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Abstract: Progress in the design of G-quadruplex (G4) binding ligands relies on the availability
of approaches that assess the binding mode and nature of the interactions between G4 forming
sequences and their putative ligands. The experimental approaches used to characterize G4/ligand
interactions can be categorized into structure-based methods (circular dichroism (CD), nuclear
magnetic resonance (NMR) spectroscopy and X-ray crystallography), affinity and apparent affinity-
based methods (surface plasmon resonance (SPR), isothermal titration calorimetry (ITC) and mass
spectrometry (MS)), and high-throughput methods (fluorescence resonance energy transfer (FRET)-
melting, G4-fluorescent intercalator displacement assay (G4-FID), affinity chromatography and
microarrays. Each method has unique advantages and drawbacks, which makes it essential to select
the ideal strategies for the biological question being addressed. The structural- and affinity and
apparent affinity-based methods are in several cases complex and/or time-consuming and can be
combined with fast and cheap high-throughput approaches to improve the design and development
of new potential G4 ligands. In recent years, the joint use of these techniques permitted the discovery
of a huge number of G4 ligands investigated for diagnostic and therapeutic purposes. Overall, this
review article highlights in detail the most commonly used approaches to characterize the G4/ligand
interactions, as well as the applications and types of information that can be obtained from the use of
each technique.
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1. Introduction

The human genome and transcriptome contain several guanine-rich sequences, which
have stimulated considerable interest from researchers since the first reports of their
being folded into non-classical structural motifs known as G-quadruplexes (G4s) [1-3]
(Figure 1A). These structures are characterized by the presence of two or more stacks
of four guanines organized in a coplanar manner [4]. Each set of four guanines forms
a building block, usually called a G-tetrad, that are stabilized by Hoogsteen hydrogen
base-pairing in physiological conditions, - interactions as well as in the presence of
positively charged monovalent cations (usually K* and Na*) (Figure 1B) [5]. G4s are highly
polymorphic and can adopt a wide variety of structures based on strand molecularity and
strand direction, as well as length and loop composition [6]. According to molecularity,
the structures may be distinguished as intramolecular or intermolecular [6]. Considering
the direction of the strands, G4 structures may be classified as parallel, antiparallel and
hybrid (Figure 1C-H). The loops are generally divided into three main groups: propeller,
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lateral, and diagonal [6]. Recently, some structural studies demonstrated the formation
of G4 structures with longer loop lengths and bulges, opening the framework for the
development of novel diagnostic and therapeutic approaches based on those features [7,8].
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Figure 1. (A) Guanine-rich sequence with potential to form a three-tetrad G4. (B) Chemical structure
of G-tetrad formed by the Hoogsteen hydrogen-bonded guanines and central cation (colored in gray)
coordinated to oxygen atoms. Schematic representation of common unimolecular G4s based on the
strand direction: (C) parallel, (D) antiparallel, and (E) hybrid. Representative PDB structures of (F)
parallel (PDB ID: 2M4P), (G) antiparallel (PDB ID: 1134) and (H) hybrid (2JPZ) G4 structures. The
different loops (propeller, diagonal and lateral) and a bulge were also shown.

Computational algorithms were developed to predict the location of specific G4
sequence motifs in the human genome [9,10]. Such predictors consisted of the general
motif G>3NxG>3NxG>3NxG>3 and identified over 370,000 sequences with the potential to
fold into G4 structures [11]. However, the early algorithms were not accurate and lacked the
flexibility to accommodate divergences from the canonical pattern. In order to overcome
these disadvantages, novel approaches were developed to compute the G4 propensity
score by quantifying G-richness (reflecting the fraction of guanines in the sequence) and
G-skewness (reflecting G/C asymmetry between the complementary nucleic acid strands)
of a given sequence [12,13], or by summing the binding affinities of smaller regions within
the G4 and penalizing with the destabilizing effect of loops [14]. Recently, new machine
learning approaches were employed to map active G4s based on sequence features and
trained using newly available genome wide mapping of G4s in vitro and in vivo [15,16].

In recent years, the development of high-throughput sequencing methods, such
as G4-seq, has enabled the identification of over 716,000 DNA guanine-rich sequences
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across the human genome with the ability to fold into G4 structures in the presence of the
well-known G4 ligand, pyridostatin (PDS) (Figure 2) [17]. PDS has an important role in
next-generation sequencing (NGS), since it stabilizes G4s and induces polymerase stalling.
Those DNA guanine-rich sequences are non-randomly distributed and are mainly located
in clusters of immunoglobulin switch regions [18], telomeres [19] and promoter regions
of oncogenes [20]. Several reports have described the formation of G4 structures within
endogenous chromatin, and their ability to recruit transcription factors to promote active
transcription [21-28]. The location of those G4 structures was revealed using an antibody-
based G4 chromatin immunoprecipitation sequencing (G4 ChIP-seq) approach [21], and
suggests that they play a crucial role in critical cellular processes such as DNA replica-
tion [29,30], DNA damage repair [26], transcription [22,23], translation [31] and epigenetic
modifications [32]. By using G4 ChIP-seq, Hansel-Hertsch et al. showed a reduction in
the number of detected DNA G4s (10,000) in genome [21]. These results are not surprising
since transient G4 structures strongly depend on chromatin relaxation and cell status [21].
Recently, an improved version of the G4-seq method was developed and makes available
the G4 map of 12 different species [33].

RNA guanine-rich sequences came into the trends of research in the last few years
due to their intrinsic features and strengths. RNA G4s are more compact, less hydrated,
and more thermodynamically stable than their DNA counterparts [34]. Furthermore, the
presence of the 2/-OH group in the ribose ring favors the parallel topology, making them
more attractive as target molecules [34]. To date, using computational approaches, more
than 1.1 million guanine-rich sequences h with the ability to fold into RNA G4 have been
identified [35]. RNA G4s were shown to exist in human cells by using the specific G4
antibody BG4 [36] and, in the same way as DNA G4s, those sequences are non-randomly
distributed in the transcriptome [37]. Those sequences are mainly located in both 5" and
3'UTR, as well as at the splicing junction of mRNA and noncoding RNAs, being of utmost
importance in regulatory post-transcriptional mechanisms [37]. In the last few years,
several reports have highlighted the importance of G4s in the transcriptome by employing
G4 sequencing high-throughput approaches [38-41]. rG4-seq was initially applied to
map G4s in RNA extracted from HelLa cells [38] and later to plants [40] and bacteria [41].
G4RP-seq was also used to characterize the G4 transcriptomic landscape in vivo [39]. Yang
et al. developed a biotinylated template-assembled synthetic G-quartet (TASQ) derivative
(BioTASQ v.1) (Figure 2) and captured G4 RNAs from breast cancer cells in log-phase
growth, followed by target identification by sequencing [39]. The effect of BRACO-19 and
RHPS4 (Figure 2) treatment was also evaluated [39]. They found that those ligands can
change the G4 transcriptome in a more remarkable way in long non-coding RNAs [39].
More recently, the same research group developed a new BioTASQ prototype that they
called BioTASQ v.2 (Figure 2) and performed an in-depth study of both ligands [42]. Those
studies are of utmost importance and revealed the strong relevance that G4 ligands could
have in cell biology.

Therefore, the location of G4s at both DNA and RNA levels suggests an active role in
the development of diseases such as cancer and neurological disorders [43]. Several pieces
of evidence suggest that G4s play an important role in promoting genomic instability by
triggering DNA damage [44-46]. The G4 ligand PDS induces DNA damage as shown
by the formation of YH2AX foci, a marker of double-stranded DNA breakage (DSB) [47].
Furthermore, ChIP-seq has shown that PDS accumulates at genes containing clusters of
G4 structures and that accumulation is transcription-dependent [47]. Recently, De Magis
et al. showed that the G4 ligands PDS, BRACO-19 and bis-guanylhydrazone derivative
of diimidazo(1,2-a:1,2-c)pyrimidine 1 (FG) (Figure 2) induced the formation of R-loops,
another noncanonical secondary of a DNA:RNA hybrid compatible with the formation of
a G4, and promote DNA damage as a consequence of that formation [44]. They also found
that the mechanism of genome instability and cell killing by G4 ligands was particularly
efficient in BRCA2-depleted cancer cells [44]. This study could open up new possibilities of
investigation and lead to the development of new anticancer approaches.
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Although the G4s present in eukaryotic species have been extensively studied, their
presence in bacteria and viruses has only attracted attention in the last few years [48-52]. In
bacteria, G4s are found in regulatory regions that play important functions in replication,
radioresistance, antigenic variation and latency [51]. G4s in viruses have important regu-
latory roles in key viral steps [53]. Recent studies have demonstrated the formation and
function of G4s in pathogens responsible for serious diseases. Among them are Mycobac-
terium tuberculosis [54], Pseudomonas aeruginosa [41], Human Papilloma Virus (HPV) [55],
Human Immunodeficiency Virus (HIV) [53] and SARS-CoV-2 [56].

Therefore, the recognition of the biological significance of G4s has promoted the re-
search and development of ligands that interact with G4s and regulate their structure and
function. The most well-known G4 ligands were initially developed to target DNA G4s, but
many of them have also been employed to target of RNA G4s [57]. Despite some significant
progress in the field, the main challenge remains on the trade-off between affinity and
selectivity, which could be achieved with the full characterization of G4/ligand interac-
tions. Since the discovery of the first G4 ligands (disubstituted amidoanthraquinones)
(Figure 2) [58], methods such as circular dichroism, surface plasmon resonance, isothermal
titration calorimetry, mass spectrometry, nuclear magnetic resonance and X-ray crystal-
lography have been used to characterize the molecular interactions of the G4/ligand pair.
However, despite the utility of those methods, they are in general, time-consuming and/or
costly for the first screening of G4/ligand interactions. Following the general tendency,
high-throughput approaches such as FRET-melting, G4-Fluorescence intercalator displace-
ment (G4-FID), affinity chromatography and microarrays have emerged as rapid and
efficient methods to detect the binding and interaction of ligands with their G4 targets.

Overall, this review describes the most well-known G4 ligands and highlights the
importance of the most recently developed experimental methods for characterizing
G4/ligand complex interactions.

2. Overview of G4-Interacting Ligands

The increasing evidence that DNA and RNA G4s can regulate a variety of physiological
functions in cancer and neurological disorders has encouraged the design and development
of new G4-interacting ligands that may act as therapeutic agents [59]. However, besides
acting as potential therapeutic agents, ligands can be utilized as molecular agents in
biosensing and bioimaging for diagnostic purposes [60].

To date, a significant number of ligands targeting G4s have been investigated and most
of them have been deposited in the G4 Ligands Database 2.1 (http://www.g4ldb.com/
(accessed on 3 August 2021)) [61]. Some G4 ligands are highlighted in Figure 2. Most
of these well-known G4 ligands share common structural features such as an aromatic
core, which permits t— stacking interactions with planar G-tetrads, and one or more
positive moieties that may interact with DNA or RNA backbone phosphate groups in
grooves and loops [62]. The dissociation constant (Kp) that measures to the binding affinity
is a key parameter of affinity in G4/ligand interaction and for most of the G4/ligand
complexes is lower than 10~ M [62]. However, in addition to affinity and stabilization,
the G4 ligands must display selectivity between G4 and duplexes’ topologies. It is worth
noting that some of the most well-known G4 ligands, such as BRACO-19 and TMPyP4
(Figure 2), display low selectivity to G4 structures over duplex DNA [63,64]. It was
recently proposed that structure-activity relationship studies could significantly improve
the physicochemical properties of ligands and enable the optimum trade-off between
affinity and selectivity [65]. A recent review by Asamitsu et al. describes in great detail the
ligand design and development to acquire specificity and selectivity without compromising
affinity [66]. However, there is a significant lack of knowledge of the binding of ligands to
G4s when they are embedded with duplex DNA or mRNA, and in chromatin contexts [67].
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Figure 2. List of some examples of G4-interacting ligands mentioned in this review showing the
common name of the ligand, chemical structure and family of the compound (chemical backbone).

