would result in the increased levels of pTRKB, and putatively increase the interaction with
Src kinases such as Fyn as observed previously [19,29,30]. The majority of TRKB resides
in vesicles, inaccessible to BDNF, and are transported to the cell surface upon neuronal
activity or by stimulation of surface-positioned TRKB [31]. Therefore, it is plausible to
expect that after 3 days of C21 treatment active TRKB levels may be increased, as observed
here, and boosted by the ineffective BDNF dose. Further, previous data indicated that AT2R
and TRKB co-precipitated, suggesting that these receptors may physically interact [19]. In
fact, other studies have demonstrated the interaction between G-protein-coupled receptors
and TRKB. For example, activation of cannabinoid receptor type-1 (CB1) transactivates
TRKB [32,33] and increases TRKB-coupling to CB1 [32].

Our in vivo data indicates that C21 treatment counteracts the effects of shock-induced
freezing response in wt mice but not in their BDNF.het littermates. The difference was
only observed when animals were returned to the familiar context; freezing time did
not change during the conditioning or in the unfamiliar context between the C21- and
vehicle-treated groups. Consistent with our data, local administration of C21 into the
central amygdala decreased fear response of animals exposed to either cued or contextual
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fear conditioning, an effect apparently mediated by AT2R-GABAergic neurons projecting
to the periaqueductal gray [34]. Moreover, intrahippocampal administration of Ang II
prevented the consolidation of aversive memory, an effect blocked by the AT2R antagonist
PD123319 [35].

Since C21 treatment did not show any effect on BDNF.het mice, a BDNF-dependent
mechanism may be plausible. Accordingly, it has been observed that BDNF.het animals
do not respond to losartan administration in the forced swimming test; and in rats, the
antidepressant-like effect of this compound is prevented by previous administration of
k252a (a blocker of TRK receptors), suggesting again a BDNF/TRKB-dependent mecha-
nism [19]. Therefore, our in vivo data further support such BDNF dependence of AT2R
reducing the expression of conditioned fear. It is important to highlight that reduction in
fear response is shared by many antidepressant drugs regardless of their primary mecha-
nism of action. For instance, fluoxetine [17,18] or ketamine administration [18] reduced the
freezing response in conditioned mice, and these effects were lost in BDNF.het mice [17] or
in animals carrying a mutation in TRKB receptors that compromise drug binding [18].

Additionally, C21 was ineffective in the elevated plus-maze. Indeed, no effect of Ang II
was observed on general locomotion or on anxiety-like behaviors in rats [35]. Corroborating
our data, C21 was also ineffective on the elevated plus-maze when directly infused into the
central amygdala, even though the same treatment protocol was sufficient to buffer the
animal stress response [34].

Taken together, these outcomes raise the question whether the observed effects also
apply to other drugs acting on RAS. The AT1R antagonist losartan was able to relieve
ovariectomy-induced increase in anxiety-like behavior in the elevated plus-maze, and
cognitive impairment in the novel object recognition test, and decreased the levels of plasma
corticosterone [36]. Telmisartan, another AT1R antagonist, reduced the consequences of
stress on cognitive impairment, and inhibited the activity of the HPA axis [37]. Telmisartan
treatment also increased the level of BDNF in stressed animals and reduced anxiety-like
behavior in the elevated plus-maze [38]. In contrast, losartan can decrease anxiety-like
behavior in normo- and hypertensive animals, whereas the ACEi enalapril decreased
anxiety-like behavior in hypertensive animals only [39]. Both AT1R antagonists and ACE
inhibitors reduced the effects of scopolamine-induced amnesia in rats submitted to the
elevated plus-maze to test for working memory [40]. Additionally, candesartan can relieve
the stress response of rats when administered before the stressful event and decreases the
level of glucocorticoids and other stress-related molecules with anxiolytic-like effect on
non-stressed rats that submitted to the elevated plus-maze [41]. Therefore, there is a mix of
data describing either an anxiolytic-like or null effect of drugs acting on RAS. However,
the C21 lack of effect on the elevated plus-maze highlights the small influence, if any, of
AT2R-acting drugs on basal anxiety levels.