The early evidence that G4s can be found at the end of telomeres and on oncogene
promoter regions led to much attention in the G4 field focusing on developing DNA G4
ligands [66] against cancer. Indeed, because of the low pharmacological properties, which
include poor selectivity, no G4 ligand has advanced beyond Phase II trials. Until now,
the only ligand that reached this phase was the fluoroquinolone derivative, quarfloxin
(CX-3543), which binds to G4s located in ribosomal DNA (rDNA) and disrupts nucleolin
interaction [68]. CX-5461 is another G4 ligand that is currently at advanced phase I
clinical trials for patients with BRCA1/2 deficient tumors [69]. Recently, Masud et al.
demonstrated that inhibition of the critical member of the DNA damage response, UBE2N,
acted synergistically with CX-5461 increasing cell toxicity [70]. Further, this compound has
shown the potential to suppress pulmonary arterial hypertension and associated vascular
remodeling and pulmonary inflammation by inhibiting the RNA polymerase I [71]. For
those reasons, the unique chemical qualities of RNA G4s, together with their location in
key regions of the human transcriptome, have spurred the design and development of
specific and selective RNA G4 ligands. Most of those ligands have been transposed from
DNA G4s and others have been optimized with functional groups to obtain better affinity
and selectivity. In this section, we describe some of the compounds that are lastly reported
as DNA or RNA G4 ligands, as well as their binding mode and interactions.
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2.1. DNA G4-Interacting Ligands

As previously mentioned, since guanine-rich sequences of telomeric ends and onco-
gene promoter regions have been considered attractive targets for cancer therapeutics, a
significant number of ligands targeting DNA G4s have been reported [20,72].

Telomeres are nucleoprotein structures that are crucial in genome stability and cell
growth due to protecting chromosome ends. In humans, telomeres consist of tandem
repeats of the highly conserved repetitive sequence d(TTAGGG), ending in a shorter
G-rich single-stranded 3’-overhang. Those tandem repeats can form G4 structures that
could impact telomerase activity. BRACO-19 is a 3,6,9-trisubstituted acridine derivative
and one of the first G4 ligands developed with specific telomerase inhibitory activity by
targeting G4s in telomeres [73]. Despite promising in vitro and in vivo anticancer activity,
its potential use in clinical settings was hindered by its low selectivity toward DNA G4s
over duplex [73]. Recently, the binding modes of BRACO-19 toward different telomeric
DNA G4 topologies were tested by molecular dynamics simulations with an explicit solvent
and revealed an end-stacking mode for the parallel G4s, bottom stacking mode for the
antiparallel G4s, and top stacking mode for hybrid G4s [74]. The lack of preferential
binding selectivity of BRACO-19 toward G4s over duplex could be explained by the similar
binding affinity of groove binding mode for both G4 and duplex structures [74]. In order
to tackle the issue of selectivity without compromising binding affinity, one approach
that has been used is the use of loops and grooves with the ability to establish different
interactions in distinct environments. The pyridine-oxazole derivative TOxaPy (Figure 3A)
shows preferential binding to telomeric G4s with antiparallel topology over telomeric
G4s with parallel topology [75]. The results also confirmed the much stronger binding
affinity of the ligand in Na* than in K*. The results in Na* showed a stoichiometry of
1:1 and Kp = 2x10~7 M ™. Further evaluation of the interactions by molecular docking
suggests a specific groove bind. The naphthalene diimide derivative NDI 3 (Figure 3A)
was developed as a ligand with specificity for ¢-KIT2 G4, and the preference for this
interaction possibly relies on the specific contact with the loops or grooves, which confer
binding preferences [76]. Another approach to gain selectivity is the use of G4 ligands that
permit favorable discrimination of dimeric G4 forms from monomeric ones. A new triaryl-
substituted imidazole derivative called IZNP-1 (Figure 3B) was reported and through
several biophysical and in vitro techniques is was proven that the ligand stabilizes telomeric
G4s specifically [77]. In addition, the binding mode was unveiled and revealed intercalation
of the ligand into the pocket between the two G4 units (Figure 3B) [77].
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Figure 3. Examples of selective DNA G4 ligands. (A) Chemical structures and family of the ligands
TOxaPy and NDI 3. (B) Chemical structure of IZNP-1 and proposed binding model of the intercalation
of IZNP-1 into two telomeric G4 units. Adapted from ref. [77].

Previous studies support the evidence that G4s located in promoter regions of h'TERT,
c-MYC, BCL2, KRAS, HSP90 and VEGF, can serve as potential targets in cancer therapeu-
tics [78]. Most of the G4 ligands used to hinder telomerase activity were also investigated
for their ability to block the transcriptional activity of polymerase in promoter regions of
oncogenes [78]. Besides those ligands, the naphthalene diimide derivatives, MM41 and
CMO3 (Figure 2), are binders and stabilizers of G4s in both telomeric ends and oncogene
promoter regions (HSP90, BCL2 and KRAS), and exert a noteworthy antiproliferative effect
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in pancreatic cancer cells [79,80]. Furthermore, the computational and experimental ap-
proaches revealed that pyrrolidino side chains interact with G4s mainly through groove
binding using electrostatic interactions. The acridine orange derivative Cg (Figure 4) was
recently investigated for its ability to bind and strongly stabilize G4 structures in the
KRAS oncogene promoter [81]. The NMR and docking studies demonstrated that ligand
interacts with 22-mer KRAS 22RT G4 via 71—t stacking and groove/loop interactions [81].
In addition, the acridine core permits end-stacking interactions with external G-tetrads,
while alkylamide side chains establish contact points with grooves/loops. Interestingly, the
positively charged nitrogen group may occupy the cavity, usually occupied by one of the
three central ions through electrostatic interactions. The computational studies using NOE
distance restraints revealed details about the ligand structural features in the interaction
with KRAS-22RT G4 (Figure 4).

Figure 4. (A) Chemical structure of the acridine derivative Cg. (B-E) Computational models of
complex Cg/KRAS22-RT generated by molecular docking after energy minimization. The figures
(B-E) depicted conformers obtained with different binding free energies, —9.32, —7.24, —9.17 and
—8.40 kcal/mol, respectively. G4 structure is depicted as a light orange surface with the 5’ tetrad
highlighted in darker orange. Cg is represented in blue. Adapted from ref. [81].

Nevertheless, the binding modes of other well-known G4 ligands such as telomes-
tatin [82,83], RHPS4 [84,85], and naphthalene diimide derivatives [86,87] (Figure 2) are
well-characterized by several computational and experimental approaches.

Meanwhile, at the same time that G4 ligands have been used for therapeutic purposes,
a range of G4 optical probes, suitable for diagnostic purposes, have been developed to
recognize G4s selectively [60]. Hu et al. developed a specific fluorescent G4 probe that
distinguishes c-MYC G4 from other G4 structures [88]. In addition, the authors described
the binding model of IZFL-2 (Figure 5A), which is mainly based on m-m stacking and
additional hydrogen bonding interactions [88]. Further, several reviews report G4 specific
molecules endowed with fluorescence properties. These molecules represent a variety of
structural scaffolds, a mechanism of G4-recognition and fluorescence signal transduction.
The G4 selectivity and in vivo imaging potential of these molecules place them uniquely
as G4-theranostic agents in the predominantly cancer therapeutic context of G4-selective
ligands. Moreover, several probes were described to study the function and mechanism of
G4 formation in mammalian cells [60,89-92]. Shivalingam et al. also reported a new G4
optical probe, DAOTA-M2 (Figure 2), which localizes and interacts with G4s [93]. Later,
the binding mechanism of the ligand toward c-MYC G4 was thoroughly investigated [94].
Their study reveals that the DAOTA-M2 polyaromatic core establishes stacking interactions
with external G-tetrads of the c-MYC G4. In fact, a wide range of DNA G4 optical probes
(e.g., NBTE [95], IMT [96] and SiR-PyPDS [97]) (Figure 5) are increasingly being developed
and characterized in recent years. The tripodal cationic fluorescent probe NBTE detected a
percentage of G4 DNA in live cells and found 4-fold G4 DNA in cancer cells than in normal
cells, suggesting the potential applications of this probe in cancer cell detection [95]. The
benzothiazole derivative IMT is a fluorescent probe, reported by Zhang et al., that tracked
DNA G4 changes at different points in cell progression and aphidicolin and hydroxyurea
treatment, revealing more information on the roles of DNA G4s in biological systems [96].
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cells using the fluorescent probe SiR-PyPDS. Adapted with permission from ref. [97] Copyright 2020
Springer Nature.

Another example of a G4-specific fluorescent probe is SiR-PyPDS, which enables
single-molecule and real-time detection of individual G4 structures in living cells without
perturbing G4 formation and dynamics (Figure 5B) [97]. The authors also demonstrated
that G4 formation in live cells is cell-cycle-dependent and disrupted by chemical inhibition
of transcription and replication [97].

2.2. RNA G4-Interacting Ligands

Despite a growing number of RNA G4s being identified and characterized, reports on
their interaction with G4 ligands are less common. Nevertheless, other RNA secondary
structures have been extensively studied for therapeutic and diagnostic purposes [37].
Since RNA G4s are non-randomly distributed in transcriptome and present in several
important genes and regulatory regions, designing G4 ligands that stabilize or destabilize
such structures is seen as an attractive therapeutic and diagnostic strategy for various
diseases such as cancer and neurological disorders [37]. The destabilization of G4 structures
by G4 ligands is less commonly described; however, in recent years some studies have been
reported for RNA G4s. For instance, some studies involving TMPyP4 have reported that
the ligand destabilizes RNA G4s [98-102]. Despite this intriguing observation by different
research groups, the mechanism of the unfolding of RNA G4s by TMPyP4 is still unknown.

Until recently, most RNA G4 structures were thought to conform in relatively sim-
ple RNA G4 structures, in which guanines stacking within the G4 would also be con-
tiguous in sequence (e.g., four successive guanine trinucleotide tracts separated by loop
nucleotides) [34]. Recently, crystallographic and NMR structure determinations of some
in vitro selected RNA aptamers have revealed RNA G4 structures of unprecedented com-
plexity [103]. Indeed, Sc1 and spiegelmer aptamers have nucleotides in syn conformation,
locally inverted strand polarity, and nucleotide quartets that are not all-G. Common to
these new structures, the sequences folding into G4s do not conform to the requirement that
guanine stacks arise from consecutive nucleotides [103]. On the other hand, the G4 ligands
design and development that provides recognition and selectivity exclusively for RNA
has been laborious. In fact, most of the G4 ligands that have been originally designed and
developed for DNA G4s have been later investigated to target RNA G4s. An interesting
review by Tao et al. describes in detail the recent advances in the development of ligands
toward RNA G4 structures [104].

Several pieces of evidence have pointed out that, similar to the DNA G4s located in
gene promoters, mRNA 5 UTR RNA G4s could be responsible for the co-regulation of
the expression levels of mRNAs with different functions [105]. Currently, multiple efforts
are being driven toward the design and development of ligands that would target G4s in
specific mRNA transcripts [106]. Halder et al. reported the interaction of bisquinolinium
ligands (PhenDC3, PhenDC6 and 360A) (Figure 6) with RN A G4s present in the 5UTR TRF2
mRNA [107]. The driving mechanism for the binding of bisquinolium ligands toward G4s
was proposed to be — stacking with external G-tetrads [107]. Miglietta et al. identified
anthrafurandione derivatives (Figure 6) as potential ligands of 5’UTR KRAS G4 [108]. The
binding mechanism probably occurs through the tetracyclic cores of ligands that promote
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mi—7t stacking interactions with G4 tetrads, whereas the cationic side chains bind to grooves
and loops via electrostatic interactions [108].

oy
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anthrafurandione derivatives

Figure 6. RNA G4-interacting ligands mentioned in this review showing the common name of the
ligand and chemical structure.

Emerging evidence indicates that telomeric repeat-containing RNAs (TERRA) actively
participate in the mechanisms regulating telomere maintenance and chromosome end
protection. In light of this evidence, several ligands have been developed to target TERRA
G4s. The interaction of the polyaromatic molecule, RGB-1 (Figure 6), with TERRA and
NRAS mRNA G4s has been described [109]. The authors proposed that RGB-1 could
selectively recognize RNA G4s due to hydrogen bonding acceptors that interact with
2'-OH group of the RNA G4. However, a more deeply structural analysis of the complex
RGB-1/TERRA RNA G4 is necessary to understand the binding mechanisms that drive
the strong binding affinity and selectivity for RNA over DNA G4s. Carboxy-PDS (c-PDS)
(Figure 2) is recognized by strongly exhibit high specificity for RNA [110]. In a study by
Rocca et al., they found that c-PDS established - stacking interactions with external
TERRA G4 tetrads, and several hydrogen bonds with guanine residues [111]. Furthermore,
this ligand showed a noteworthy stabilizing effect on TERRA RNA G4 (AT, = 20.7 °C),
and the stabilization was not affected by the addition of up to 100 equivalents of a DNA
G4 competitor [36]. ¢-PDS has been successfully applied for the selective stabilization of
endogenous RNA G4s in cells [36].

Meanwhile, various G4 ligands were computationally and experimentally investigated
for their ability to interact with pre-miRNA G4 structures, which have been previously
described as key regulatory agents of miRNA biogenesis. Kwok et al. developed a
distinguished experimental approach, which they designated SHALIPE, to detect and
structurally map RNA G4s at single-nucleotide resolution. The approach is derived from
SHAPE method and consists of the coupling of selective 2'-hydroxyl acylation with a
lithium ion-based primer extension [112]. They found that pre-miRNA-149 was able to
adopt a G4 form in the presence of PDS, which regulates the miRNA-149 biogenesis. Ghosh
et al. showed that in the presence of TMPyP4, the pre-miRNA-149 G4 structure was
disrupted, leading to a restoration of miRINA-149 biogenesis [102]. The RNA G4 region of
pre-miRNA-149 and pre-miRNA-92b were recently characterized, and their interaction with
acridine orange derivatives was evaluated [113,114]. Further, six G4 ligands, which have
the potential to target the RNA G4 in pre-miR-149 were investigated by means of molecular
docking and molecular modelling (Figure 7) [115]. The results suggest that large aromatic
surfaces with smaller positively charged side chains capable of performing mixed-mode
interactions are preferred on the targeting of RNA G4 formed in pre-miR-149 [115].
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Figure 7. Computational models showing the lowest energy binding poses of the complexes between
the prediction model of RNA G4 formed into pre-miRNA-149 and the ligands (A) Cg, (B) Cs-NHy,
(C) (16)phenNy, (D) (32)phen;Ny, (E) PhenDC3 and (F) PDS. (G) Alternative binding pose of the
complex formed by pre-miRNA 149 and PDS after 100 ns of MD simulations. G4 structure is depicted
in blue, while ligands are highlighted in green and red. Reprinted with permission from ref. [115]
Copyright 2020 Taylor & Francis Group.

As in DNA G4s, a significant number of optical probes targeting RNA G4s have
been synthesized in recent years [104]. Chen et al. developed QUMA-1 (Figure 8A), a
highly selective fluorescence light-on probe, for tracking and monitoring the folding and
unfolding of RNA G4s in live cells (Figure 8) [116]. The interaction between QUMA-1 and
RNA G4s was demonstrated to be caused by a rotational restriction that reorganizes the
ligand conformation [116].

500,000
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Untreated RNase A DNasel CX-5461 a-Amanitin

@

Fluorescence per cell
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g IO
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Figure 8. (A) Chemical structure of QUMA-1; confocal microscopy images of fixed HeLa cells (B)
stained with QUMA-1; (C) stained with QUMA-1 and treated with RNase A; (D) stained with
QUMA-1 and treated with DNase I; (E) stained with QUMA-1 and treated with CX-5461 and (F)
stained with QUMA-1 and treated with «-Amanitin. (G) Fluorescence intensity per cell. Copyright
(2018) Wiley. Adapted with permission from [116] Copyright 2018 John Wiley and Sons, Inc.

Remarkably, the same research group employed more sophisticated engineered ap-
proaches to detect G4s in NRAS mRNA, with the development of the molecular probe ISCH-
oal (Figure 9) [117]. They combined the G4 light-on ligand ISCH-1 with an oligonucleotide
complementary to the adjacent sequence of the NRAS G4 sequence to form an ISCH-nras1
ligand that can selectively bind a specific region in NRAS mRNA (G4-triggered fluorogenic
hybridization (GTFH) probe) (Figure 9) [117]. This approach of sequence-specific recog-
nition of NRAS mRNA adjacent to an intended G4 provides a gain of specificity in the
transcriptomic context.
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Figure 9. Schematic representation of GTFH probe. (A) GTFH probe design principle. (B) Chemical
structure of ISCH-oal. (C) GTFH probe preparation. Reprinted with permission from ref. [117].
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Copyright 2016 American Chemical Society.

Laguerre et al. also described a new multifunctional compound called PyroTASQ
(Figure 10), which belongs to both ligands and fluorescent probes [118]. The ligand was
designed using the template-assembled synthetic G-quartets method. This multifunctional
compound binds to both DNA and RNA G4s in a mechanism that promotes the reorgani-
zation of the ligand in a structure that leads to the release of fluorescence by the pyrene
moiety [118]. However, in vivo application of PyroTASQ is limited due to its aggregation
in cells. Later, in order to overcome this drawback, the same research group substituted
the pyrene moiety with naphthalene [119]. The new compound was named NaphtoTASQ
(Figure 10) and it was used to visualize DNA and RNA G4s in living cells [120].
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Figure 10. Chemical structures of PyroTASQ and NaphtoTASQ.

3. Methods to Characterize G4/Ligand Interactions

In the past few years, the progress in the design and development of numerous meth-
ods has helped researchers to assess the binding modes and interactions between G4s and
their ligands. These approaches could be different in their nature and more straightforward
or complex, but all of them give important information about binding interactions between
G4s and their ligands. Many of the methods earlier used to characterize dsDNA interac-
tions have been employed and modified to highlight the contact points between G4s and
their binders [121,122]. Biophysical techniques are usually the primary choice in the study
of physical interactions and can be divided into three main categories: structure-based
methods; affinity and apparent affinity-based methods; and high-throughput methods.
In this review, we highlight in detail structure-based methods (circular dichroism (CD),
nuclear magnetic resonance (NMR) and X-ray crystallography); affinity and apparent
affinity-based methods (surface plasmon resonance (SPR), isothermal titration calorimetry
(ITC) and mass spectrometry (MS)); and high-throughput methods (fluorescence resonance
energy transfer (FRET)-melting, fluorescence intercalator displacement (G4-FID), affinity
chromatography and microarrays). Each method has advantages and drawbacks associated
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with its features and usually, several methods are necessary to achieve complementary
information about G4/ligand interaction [121,122]. This review section discusses biophysi-
cal techniques and how they are important to characterize in vitro G4/ligand interactions
without cellular relationship.

3.1. Structure-Based Methods to Investigate G4/Ligand Interactions
3.1.1. Circular Dichroism (CD)

CD is a standard biophysical method for evaluating the secondary structure, folding,
and binding properties of chiral molecules. The method is based on the difference in
absorbance by a substance of right- and left-handed circularly polarized light. The intrinsic
features of CD make it a powerful tool for the study of the secondary structures and
conformations adopted by nucleic acids [123]. The CD spectral signature of nucleic acids
arises from (i) asymmetric backbone sugars; (ii) helicity of the secondary nucleic acid
structures and (iii) long-range tertiary ordering of nucleic acids in some specific solution
conditions [123]. Those important features make CD a method of choice for the study of G4
structures. CD spectroscopy is commonly used to characterize G4 topology, cation effect,
G4/ligand interactions and ligand-induced thermal stabilization [124].

By using qualitative rules-of-thumb, CD can be easily applied to distinguish different
G4 topologies [124,125]. Therefore, the CD spectral features of a given G4 structure are
indicative of its topology: parallel G4s have a positive band ~ 260 nm and a negative band
~ 240 nm; antiparallel G4s are characteristic by a positive band at ~ 295 nm and a negative
one at ~ 260 nm and hybrid G4s depict two positive bands (= 295 nm and ~ 260 nm), and
a negative one ~ 245 nm (Figure 11A) [124,125].
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Figure 11. (A) CD spectra of G4 structures: c-MYC (10 uM) in 100 mM KClI (parallel); 22AG (10 pM)
in 100 mM NaCl (antiparallel) and 22AG (10 uM) in 100 mM KClI (hybrid). The final volume of
each sample in the 1 cm path-length quartz cell was 300 pL. The buffer used for the experiments
was 10 mM phosphate buffer pH 7.1. (B) CD melting curves for c-MYC G4 (10 uM) in 100 mM LiCl
in the absence and presence of 2 molar equivalents of TMPyP4. The ellipticity was monitored at a
wavelength of 263 nm. The buffer used for the experiments was 10 mM phosphate buffer pH 7.1.
Reprinted with permission from ref. [124] Copyright 2017 American Chemical Society.

Furthermore, the technique has emerged as a strong tool to characterize the interaction
of G4s with ligands, being a low-resolution complement to high-resolution methods. NMR
spectroscopy and X-ray crystallography are used for high-resolution structural analysis
of G4/ligand interactions but are costly, time-consuming and require a large amount of
the sample [124-127]. CD provides a less detailed analysis of the structure, but requires
less of the sample. Further, measurements are always performed in solution and are not
limited by the molecular weight or size of a molecule [126,127]. Furthermore, the technique
provides a fast method to screen G4/ligand interactions, particularly when the timescale
of a particular interaction or orientation is short [127]. These advantages significantly
contributed to increase the number of studies that employed the technique to analyze the
effect of ligands on G4s.
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Some specific G4 ligands showed the ability to induce conformational switches in
G4s [6,128]. This feature is of utmost importance since it open-up an important framework
to control G4 structure and function [128]. In many cases, the new G4 topology is primarily
assigned by CD. One of the first examples of a ligand that induced a switch in G4 topology
was the triamino-anthracene derivative, which was first designed to interact with G-tetrads
by stacking and with the central ion channel with the amine moieties present in the side-
chain [129]. Rodriguez et al. monitored the interaction of the ligand with telo24 G4
via circular dichroism spectrum and found that in a sodium bulffer, the ligand changes
the G4 topology from antiparallel to parallel in about two hours [129]. Interestingly, a
porphyrazine ligand can reverse the equilibrium by favoring the antiparallel topology [129].
However, despite some reported examples of ligands that induced a switch in G4 topology
centered mainly on the CD data [130-132], care must be taken before attributing a new
folding topology based on CD results alone. Recent reports have employed CD as a
complementary method to evaluate switches in G4 topology [133,134]. Marchand et al.
used NMR spectroscopy and mass spectrometry to prove that 360A, PhenDC3, and PDS
switch the G4 folding topology of telo22, telo23, telo24 and telo26 [134]. CD spectroscopy
was further employed and revealed an antiparallel G4 structure upon ligand binding [134].