4. Methods
4.1. Animals

Female adult mice (16–18 weeks old at the beginning of the experiments) of C57BL/6J-
000664 background (from Jackson Laboratories, Bar Harbor, ME, USA, maintained in the
Laboratory Animal Center of the University of Helsinki), carrying a deletion in one of
the copies of Bdnf gene or wild-type littermates were used [17]. The animals were group
housed (4–5/cage; type-II individually ventilated cages GM500, 391 × 199 × 160 mm,
floor area 501 cm2; Tecniplast, Buguggiate, Varese, Italy) in a 12-h light/12-h dark cycle
(light on at 7:00 a.m.), with free access to food and water except during the experimental
sessions. All protocols were approved by the ethics committee for animal experimentation
of Southern Finland (ESAVI/38503/2019).

4.2. Drugs

Compound 21 {butyl[3-(4-((1H-imidazol-1-yl)methyl)phenyl)-5-isobutylthiophen-2-
yl] sulfonylcarbamate} (C21 sodium salt, MW= 497.61, purity= 97.7%; kindly donated
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by Vicore Pharma, Gothenburg, Sweden) and BDNF (Peprotech, #450-02, Rockhill, NJ,
USA) were used. For in vitro experiments, C21 was dissolved in DMSO, and BDNF was
dissolved in PBS; for in vivo experiments C21 was dissolved in sterile saline. Isoflurane
(Vetflurane®, Virbac, Nice, France) was used for anesthesia in nose-to-brain administration
of C21 (see below).

4.3. Primary Cultures of Cortical Cells

Cultures of cortical cells from E18 rat embryos were prepared as previously described
in detail [42]. Briefly, suspended cortical cells were seeded in poly-L-lysine-coated 24-
(Corning, Tewksbury, MA, USA) or 96-well plates (View Plate 96, PerkinElmer, Waltham,
MA, USA) at 250,000 or 60,000 cells/well, respectively. The cells were maintained in
Neurobasal medium, supplemented with B27 and left undisturbed, except for medium
change (1/3 twice per week).

4.4. Surface TRKB

Cortical neurons were cultured in 96-well plates (60,000 cells/well, 100 µL/well of
medium, DIV8) and treated with C21 (0, 0.1, 1, 10 µM/15 min) and surface levels of TRKB
was determined as previously described [23,43]. Briefly, after drug administration, the
wells were washed three times with cold PBS and fixed with 4% PFA for 20 min at room
temperature (RT) under agitation. The cells were washed again three times with PBS for
5 min at RT and blocked for 1 h at RT (5% nonfat dry milk, 5% Bovine Serum Albumin-
BSA-in PBS). Primary antibody against the extracellular portion of TRKB (R&D; #AF1494;
1:500) was added and incubated overnight (ON) at 4 ◦C. Following wash with PBS, the
cells were incubated with anti-goat IgG HRP-conjugated antibody (Invitrogen; #61-1620;
1:5000) for 1 h at RT. The cells were washed four times with PBS (10 min at RT for each
wash) and then ECL (1:1) was added to detect the signal by the plate reader (Varioskan
Flash, Thermo Scientific, Waltham, MA, USA). The signal from the samples, after blank
subtraction, were normalized by the average of the control group (C21 = 0) and expressed
as percentage from control.

4.5. Phospho-TRKB Interaction ELISA

For assaying the phosphorylated TRKB (pTRKB), cortical neurons were cultured in
24-well plates (250,000 cells/well, 500 µL/well of medium, DIV8) and treated with C21
(10 µM/15 min) and challenged with BDNF (0.1 ng/mL/15 min) at a concentration that
is beyond the BDNF Ki for TRKB [18] but ineffective in activating the receptor in our
conditions [33]. An independent cohort of cultured cortical cells was incubated with C21
(10 µM) for 3 days and challenged with BDNF (0.1 ng/mL/15 min).

The cells were washed with ice-cold PBS and lysis buffer [20 mM Tris-HCl; 137 mM
NaCl; 10% glycerol; 0.05 M NaF; 1% NP-40; 0.05 mM Na3 VO4], containing a cocktail of
protease and phosphatase inhibitors (Sigma-Aldrich, #P2714 and #P0044, respectively)
was added.