In general, G4 ligands are non-chiral and therefore have no CD signal by themselves
in solution [135]. However, upon interaction with G4s, those ligands can eventually
acquire an induced CD (ICD) signal through the coupling of electric transition moments
of the ligand and G4 bases. The observation of an ICD signal is indicative of G4/ligand
interactions, but can also perturb the apparent signature of a given G4 topology [135]. As
previously mentioned, in those particular cases care must be taken to avoid mistakes in the
interpretation of CD results. Nevertheless, the ICD signal could be used to obtain insights
on the mode of interaction and geometry of the binding [135].

Ligands that bind G4s by end-stacking or intercalation display only very weak or
even no ICD signals [136]. A new class of 9-O-substituted berberine derivatives has been
synthesized and their interactions with several G4 structures are characterized by CD
titrations [137]. Moreover, in the same study, they also investigated the orientation of the
ligand with G4s by analyzing the ICD signals [137]. The same research group reported the
binding modes of a selective fluorescent probe of DNA G4s [138].

In the case of groove binders, larger positive ICD signals are generally observed [139].
Zuffo et al. reported that core-extended naphthalene diimides display intense ICD positive
signals in the presence of antiparallel and hybrid G4s [139]. In their study, the ligands do
not display a detectable ICD signal in the presence of parallel G4s, suggesting a different
binding mode that was hypothesized to be end-stacking [139].

CD is also used to determine the binding stoichiometry of G4/ligand complexes
and the folding of the G4 structures induced by the ligands. Recently, Gluszyriska et al.
employed CD titrations to probe binding stoichiometries and the effect of a fluorescent
carbazole derivative in the folding of G4 structures [140]. However, in these particular cases,
CD just provides qualitative information about G4/ligand interactions, being frequently a
complement for other methods.

Additionally, almost all reported G4 ligands have been characterized by means of
CD-melting experiments. The measurement of the melting temperature of the G4 structure
by CD is usually performed at the maximum ellipticity wavelength (260 nm or 295 nm),
which decreases upon denaturation (Figure 11B) [124]. Thus, depending on the effect of
the ligand, the melting temperature of G4s could decrease or increase. In recent decades,
the considerable advantages of using CD-melting to study G4/ligand interactions have
made it a method widely used by almost all researchers in the field. Indeed, the method is
usually one of the primary choices to evaluate the potential of new ligands to stabilize G4
structures.
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3.1.2. Nuclear Magnetic Resonance (NMR)

NMR has proved to be fundamental to study the structural, kinetics and dynamics
of G4/ligand complexes. The technique provides information about G4/ligand binding
under in vitro conditions. In some specific cases, the conditions were set to mimic cellular
media with the addition of molecular crowding agents such as PEG and Ficoll [141], and
more recently closer to the conditions observed in the living cells using cytoplasmatic
extractions or directly inside living cells such as oocytes [142-144]. Using 2D 'H-°N
SOFAST-HMQC type experiments to follow changes in chemical shift and intensities,
Salgado et al. demonstrated the assembly of the tetramolecular G4 model d(TG4T)y, inside
living Xenopus laevis oocytes [143]. They also showed, for the first time, that is possible
to study the interaction of ligands with G4s inside living cells [143]. This study opened
a new framework to study G4/ligand interactions under in vivo conditions with atomic
resolution. Recently, Krafcikova et al. evaluated DNA /ligand interactions inside the nuclei
of living human cells [142]. They tested two model DNA fragments and four ligands
and the results revealed a strong influence of environmental conditions on the stability of
DNA /ligand complexes, especially for one ligand that presented off-target interactions
with genomic DNA and cellular metabolites [142]. Their study proved the suitability of the
technique to validate ligands, after an in vitro assessment of promising ligands.

The choice of NMR methods to study G4/ligand complexes depends strongly not
only on the exchange regime of the individual molecules and the complex, but as well
on the ligand properties such as those related with hydrophobicity and immiscibility in
water-based solutions. In most cases the polyaromatic properties of G4 targeting ligands
require that stocks are prepared in DMSO and other solvents best adapted for hydrophobic
compounds. For the vast majority of reported cases, the NMR experiments probe the
ligand interaction based on the chemical shift, peak height and linewidth properties of
the observed signals. Those experiments are easy to implement and rapid to acquire and
analyze. More elaborate experiments based on polarization transfer between spins systems,
such as the nuclear Overhauser effect (NOE) [145], Transferred-NOESY [146], Saturation
Transfer Difference (STD) [147] and Water-LOGSY [148] methods require more time and
elaborated controls. In addition, the abovementioned methods are usually complemented
with indirect NMR studies such as HyO/D,O exchange-rate measurement or paramagnetic
spin labels attached in different parts of the G4. As a first approach, most studies take
advantage of G4 imino (Hoogsteen base pairing) region near 10-12.5 ppm for initial
sampling of ligands. Nevertheless, precautions should be taken in the case of loose G4-
ends and loops that do not present imino signals. The advantage is enormous because the
aromatic regions (~7-8.5 ppm) are often crowded by many more nuclei from the G4 and
the ligand itself, and a direct 1D-visualization and analysis it is not possible. Nevertheless,
the imino regions of G4 guanines provide a direct and clear monitoring system for the
formation of a G4 structure and its ligand binding interactions.

A study by Yang’s research group showed, by using 2D NMR experiments (DQF-
COSY, NOESY and TOCSY), the interaction modes and dynamic binding of BMVC to
c-MYC G4 [149]. The authors revealed that upon the addition of lower equivalents of
BMVC (0-0.7 equivalents), a new set of imino protons appeared, suggesting the formation
of a BMVC/c-MYC G4 complex [149]. At 1:1 ratio, the imino region showed only one
set of imino protons, suggesting a 1:1 complex formation. After the addition of higher
equivalents (>1 equivalent) of BMVC, a second set of peaks appeared, which represents
the formation of a second complex [149].

However, for high-resolution structural analysis of the complex G4/ligand, 2D NMR
and molecular modeling were combined to unambiguously obtain information to construct
the 3D model [150]. In addition, the intermolecular NOE interactions can give substantial
evidence of the position of the ligand in the 3D structure of the G4 [151]. There are some
chemical moieties that are preferable for analyzing the complex G4/ligand, such as methyl
groups once they present strong and individual NOE interactions [152].
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Kerkour et al. demonstrated the binding interaction between the G4 ligand, 2,4,6-
triarylpyridine (TAP) (Figure 12A), and the 22AG G4 structure (Figure 12B-D) [150]. The
ligand presented some signal dispersion indicative of loose binding in multiple confor-
mations. The aromatic protons where not well resolved and the unambiguous restrains
used in structural studies originated from the aliphatic protons (Figure 12C). Their NMR
data were supplemented with restrained-docking studies to determine the 3D model of
the complex TAP-22AG G4. The results obtained with NMR spectroscopy are consistent
with those obtained with molecular docking experiments and revealed two binding sites in
the 22AG structure, with the most favored site being the lateral loop formed by T17, T18
and A19. In addition, the results depicted a low predisposition of TAP to bind through m—-7
stacking, preferring the grooves and loops interface.

A ‘\ C 45&.5 8.0 75 7.0
S &Y o
' ; 0’
t 0 aﬁﬁl:j 4 - -0
a0 0
50 6‘3 é e e o 0
I = ol s G2H1
-~ T12H
CI o N 0 B ' ) Puf."
N\/\)L JL./\/N r 55 J - asn
N N 25w T
2
H H - _‘ ﬂ g?:\‘u'
51 f GISHT"
TAP s i 9’3 1 Weaw
A . AHT
O " /Gznn
B 60 o 9 4P e P azwis
i (] je?n—u
) Fémg; R f‘il”.:'.‘
T ; G22HY
T B
o6 S o5 ep e 46 oo Joulls TSN GaGmgts T2 4t @wm
— ——— 5 17
qu 610 64 Gﬂﬂ i GIGI6 68 T5 8. T e e e 1
zgxediexrgrepdziazgaady
! A N § I FZZ LY 3ETIGITAIISLSE
181 0 IS Mo A — IV U darahn A D B -
§ o120 11.5 11.0 10.5 10.0 .
W G20HBIGEH1 I 5:9"5"'33'"1 ig;;:a
1 " y 0 | GloHzam o
11 v U e N ot A N Iy I G1sHaGaH2 |- G10H2a
J _,_./-f\_/\‘..../ Y u‘_g vl MY VWA AN NN rammsgm “ GEHS/GAH1 [—~G20HE
- o ‘ §7° Ga,,za,c,gm 1 ul GZIHBIGISH1 ?:3:—:9
| d ‘F . X . b Gzﬂau:\_u-qb | aama
D.§_1./ s T \,fu J | PELAV. Y SISV W - X G2reIGaH GIHBIGIN | a1na
P M MM - :
o Gq GE 616 G4 Ga T‘ﬂ"‘M1 T3 - oo ngmquMHWG”W Zii‘:s
' loz | Moy o4 Mhee | T1st T 12 Aot ATDHGH \arere
GQHBJG.Z 1
D—a—-»“ e’ ~/ “‘H/Gﬂ VAN JU Ll W, i 24 U GOHE
610 I [ s "f’l“m‘ A G1sea e “-’I“ 7 fé—é = ————— <
120 118 16 4 12 10 108 105 14 02 82 80 78 75 74 72 10 &8 86 =3 ZNE DT 33 &

wz-"H (pem )

Figure 12. (A) Chemical structure of 2,4,6-triarylpyridine (TAP). (B) Imino and aromatic proton regions titration spec-
tra of 500 uM 22AG with different concentrations of TAP in 200 uL of sodium phosphate buffer containing 20 mM
Na,HPO,/NaH,PO,4, 70 mM NaCl at pH 6.9. (C) Expanded H8/H6-H1’ 300 ms 2D-NOESY spectrum of the 2.5:1
TAP:22AG complex. (D) Expanded H1-H8/H2 region from a 300 ms 2D-NOESY spectrum of the TAP:22AG complex at
2.5:1 stoichiometry. Reprinted with permission from ref. [150] Copyright 2017 Elsevier.

Recently, Yang’s research group reported, by using NOESY, HSQC and DQF-COSY
experiments, the NMR solution structures of c-MYC complexed with PEQ (Figure 13),
a specific c-MYC G4 binder with druglike properties [153]. Chemical shift perturbation
was used to elucidate macromolecular interactions in the complex G4/PEQ [153]. Fur-
thermore, they have performed a comparison of four available complex structures involv-
ing the Myc2345_T123 structure and ligands PEQ, BMVC, Quindoline-I (Qi) and DC-34
(Figure 13) [153]. The Myc2345_T23 sequence bears a G23-to-T mutation in the 3’-flanking
at position 23, in addition to the G14-to-T mutation in the second propeller loop [153]. This
structure can be used as a model of parallel G4 structures in promoters and RNA G4s. The
same approaches were also implemented to evaluate the complex formation of several G4
ligands various G4 structures [81,154-156].
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Figure 13. High-resolution structures of Myc2345_T23 in complex with PEQ, Quindoline-I, DC-34
and BMVC. (A) Common names and chemical structures of the ligands. Binding of each ligand to
the (B) 5'-G-tetrad and (C) 3'-G-tetrad of Myc2345_T23. Reprinted from ref. [153].

In the last few years, in order to obtain valuable structural information about G4/ligand
complexes, Fluorine-19 (*F) NMR has become a very useful tool [157]. The advantages
of ”F NMR spectroscopy include simplicity and sensitivity as well as its ability to study
large complexes that cannot easily be probed by conventional NMR experiments [157].
Moreover, it has been applied to study G4 structures, due to the high sensitivity of the °F
chemical shift to the environment [158,159].

Bao et al. demonstrated that '°F could be a powerful technique to analyze the inter-
action of RNA G4s with ligands [159]. They analyzed the complex structure between the
fluorinated telomeric RNA G4 (*F-5'-UAGGGUUAGGGU-3') and the well-known G4
ligand PDS (Figure 14). ”F NMR enables researchers to distinguish the free and complexed
RNA G4, because it is highly dependent on the structural environment of the °F label [159].
Their results revealed that PDS interacts with dimeric G4s but also with high-order G4s
with two subunits stacked [159]. Furthermore, 1°F NMR is an attractive tool to determine
Kp and Ty, of the complex RNA G4 and PDS [159]. Binding stoichiometry of PDS to dimeric
G4 was 2:1 in a ratio of 6:1 of the ligand to RNA, and the Kps were 0.63 mM and 1.24 mM
for the first and second binding events, respectively [159]. The AT}, values of dimeric and
high-order G4s were >20 °C and 10.7 °C, respectively [159]. The same research group also
demonstrated the utility of *’F NMR for the observation and quantitative thermodynamic
characterization of telomeric RNA and DNA G4s within in living cells [160-162]. Overall,
19F NMR offers a suitable and sensible approach to obtain structural insights of DNA and
RNA G4s and their complexes with ligands.
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Figure 14. ’F NMR spectra of 19F-labeled 0.5 mM RNA (F-5-UAGGGUUAGGGU-3') in 150 uL
of 90% H,O/10% D,0, 10 mM Tris-HCI buffer (pH 7.0), 50 mM KCl. titrated with PDS. Copyright
(2017) Wiley. Reprinted with permission from ref. [159] Copyright 2017 John Wiley and Sons, Inc.

3.1.3. X-ray Crystallography

The application of X-ray crystallography toward a structural understanding of
G4/ligand complexes enables a detailed structural and spatial characterization of the
intermolecular interactions at the atomic level. Furthermore, the considerable advances
in X-ray crystallography, such as the miniaturization and automation of crystallization
trials, have converted the technique into a method that can be used for screening purposes.
One of the advantages of X-ray diffraction over the other techniques is that ligand binding
sites can be precisely determined through electron density maps [163]. Furthermore, high-
quality X-ray data (i.e., better than 2.5 A) make the following steps more reliable and allow
the visualization and quantification of G4/ligand hydrogen bonding and electrostatic inter-
actions [163]. Moreover, the role of water molecules in the G4/ligand interaction can be
determined. However, some important limitations of the technique should be highlighted,
such as, (i) the need of a high amount of sample; (ii) the use of cryogenic temperature that
can damage artifacts. (iii) the sample must be crystallizable; and iv) it cannot be performed
in solution, which limits its application in biological samples. Nevertheless, the technique
could be used to obtain detailed information of G4/ligand interactions and has been used
in the last year by several researchers in the field.

The earliest reported crystal structures of G4/ligand complexes were the tetramolecu-
lar G4/daunomycin complex [164] and the telomeric G4 from Oxytricha nova/acridine
derivative complex [165]. Since then, several G4/ligand complexes have been characterized
using X-ray crystallography [166-169].

Recently, Bazzicalupi et al. unveiled the crystal structure of human telomeric DNA
G4 complexed with berberine [169]. The results showed that berberine binds toward the
G4 telomeric structure in a 2:1 molar ration through m-stacking interactions. The authors
stated that strong interaction can be attributable to the coplanarity of the G5/G11 and
G17/G23 pairs and to the modified conformation of the 3’-end tetrad.

Lin et al. investigated the interaction of the G4 forming sequence, 5'-GGGTTGGGTTG
GGTTGGG-3' (T1) and several other sequences based on T1, with the G4 ligand, N-methyl
mesoporphyrin IX (NMM) by biophysical and X-ray crystallographic studies [166]. They
solved the crystal structure of T1- and 5-TGGGTTGGGTTGGGTTGGGT-3' (T7)-NMM
complexes. Both structures produced large hexagonal crystals and the T1-NMM crystal
structure was determined with a resolution of 2.39 A, while the T7-NMM crystal structure
was solved with a resolution of 2.34 A (Figure 15). The results showed that both complexes
form a 5'-5' dimer of parallel G4s, which interact with NMM in 3’ G-tetrad through
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stacking interactions. However, taking into account that one of the main limitations of
X-ray crystallography is its non-dynamic nature, they investigated the correlation of the
results obtained by X-ray crystallography with techniques performed in solution, namely;,
CD and PAGE. The T1-NMM complex is concentration-dependent and exists as a mixture
of monomer and dimer, whereas the T7-NMM complex only exists as monomer at low
and high concentrations. These data suggest that the T7-NMM complex determined by
crystallographic studies could be an artifact of the crystal packing.

Figure 15. Crystal structure of the T7-NMM complex. (A) Representative crystal morphologies: half-
hexagonal and hexagonal. (B) Schematic representation of the folding topology with the numbering
scheme for T1. (C) Electron density maps of the T7-NMM dimer. (D) Crystal structure of the T7-NMM
complex. The T7-NMM sample was prepared by annealing T7 with 1 eq. of NMM at 0.65 mM in
10 mM lithium cacodylate pH 7.2 and 20 mM KCI. Drops were set by the TTP Labtech Mosquito
Crystal liquid handler equipped with a humidity chamber at 0.1 uL DNA sample and 0.1 uL of the
crystallization condition. Small hexagonal crystals grew within three weeks to 80 pum in the largest
dimension from condition C5 of the Natrix screen (Hampton Research): 4.0 M LiCl, 0.01 M MgCl2,
and 0.05 M HEPES sodium pH 7.0. Crystals were cryoprotected in the base condition supplemented
with 15% ethylene glycol before being flash frozen in liquid nitrogen. Adapted from ref. [166].

The most commonly used techniques to structurally characterize, in detail, the G4/
ligands interactions are above described and can provide crucial information about structure—
function relationships. The major advantages and limitations of each structure-based
technique are summarized in Table 1.

Table 1. Advantages and limitations of structural-based methods for investigating G4/ligand interactions.

Method Advantages Limitations
Simplicity
Small amount of sample Low-resolution
D No need of sample labelling
Not limited by the molecular weight or size of the molecules
Can easily provide melting temperature curves and global Most of the ligands are non-optically active
folding changes
Most suitable method for finding the polarity of chains
Provides atomic-resolution characterization of a Hieh amount of sample
G4/ligand complex & P
NMR Detailed pairs of atoms contacts between ligand and receptor Time-consuming
Three-dimensional structures in their natural state can be measured Limited by size or atomic weight
in solution Need of isotopic labelling
Relatively cheap and simple High amount of sample
Provides atomic-resolution characterization of a G4/ligand Cryogenic temperature can induce altered
complex contacts
X- . . . .
ray Provides void electronic areas in the receptor that can be used to The sample must be crystallizable

improve ligands design
Only provides static three-dimensional

Not limited by size or atomic weight .
analysis

Legend: Circular Dichroism (CD), Nuclear Magnetic Resonance (NMR) and X-ray Crystallography (X-ray).
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3.2. Affinity- and Apparent Affinity-Based Methods to Investigate G4/Ligand Interactions
3.2.1. Surface Plasmon Resonance (SPR)

SPR is a label-free powerful method that combines microfluidics and optics to study
the interactions of G4s with ligands (Figure 16). The method provides a real-time equilib-
rium and kinetic characterization for G4 interactions with small amounts of materials and
no external probe. The G4 sequence is immobilized on the surface and the ligand is flowed
through a microfluidic system. The interaction of the ligand with the G4 is measured
by following the changes in the surface refractive index, which modify the angle of the
incidence of light. The surface refractive index changes are converted to resonance units
(RU) and the results are presented as sensorgrams or binding curves.

The advantages of using SPR are as following: (i) acquisition of data in real-time; (ii)
time efficiency; (iii) no need for sample labeling and (iv) high sensitivity, which permits
the use of a small amount of the sample [170]. However, some disadvantages have been
pointed out to the technique: (i) it requires sophisticated instrumentation and it is costly;
(ii) the high dependence on the experimental conditions; (iii) the requirement of main-
taining the G4 structure intact after immobilization; and (iv) great care has to be taken
in the analysis of the collected data. Indeed, significant efforts have been employed to
overcome these issues [170]. The most reliable and suitable immobilization strategy to
evaluate the G4/ligand interactions is to have the biotin covalently attached to the 5'-end
of the G4 sequence. This strategy ensures the proper assembly of the G4 structure after
immobilization and prevents any perturbation that might happen by steric hindrance.
However, care must be taken since the addition of biotin covalently attached to 5-end
may impact the G4 conformation, as modifications at the 5’ or 3’ very often do. The
use of other complementary experimental techniques must be considered to rule out this
hypothesis. Using this immobilization strategy, Perenon et al. used SPR experiments to
investigate the interaction between N-methyl mesoporphyrin IX (NMM) and different
G4 topologies. They determined the dissociation constant of parallel G4s and showed
that it was at least ten times lower than for other topologies [171]. Recently, the binding
affinities of the well-known G4 ligands, PhenDC3, 360A and PDS, with the G4 aptamer
AS1411 and its derivative AS1411-N6, which have six nucleotides to the 5’-end that are
complementary to other six nucleotides at the 3'-end, were assessed by means of SPR [172].
The same strategy of immobilization was used with the oligonucleotides labeled at 5'-end
with biotin. The results of SPR measurements are in line with the results obtained by
melting experiments [172].

Similar to other techniques, the first SPR studies were carried out to evaluate DNA
G4/ligand interactions. However, considering the growing interest in RNA G4s, the SPR
studies to assess the interaction of these molecules with ligands have increased [173].
The interaction of diamidine derivative ligands with TERRA was recently reported as
an example of using the SPR experiments to assess G4/ligand interactions [173]. The
results showed a two-site binding model of diamidine derivative, DB1246, toward TERRA
G4 (Figure 17). The binding affinity was in the nanomolar range with Kp; =3 £ 0.8 nM
and Kpp= 80 &+ 12 nM [173]. Tan et al. also reported the use of SPR experiments to
determine the binding affinity of miR-3620-5p G4 toward the ligand sanguinarine [174].
They demonstrated the existence of two binding sites for the binding of sanguinarine to
miR-3620-5p G4 structure, and revealed that dissociation constants for those binding sites
are 0.12 uM and 4.83 uM. In general, SPR provides valuable kinetic and affinity information
about G4/ligand complexes.
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Figure 16. Schematic representation of (A) immobilization of biotin labelled RNA G4 on CMS5 chip,
(B) biomolecular recognition in the flow cell with changes in the angle of incidence light and (C) SPR
sensorgrams. Reprinted with permission from ref. [173] Copyright 2019 Elsevier.
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Figure 17. (A) Sensorgrams with increasing concentrations of the diamidine derivative DB1246.
(B) Binding curve showing a two-site binding model with Kp; =3 £ 0.8 nM and Kpp = 80 & 12 nM.
For the immobilization procedure, ~100 uL of 25 nM of TERRA G4 were prepared in HBS-EP buffer
(10 mM HEPES pH 7.4, 150 mM NaCl, 3 mM EDTA, 05% v/v polysorbate 20). The compound DB-1246
(300 uL) was injected in the system from low (10 nM) to high concentration (250 nM). Reprinted with
permission from ref. [173] Copyright 2019 Elsevier.