The signal of pTRKB was determined by ELISA [18,23,44]. On the first day, a white
96-well plate (OptiPlate 96 F HB, White, PerkinElmer) was coated with primary antibody
against the extracellular portion of TRKB (R&D; #AF1494; 1:1000 in carbonate buffer, pH 9.8,
Na2CO3 57.4 mM, NaHCO3 42.6 mM) ON at 4 ◦C. The plate was blocked with 2% BSA in
PBS with 0.1% Tween (PBS-T) for 2 h at RT. Then, cell lysates were added to the plate and left
ON at 4 ◦C. The plate was washed again with PBS-T, and biotinylated anti-phosphotyrosine
secondary antibody (BioRad; #MCA2472B; 1:2000) was added followed by ON incubation
at 4 ◦C. Following another washing step, the plate was incubated with HRP-conjugated
streptavidin (Thermo Scientific; #21126; 1:5000) for 2 h at RT. The plate was washed with
PBS-T and the chemiluminescent signal was detected by a plate reader (Varioskan Flash,
Thermo Scientific) after addition of ECL (1:1). The signal from the samples, after blank
subtraction, were normalized by the average of the control group (ctrl/ctrl) and expressed
as percentage from control.
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4.6. Behavioral Analysis

We used 34 mice (14 haploinsufficient to BDNF, BDNF.het, and 20 wt littermates) in the
fear conditioning experiment. All treatment and behavioral experiments were conducted
between 9:00–14:00 h. Littermates of wt or BDNF.het mice were divided into two groups,
where they were given either vehicle or C21 (0.3 mg/kg/day, 0.009 µg/day; wt n = 8, 12;
het n = 6, 8) by intranasal route [45]. Briefly, the animals were lightly anesthetized with
isoflurane (2% in a chamber for 4 min) and 20 µL of drug solution was administered using a
micropipette to the nostrils. The treatments were delivered once a day for 3 days, alternating
nostrils to avoid irritation or lesions. The conditioning procedure started 2 h after the
last C21 administration. Following a 5 min habituation, the animals received 3 scrambled
shocks (0.6 mA/2s, intervals 30 s–1 min) in context A (conditioning, transparent walls
23 × 23 × 35 cm with metal grid bottom), followed by 2 min without any shocks, in a
total of 10-min session. Next day, the mice were introduced to an unfamiliar context B
(black walls with the same dimensions, and black sleek bottom) in a 5 min session. On the
third day, the animals returned to the familiar context A for 5 min [46]. The time spent
in freezing (s) was determined by the software (TSE, Bad Homburg, Germany) in the last
2 min of the conditioning session and in the full 5 min in the subsequent sessions.

An independent cohort of wild-type mice (12 wt) was submitted to the elevated plus-
maze. The animals were divided (n = 6/group) and received the same drug administration
protocol as described above (3 intranasal administrations of PBS or 0.3 mg/kg of C21)
under light anesthesia. Two hours after the last administration the animals were submitted
to the acrylic-built elevated plus-maze composed of two open arms (30 × 5 cm with a 1 cm
rim) and two enclosed arms (same dimensions with a 25 cm wall) connected by a central
platform (5 × 5 cm) and elevated 40 cm above the floor. The percentage of time and entries
in the open arms and the number of entries in the enclosed arms and the total distance
traveled were determined by the software (Ethovision XT 13, Noldus, Wageningen, The
Netherlands) in the 5 min session.

4.7. Statistical Analysis

The data from surface TRKB assay were analyzed using Kruskal-Wallis test, followed
by Dunn’s post hoc test since homoscedasticity was not observed among the groups. The
effect-size of the treatment was calculated by Hedges’ method [47]. The data from pTRKB
ELISA were analyzed by two-way ANOVA with C21 and BDNF as factors followed by
Fisher’s LSD. The data from elevated plus-maze were analyzed by the unpaired Student’s
t test. The data from fear conditioning were analyzed by two-way ANOVA with repeated
measures with treatment, genotype and trials as factors, and the total distance traveled in
the first 2 min of the conditioning session as covariant; since an interaction was observed a
two-way ANOVA was performed for each trial, followed by Fisher’s LSD post hoc tests.
p < 0.05 was considered significant.

5. Conclusions

Although still modest, there is increasing interest about the brain effect of RAS-acting
drugs. Indeed, AT1R-antagonists such as losartan have been shown to improve stimuli
discrimination, which was followed by changes in amygdala activity, in healthy volunteers
with high trait anxiety [48]. Therefore, it is of interest to study the repurpose of these
well-tolerated drugs for brain disorders with the goal to expand knowledge about the
RAS in general, as new compounds could be generated with AT2R as target. In this sense,
it seems that C21 is a promising candidate and further investigation into its behavioral
effects is warranted. In conclusion, we observed that C21 can counteract the consequences
of stress in a ‘non-anxiolytic manner’, possibly via changing in TRKB trafficking, thus
resulting in an increase of TRKB on the cell surface and facilitation of BDNF-dependent
behavioral changes.
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