3.2.2. Isothermal Titration Calorimetry (ITC)

ITC is an experimental method that is especially useful to characterize the thermody-
namics of molecular interactions. The technique measures the heat generated or consumed
upon the interaction of G4s with ligands [175]. While the three-dimensional structure
of a G4/ligand complex may reveal specific interactions, ITC provides insights into the
molecular forces that drive the association of G4 with ligands [175,176]. Furthermore, it is a
robust technique that measures (AHY), the free energy of Gibbs (AGY) and entropy (ASY) in
a single experiment the binding enthalpy, and it is a high-accuracy method for measuring
binding affinities and stoichiometry [177].

Recently, Funke et al. investigated via ITC the thermodynamic parameters of the
binding of indoloquinoline derivatives to G4s located at c-MYC promoter region [178-180].
The binding of a ligand to a G4 structure in multiple sites is frequently reported; however, in
their recent study, they reported a less common phenomenon that involves the observation
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of a 2:1 G4/ligand association [180]. Those findings could be explored to control the
formation of G4 aggregates.

The isotherms profile of the interaction of TMPyP4 with telomeric G4s was char-
acterized by two well-differentiated binding events [63,181]. Dupont et al. studied the
binding of TMPyP4 and its metalated complexes (Co(III), Ni(II), Cu(II), and Zn(Il)) toward
the 22-mer oligonucleotide of the telomeric G4 [182]. Different metal center coordination
geometries showed distinct thermodynamic signatures (Figure 18) [182]. Their results also
showed that TMPyP4, Ni(II)-TMPyP4, and Cu(I)-TMPyP4 bind tightly to G4 structures
through an end-stacking/intercalation mode, whereas Co(IIl)-TMPyP4 and Zn(II)-TMPyP4
bind poorly to the G4 structure in a mechanism consistent with end-stacking.
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Figure 18. Representative ITC titration profiles for the titration experiments between hTel22 and (A) Cu(II)-TMPyP4,
(B) Ni(II)-TMPyP4, (C) Co(Ill)-TMPyP4, and (D) Zn(II)-TMPyP4 in 150 mM K* BPES buffer. ITC experiments were
performed of either 28 (10 uL) or 56 (5 nL) injections of a dilute ligand solution into a dilute hTel22 DNA solution. Adapted
with permission from ref. [182] Copyright 2016 Elsevier.

A comparative thermodynamic study carried out by Boncina et al. showed a different
thermodynamic profile for the binding of ligands with low G4 selectivity over duplexes
and ligands highly selective for G4 structures [183,184].

The determination of thermodynamic parameters for RNA G4/ligand interactions
is less common and there are only a few reports in the literature. One of those reports
characterized the binding of TMPyP4 to DNA and RNA repeats of C9orf72 [185]. For
DNA repeats, the ITC experiments revealed that TMPyP4 binds through end-stacking and
intercalation, whereas for RNA repeats it binds through two different modes, consistent
with groove binding and intercalation.

3.2.3. Mass Spectrometry (MS)

MS is an analytical method that is used to measure the mass-to-charge ratio of ions.
The technique is highly sensitive, accurate and versatile in its application and can be used
to specifically identify multistranded nucleic acid structures, such as G4s [186,187]. In
particular, electrospray ionization mass spectrometry (ESI-MS) has been widely applied to
probe G4/ligand interactions [134,186,187]. The main advantage of ESI-MS relies on the
preservation of non-covalent interactions in the gas phase. From a single spectrum and
with low amounts of sample, it is possible to determine detailed structural information (e.g.,
formation, binding affinity and stoichiometry) of a G4/ligand complex [187]. Monitoring
cation binding by ESI-MS provides useful information into ligand binding modes. The
number of bound K* in the free and ligand-bound forms of G4s is indicative of the number
of G-quartets formed for each ligand binding stoichiometry [188]. Furthermore, the changes
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in the number of K* upon ligand binding hint at structural conformational changes [188].
Lecours et al. investigated the interaction of PhenDC3, 360A and PDS with several G4
structures through this approach [188].

Marchand et al. also investigated the interaction of (Cu(ttpy)(NO3);) with 21 different
G4 sequences by ESI-MS [189]. They obtained evidence for the selective and cooperative
2:1 binding of the complex to telomeric G4s. Their results also showed a preference for
antiparallel structures with diagonal loops and /or wide-medium-narrow-medium groove-
width order. The cooperative binding comes with a conversion of the G4 structure to an
antiparallel conformation with three G-quartets.

Ceschi et al. employed ESI-MS to study the binding of perylene derivatives, PIPER
and K20, to KIT2 G4 [190]. Their results revealed a binding stoichiometry of 1:1 on both
ligands. They also demonstrated the incapacity of the ligand to bind the unfolded oligonu-
cleotide [190]. Moreover, the preferential binding of K20 to a two-quartet topology was
demonstrated, since the most represented complex was the one having a single selectively
coordinated K* ion, while only a small amount of the complex having two K* was de-
tected [190]. On the other hand, PIPER showed a reduced preference for a two-quartet
topology since the complexes with one and two K* ions were equally represented [190].

Moreover, MS-melting experiments are significantly helpful in explaining inconsistent
results between isothermal and melting experiments. The research group of Gabelica used
a temperature-controlled nanoelectrospray source to determine the contribution of the
thermodynamic parameters to the formation of each stoichiometry G4/ligand [191]. They
tested different G4 oligonucleotides in the presence of various G4 ligands such as, PhenDC3,
TMPyP4, Cu-ttpy and Pt-ttpy (Figure 19). They reported that ligand stoichiometries differ
from ligand to ligand [191]. The ability to distinguish between unfolded, partially folded
(two-quartet) and fully folded (three-quartet) ligands is helpful since some ligands have the
ability to induce significant changes in topology toward partially folded structures [191].
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Figure 19. (A) Chemical equilibria for ligand binding to a G4 forming sequence. Mass spectra at different temperatures of
10 uM of human telomeric DNA sequence (B,C: 24TTG; D,E: 22GT) in the presence of 1 or 3 equivalents of (B) Phen-DC3, (C)
TMPyP4, (D) Cu-ttpy, and (E) Pt-ttpy. The buffer used was 100 mM TMAA and 1 mM KCI. The volume of oligonucleotide
solution was approximately 10 pL. Reprinted with permission from ref. [191] Copyright 2017 American Chemical Society.

Recently, the same research group demonstrated the applicability of a top-down mass
spectrometry sequencing approach, called electron photodetachment dissociation (EDP),
in the study of G4/ligand interactions [192]. They found that the G4 ligands PhenDC3 and
360A can replace a K* ion and bind close to the central loop of telomeric G4 sequences with
the ability to form three-tetrad G4s [192].

Scalabrini et al. developed an approach that increases the G4 sensitivity without affect-
ing physiological folding [193]. They optimized the solvent conditions and reported that
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isopropanol in a triethylamine /hexafluoroisopropanol mixture significantly increases the
sensitivity of the technique [193]. The increased sensitivity enables the use of low concen-
trations of G4s and their ligands. This study could pave the way for future developments
of the technique that permit the high-throughput screening of new G4 ligands [193].

Overall, MS is a powerful quantitative technique for characterizing the G4/ligand
complexes structurally.

Taking into account that one of the key future challenges of the G4 field still remains
in the design and development of ligands that possess selectivity and affinity for DNA or
RNA G4s, the techniques here described offer important comparative information on those
parameters. The advantages and disadvantages of each affinity and apparent affinity-based
methods were summarized in Table 2.

Table 2. Advantages and limitations of affinity and apparent affinity-based methods for investigating G4/ligand interactions.

Method Advantages Limitations
Acquisition of data in real time Requires sophlst1c§ted instrumentation and it
is costly
SPR Time efficiency High dependence of experimental conditions
High sensitivity SPR often requires labeling with biotin

Provides valuable kinetic and affinity information (association (K, ~ Requirement of maintaining the G4 structure
or Kon), dissociation (K4 or K) andequilibrium (Kp) constants) intact after immobilization

ITC Provides insights of molecular forces that drive the interaction High amount of sample

Provides kinetic and thermodynamically parameters Ligands should be soluble in water
MS Provides information on formation, stoichiometry, and binding Limitations regarding the media

affinity of G4/ligand complex

Legend: Surface Plasmon Resonance (SPR), Isothermal Titration Calorimetry (ITC) and Mass Spectrometry (MS).

3.3. High-Throughput Methods to Investigate G4/Ligand Interactions
3.3.1. FRET-Melting

The Forster resonance energy transfer (FRET) spectroscopy is one of the most used
high-throughput methods to study G4/ligand interactions. The technique is highly suitable
to evaluate the changes in the G4 folding and unfolding processes (Figure 20). In FRET
experiments, G4 oligonucleotides are labeled at the 5’- and 3’-end with a donor and acceptor
fluorophore, respectively [194]. Briefly, the excited state energy is transferred from the
donor to the acceptor via dipole-dipole interactions. Changes in the distance of the two
labeled sites result in a measurable energy transfer. The most common FRET pairs include
6-carboxyfluorescein (FAM) as a donor and 6-carboxy tetramethylrhodamine (TAMRA) or
Black Hole Quencher 1 (BHQ1) as acceptors. However, care must be taken since because
modifications at 5’ and/or 3’ may alter G4 folding process. Besides that, the method only
measures ligand-induced G4 stabilization and does not provide information about other
types of interactions.

Despite this, the method has significant advantages and has been widely used to
investigate the binding of several classes of G4 ligands, such as phenanthrolines [195],
acridines [114], indoloquinolines [196,197] and pyridine-2,6-dicarboxamide derivatives [198]
to various G4 structures.

The ability of four phenanthroline polyazamacrocycles to bind and stabilize G4 struc-
tures was assessed by FRET-melting [195]. In this study, the ligand (32)hen; N, showed
a higher thermal stabilization effect toward c-MYC and 22AG G4 sequences at 10 molar
equivalents (17.2 °C and 20.3 °C, respectively). The ligands’ selectivity was also evaluated
toward other G4s located in oncogene promotors such as KRAS-21R, VEGF and c¢-KIT87.
The results revealed a preference of the ligands toward KRAS-21R over VEGF and c-KIT§7.
Furthermore, the four ligands demonstrated selectivity and specificity toward G4s over du-
plex DNA. Indeed, in the presence of 50 molar equivalents of a competitor double-stranded
sequence, the stabilizer effect of the ligands (16)phenNy and (32)phenyNy in 22AG does
not change significantly (Figure 21A).
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Figure 20. Schematic general representation of FRET-melting experiments.
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Figure 21. (A) Chemical structures of (16)phenN, and (32)phen;N,4 and FRET-melting stabilization by (16)phenNy and
(32)phenyNy (1 uM) of the labelled F21T sequence (0.2 uM) in buffer 10 mM KCl + 90 mM LiCl and in the presence of
increasing concentrations of competitor ds26 (0, 15 and 50 equivalents). Reproduced with permission from [195]. Copyright
2018 Royal Society of Chemistry. (B) Chemical structures of indolo(3,2-c)quinoline derivatives 3d and 3e, and FRET-melting
competition assay with 3e (1 uM) in complex with KRAS21R and F21T G4s (0.2 uM), with increasing concentrations
of non-labeled 26ds, HT21 or KRAS21R (0.4 to 25 pM) competitor, in cacodylate buffer, pH 7.4 supplemented with K*.
Reprinted from ref. [197], (C) Chemical structure of N-methylquinolinium derivative 2a and FRET-melting competition
assay results for compounds 2a-d at 0.5 tM (2a) and 5 uM (2b—d) complexed with KRAS G4 (0.2 uM), challenged with
increasing concentrations of non-labeled 26ds DNA (dsDNA) (0.4 uM to 25 uM) competitor. Experiments were performed
in cacodylate buffer, pH 7.4, supplemented with 60 mM K*. Reprinted from ref. [198].

The stabilization and selectivity of acridine derivatives toward a G4 sequence found in
pre-miRNA-92b were recently assessed using FRET-melting [114]. The acridine derivative
Cg, at one molar equivalent, showed the ability to stabilize the structure in 6.3 °C. However,
in the presence of 500 nM of RNA-binding domains 1 and 2 of nucleolin, the G4 sequence
was stabilized in 22 °C. The remarkable synergistic effect can be attributed to an additional
stabilization of the protein by Cs.

Lavrado et al. also reported the synthesis of novel indolo(3,2-b)quinolines with one,
two, or three basic side chains and evaluated its ability to bind and stabilize G4 sequences
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by FRET-melting [196]. For all the ligands, the thermal stabilization is concentration-
dependent. Later, they reported the synthesis of indolo(3,2-c)quinolines and evaluated
their interaction toward KRAS-21R sequence and a 26-mer hairpin double-stranded DNA
sequence (dsDNA) [197]. FRET-melting results revealed that compounds 3d and 3e have
promising stabilizing effects in KRAS-21R (19.9 °C and 22.0 °C, respectively) sequence but
not in the dsDNA (5.6 °C and 6.5 °C, respectively). They also reported the selectivity of
the compound 3e in the presence of increasing concentrations of different non-fluorescent
competitors (26mer ds-DNA (ds26) or the human telomeric sequence (HT21)). The results
revealed a remarkable selectivity of the compound 3e towards KRAS-21R (Figure 21B).

In a recent study, Cadoni et al. reported the synthesis of Pyridine-2,6-dicarboxamide
derivatives and evaluated their ability to stabilize G4 structures using FRET-melting [198].
Their results revealed that all the N-methylquinolinium derivatives displayed a preference
for G4 sequences when compared to a duplex DNA sequence (T-loop). Moreover, the
results showed a noteworthy ability of compound 2a to stabilize G4 structures even at
lower concentrations of the ligand. In fact, at 2.5 molar equivalents of 2a, the sequence
of the KRAS G4 was stabilized in 32.8 + 0.2 °C. They also evaluated the selectivity of
the methylated compounds in the presence of double-stranded DNA. The data showed
a neglectable effect of the competitor in the G4/ligand complex, which proved the high
selectivity of the ligands toward G4 structures (Figure 21C).

In the last few years, some modifications of the method have been carried out to
improve the data output and surpass the early limitations of the technique.

A modified transition-FRET method was employed by Noureini et al. to estimate the
selectivity of isoquinoline alkaloids from Chelidomium majus toward a human telomeric
G4 [199]. The novel FRET method consists of two transition steps: the first transition step
is the melting temperature of the double helix structure, whereas the second transition
state belongs to G4 denaturation. Therefore, in the presence of selective G4 ligands, an
increase in the melting temperature of the second step is observed, as well as a decrease in
the fluorescence intensity of the first step.

Rakers et al. developed a novel microfluidic platform to synthesize novel G4 binders
and evaluate their affinity and using a real-time online FRET assay [200]. Furthermore,
their strategy enabled the high-throughput online analysis of several G4 binders. Thus,
this study could trigger novel strategies that combine the synthesis and the assessment of
G4 binders in a unique device.

An important feature of FRET-melting is its remarkable competitive nature [201],
when compared with the other techniques mentioned in this review. Indeed, most of
the techniques used to investigate G4/ligand interactions are mainly comparative, which
makes it a strong competitive tool to analyze selectivity and specificity.

In a very recent report, Luo et al. also explored the competitive nature of FRET-melting
and studied whether the interaction between a fluorescent G4-forming oligonucleotide and
PhenDC3 is modified by a competitor sequence added in excess [202]. Sixty-five sequences
with a known structure were tested to validate this FRET-melting competition (FRET-MC)
assay. In this case, if the unlabeled competitor has a high affinity for PhenDC3, it will
sequester a significant fraction of the compound, which will be no longer available for
fluorescent G4-forming oligonucleotide stabilization, leading to a decrease in Tr,. On the
other hand, if the competitor sequence is unable to sequester the ligand, T, remains high.

3.3.2. G4-FID Screening

The fluorescence intercalator displacement (FID) assay is based on the competitive
displacement of thiazole orange (TO) fluorescent probe from various G4 and duplex by
increasing amounts of the ligand subjected to evaluation.

Monchaud et al. have optimized the original FID assay to study G4/ligand com-
plexes [203-205]. The technique does not require modified oligonucleotides and it is
based on the loss of fluorescence of the bound intercalator, thiazole orange (TO), upon
displacement induced by a G4 ligand (Figure 22).
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Figure 22. Schematic general representation of G4-FID experiments. Chemical structures of TO,
TO-PRO-3, Hoechst 33258 and PhenDV.
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However, the traditional method had some limitations that were correlated with its
applicability. To surpass those drawbacks, Largy et al. developed the high-throughput
version of the G4-FID assay by analyzing an extensive set of G4 ligands in a 96-well plate
(Figure 23) [206]. Further, the spectral range of the assay was expanded by using two
other fluorescent probes, Hoechst 33258 and TO-PRO-3, a minor groove binder that emits
blue fluorescence and an intercalator that emits red fluorescence, respectively [206]. These
fluorescent light-up probes emit low fluorescence when free in a solution, but present a
1000-fold increase when complexed with DNA. The binding affinity of several ligands
toward a significant number of DNA /RNA sequences was assessed by G4-FID assay [207].
However, considering the modest selectivity of the fluorescent probes for DNA G4s over
duplex DNA and their ambiguous binding mode, alternative dyes have been proposed.
PhenDV-based is a bisvinylpyridinium dye that would bind to DNA G4s in a similar mode
to that of PhenDC3 [208]. The readout was carried out by fluorescence enhancement and
not by quenching [208].
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Figure 23. (A) Representative G4-FID curves obtained with MMQ1 (gray), MMQ3 (brown), Pt-ttpy
(red), 360A (blue) and Phen-DC3 (green) with 22AG.K (squares) and ds26 (circles) using TO as
fluorescent probe. (B) Representative G4-FID curves of TMPyP4 with 22AG.Na (blue), 22AG K (red),
c-kitl (brown), c-kit2 (gray), and ds26 (green) with TO-PRO-3 as fluorescent probe. For each well of
the microplate were added: (i) K*- or Na*-buffer solution; (ii) oligonucleotides (5 M) and fluorescent
probe (TO or TO-PRO-3; 10 uM for G4-DNA or 15 pM for ds26) and (iii) an extemporaneously
prepared 5 uM ligand solution in K*- or Na*-buffer. The final volume in each well was 200 pL.
Reprinted with permission from ref. [206] Copyright 2011 Springer Nature.

The same strategy of fluorescence enhancement was employed by using the dimeric
cyanine small molecule, B6,5, which can be used as a probe in fluorescence displacement
assays to screen G4 specific ligands for DNA and RNA G4s [209].

The methods used for processing a huge quantity of data are often ineffective for easily
visualizing the binding selectivity of G4 ligands. Villar-Guerra et al. described a rapid FID
(R-FID) assay which, when combined with a novel application of principal component
analysis (PCA) and hierarchical cluster analysis (HCA), represents a powerful tool for the
analysis of large FID data sets [210].
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Most of the efforts to improve the G4-FID experiments have been focused on devel-
oping novel highly fluorescent probes that could be more selective and specific than the
existing alternatives.

3.3.3. Affinity Chromatography Screening

Affinity chromatography is a highly effective technique that enables the selective
isolation of target molecules [211]. The method relies on selective and reversible interactions
that undergo with the binding agent and the target. Thus, the release of the target occurs
under specific conditions, where it does not have an opportunity to rebind, and according
to its binding affinity toward the recognition agent. Nowadays, the technique has been
used in a wide variety of applications across different fields, which include the isolation of
G4s from complex mixtures (plasma, serum) [212] (Figure 24A) and the identification of
G4 ligands [213] (Figure 24B).
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Figure 24. (A) Scheme of affinity chromatography strategy to purify G4 sequences based on a ligand
affinity chromatography support. (B) Scheme of affinity chromatography strategy to purify G4
ligands based on a G4 affinity chromatography support.

The G4 ligand, N-methyl mesoporphyrin IX (NMM) was coupled to a Sepharose
matrix and demonstrated the ability to selectively bind DNA (albeit with distinct bind-
ing affinities for different topologies) [212]. This work demonstrated the feasibility and
applicability of the method but is somewhat limited by the incomplete recovery of the
bound DNA, the use of a ligand with a lack of selectivity for G4 structures, and the em-
ployment of batch affinity adsorption rather than column affinity chromatography. Later,
the perylene derivative ligand (N,N’-Bis-(2-(amino)ethyl)-3,4,9,10-perylenetetracarboxylic
acid diimide, Pery01) was coupled to a matrix of polyglycidylmethacrylate (PGMA) to
isolate DNA G4s by column affinity chromatography [214]. The support displays a pref-
erence for parallel G4s and demonstrated capability to isolate parallel G4s from plasma.
Ferreira et al., by using the same column affinity chromatography strategy, functionalized
a matrix of Sepharose CL-6B with a new naphthalene derivative (L1) and the ability of
the support to selectively bind to different G4 sequences was evaluated [213]. The results
showed a remarkable binding affinity for parallel G4s over non-parallel G4s as well as
other conformations.
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Musumeci et al. developed an identical approach, named G4 on Oligo Affinity
Support (G4-OAS) assay [215]. However, instead of flowing throughout the column
a complex mixture containing G4-forming sequences, the method consists of flowing
solutions of probable G4 binders through a polystyrene resin functionalized with a G4-
forming sequence. The compounds having a high affinity for the G4 sequence are retained
in the support, whereas those with no or low affinity are eluted first and quantified by UV
measurements (Figure 25). The method is simple and rapid, but there are some important
limitations to point out: (i) the unspecific binding of the ligand to the resin and (ii) the
absence of structural information about G4 conformation. The high-throughput nature
of the method was proved later by using the virtual screening and the G4-OAS assay
in tandem [216]. Recently, to overcome those initial limitations, the authors developed
a novel functionalization method by employing an approach of solid-phase synthesis
of the oligonucleotides on Controlled Pore Glass (CPG) support [217]. The strategy was
further employed to analyze a set of naphthalene diimide derivatives by using the sequence
d[AGGG(TTAGGG)7] (tel46), which folds into two consecutive G4s [218]. The G4-CPG
screening identified the ligand NDI-5 as the most notable ligand of the tel46 sequence.
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Figure 25. Amount of the released ligands, expressed as percentage of the quantity loaded (A) on
OAS support and (B) on tel26-OAS support, as a function of the washing solution volume (100 mM

KCl1/15% DMSO). Reprinted from ref. [215].

3.3.4. Microarrays-Based Screening

Microarrays are a fast, simple, and high-throughput method that could be employed
to screen ligand interactions with DNA and RNA sequences. The well-known G4 ligand
PDS has recently been fluorescently labeled and evaluated toward a hundred thousand
G4 sequences, which covalently attached to the surface of glass slides [219]. The binding
selectivity of the G4 ligand BMVC to several G4 structures was also assessed by a custom
G4 microarrays platform and revealed a preference for parallel G4s [220].

The reverse strategy was employed in small-molecule microarrays (SMMs). The
technology relies on the immobilization of the ligands by covalent interaction followed
by incubation with the fluorescently labeled oligonucleotide. Although the method has
been broadly used to identify protein ligands, it has only recently been transposed to
analyze G4/ligand interactions. Felsenstein et al. employed SMMs for the first time
in the G4 field and identified a benzofuran derivative as a specific c-MYC G4 binder
among 20,000 compounds [221]. This initial study has led to the optimization of the
ligand in a more potent analog (DC-34), which showed interesting in vivo potency and
pharmacological properties in cancers expressing c-MYC [222].

High throughput screening is an essential strategy of early-stage drug discovery, and
methods and technologies have seen many improvements and innovations over recent
years. In many cases, the early high-throughput methods have been optimized and recently,
some improvements have been reported in the characterization of G4/ligand interactions.
The advantages and disadvantages of the high-throughput methods described in this

review are summarized in Table 3.
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Table 3. Advantages and limitations of high-throughput methods for investigating G4/ligand interactions.

Method Advantages Limitations
Simplicity Fluorescently labelled oligonucleotides
FRET-melting Small amount of sample It only measures ligand-induced G4 stabilization,
Real-time monitoring while other types of interactions are not detected
GA-FID Simplicity Ambiguous binding mode of used probes

Small amount of sample

Compatibility of the oligonucleotides with the
fluorescent probe

Affinity Chromatography

Selective and reversible interactions that
undergo with the ligand and G4
Column chromatography allow real-time
monitoring

Unspecific binding of the ligand to the resin

The absence of structural information about G4
conformation

Microarrays

Small amount of sample

Massive parallel screening

Expensive
Specialized equipment

Fluorescently labeled molecules

Legend: Fluorescence Resonance Energy Transfer (FRET) and G4 fluorescent intercalator displacement (G4-FID).

In addition to the techniques here approached and used for investigating G4/ligand
interactions, other robust and efficient biophysical, biochemical and molecular biology
techniques are available to describe G4/ligand interactions, such as surface-enhanced
Raman spectroscopy [223], single-molecule fluorescence imaging [97,224], equilibrium
dialysis [225], gel electrophoresis [114,226], qPCR-stop assay [227], Taq polymerase stop
assay [228] and TRAP assay [229]. Furthermore, other high-throughput methods are emerg-
ing, such as pull-down assays [230] and Affinity Selection-Mass Spectrometry (ALIS) [231].
These are not described in detail in this review but, depending on the applicability, could
be employed to evaluate the molecular interactions between G4s and ligands.

4. Conclusions

G4s are recognized as important structural motifs in a wide range of biological pro-
cesses. Over the past two/three decades, G4s have been intensively studied in the presence
of a diverse family of ligands. As a result of these studies, important atomic-detailed in-
formation concerning the principal forces governing G4/ligand interactions was revealed.
In addition, the results also point out that fundamental chemical aspects remain to be
fine-tuned concerning the design and development of ligands that possess selectivity and
affinity for DNA or RNA G4s.

From a structural point of view, CD, NMR and X-ray crystallography are techniques
with many strengths, with individual limitations rather well complemented among them.

The simple and fast nature of CD makes it one of the primary choices to obtain low-
resolution information about structural details. CD is commonly used at an initial stage
of the G4/ligand interaction characterization. Users can easily obtain information about
the G4 topology and often preliminary information on the binding modes of the ligands.
Furthermore, almost all the studied G4 ligands were investigated in terms of their ability
to stabilize G4s by CD-melting experiments. Despite the valuable information provided by
CD, the full structural characterization of a given G4/ligand complex can only be achieved
by using high-resolution structural methods such as NMR or X-ray Crystallography.

For instance, NMR is a solution-based technique that can analyze the dynamics of the
complexes on a broad range of time scale (ps-s), whereas X-ray crystallography provides
insight into the most thermodynamically stable form of a complex. Under some circum-
stances using both may be the best option, as some ligands tend to induce aggregates that
precipitate in the NMR tube over time and resolution is lost. For some polymorphic oligonu-
cleotides the other way around is preferable, and for those cases where both techniques can
be used, they represent the strongest solution to investigate G4/ligand complexes at atomic
detail. However, when compared to CD, both NMR and X-ray crystallography have the
disadvantage that they often require milligram amounts of material. In the last decade, the
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lower concentration limit in NMR has been significantly reduced due to the combination
of increased magnetic field strength and other sensitivity enhancement technologies, so
we expect that the determining of the high-resolution structure of G4s and complexes will
continue to be a very active field of research.

Joint analysis using high-resolution NMR and X-ray studies have provided invaluable
structural insights into the interaction and binding modes of G4/ligand complexes in
the biological context. These structural studies have shown the atomic details of the
interaction between G4s and their ligands, allowing researchers to analyze structure—
function relationships to rationally design and develop new specific and selective G4
ligands to treat a variety of diseases. However, these structural techniques are not sufficient
to characterize completely the driving forces of a given interaction. Indeed, one key
challenge still remaining to be addressed is the design and development of ligands that
possess selectivity and affinity for DNA or RNA G4s. Therefore, other affinity- and apparent
affinity-based methods such as SPR, ITC and MS have been intensively used in the G4 field.

SPR was shown to be a preferable choice in comparison to other in vitro techniques
such as ELISA, which does not allow an absolute measurement of kinetic constants, is less
sensitive and more expensive in terms of required samples and time. However, the SPR
technology requires that one of the analyzed molecules is immobilized on a functionalized
metal surface and this often leads to the heterogeneous orientation of the ligand molecule
and the alteration of its activity, and a lot of parameters must be carefully controlled,
increasing the difficulty of the analysis of the collected data.

Until now, ITC is the only available experimental method to directly measure binding
enthalpies without any chemical modification or immobilization of the interacting compo-
nents. Besides that, ITC also provides a complete characterization of the thermodynamic
parameters of G4/ligand interactions.

MS is a powerful technique that provides a direct readout of the stoichiometries of
G4/ligands complexes versus duplex formed, including minor species, and it is a very
attractive characteristic of this technique, as well as which it does not require modified
oligonucleotides and allows using a broad variety of G4s versus duplex. However, electro-
spray is incompatible with the presence of alkaline salts such as NaCl or KCl and must be
replaced by ammonium acetate, entailing changes in the G4 structures and consequently
in the binding of ligands. ITC and MS, as well as SPR, require specific know-how and
relatively expensive equipment.

The newly emerged high-throughput methods combined with other biophysical
approaches created a new framework, which allows the fast and cheap development and
characterization of G4/ligand complexes.

For instance, FRET-melting, which is carried out in presence of a competitive duplex
sequence, has been adapted for an overwhelming number of G4 ligands. This method is
rapid and convenient but requires modified oligonucleotides, and possible interferences
between ligands and the fluorescent labels represent the two main limitations of FRET-
melting. A suitable alternative/complementary method of FRET-melting is G4-FID, which
allows the screening of an important number of unmodified G4 structures with wide-spread
equipment i.e., a qPCR devices, fluorimeters or microplate readers.

Affinity chromatography emerged as a simple and fast method to analyze the interac-
tion of ligands with G4s. The method relies on simple and efficient assays by immobilizing
G4s on a solid support and is particularly useful to select G4 ligands with specificity and
selectivity for a given G4 structure. Further, the method could be used to separate those G4
ligands from a complex mixture. The reverse strategy, in which the ligand is immobilized,
could also be employed to separate G4s from complex biological samples.

Microarrays have only recently been used to characterize G4/ligand interactions and
few reports are as yet available in the literature. The method is fast and straightforward and
can be used to analyze a huge quantity of G4 structures, ligands and conditions. However,
its use as a routine technique to analyze G4/ligand interactions could be hindered due to
its high cost and need for specialized equipment.
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In general, the modification of low-throughput methods to became high-throughput
could significantly impact the field. Such progress will naturally occur and lead to the
characterization of a great number of G4/ligand complexes.

One of the main challenges of the field is that, at the moment, despite the signifi-
cant advances in recent years, none of the techniques provides a full characterization of
G4/ligand complexes. The complete framework is only achieved with the use of several
techniques, which can sometimes be difficult to assemble in a single research institution.

Overall, this review intends to improve the knowledge and understanding of the
currently developed methods used to assess G4/ligand interactions, and at the same
time provide a broad framework of the chemical features of the G4 ligands available for
diagnostic and therapeutic purposes.

Author Contributions: Conceptualization, T.S., G.ES., E]J.C. and C.C.; writing—original draft prepa-
ration, T.S.; writing—review and editing, T.S., G.ES., E.J.C. and C.C. All authors have read and agreed
to the published version of the manuscript.

Funding: Tiago Santos acknowledges Fundacao para a Ciéncia e Tecnologia (FCT) for the doctoral
fellowship PD/BD/142851/2018 integrated in the Ph.D. Programme in NMR applied to chemistry,
materials and biosciences (PD/00065/2013). This work was supported by PESSOA program ref. 5079
and project “Projeto de Investigacao Exploratéria” ref. IF/00959 /2015 entitled “NCL targeting by
G-quadruplex aptamers for cervical cancer therapy” financed by Fundo Social Europeu e Programa
Operacional Potencial Humano. Thanks are due to FCT/MCT for the financial support of the CICS-
UBI UIDB/00709 /2020 research unit and to the Portuguese NMR Network (ROTEIRO/0031/2013-
PINFRA /22161/2016), through national funds and, where applicable, supported by European
Investment Funds FEDER through COMPETE 2020, POCI, PORL and PIDDAC.

Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.
Data Availability Statement: Data sharing not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1.  Spiegel, J.; Adhikari, S.; Balasubramanian, S. The Structure and Function of DNA G-Quadruplexes. Trends Chem. 2020, 2, 123-136.
[CrossRef] [PubMed]

2. Gellert, M.; Lipsett, M.N.; Davies, D.R. Helix formation by guanylic acid. Proc. Natl. Acad. Sci. USA 1962, 48, 2013-2018.
[CrossRef]

3.  Arnott, S.; Chandrasekaran, K.; Marttila, C.M. Structures for polyinosinic acid and polyguanylic acid. Biochem. ]. 1974, 141,
537-543. [CrossRef]

4. Burge, S.; Parkinson, G.N.; Hazel, P; Todd, A.K.; Neidle, S. Quadruplex DNA: Sequence, topology and structure. Nucleic Acids
Res. 2006, 34, 5402-5415. [CrossRef]

5. Largy, E.; Mergny, J.L.; Gabelica, V. Role of Alkali Metal Ions in G-Quadruplex Nucleic Acid Structure and Stability. In Metal Ions
in Life Sciences; Springer: Berlin, Germany, 2016; Volume 16, pp. 203-258.

6. Ma, Y, lida, K.; Nagasawa, K. Topologies of G-quadruplex: Biological functions and regulation by ligands. Biochem. Biophys. Res.
Commun. 2020, 531, 3-17. [CrossRef]

7. Ngoc Nguyen, T.Q.; Lim, KW,; Phan, A.T. Duplex formation in a G-quadruplex bulge. Nucleic Acids Res. 2020, 48, 10567-10575.
[CrossRef]

8.  Meier, M.; Moya-Torres, A.; Krahn, N.J.; McDougall, M.D.; Orriss, G.L.; McRae, EK.S.; Booy, E.P.; McEleney, K.; Patel, TR.;
McKenna, S.A ; et al. Structure and hydrodynamics of a DNA G-quadruplex with a cytosine bulge. Nucleic Acids Res. 2018, 46,
5319-5331. [CrossRef]

9.  Huppert, J.L.; Balasubramanian, S. Prevalence of quadruplexes in the human genome. Nucleic Acids Res. 2005, 33, 2908-2916.
[CrossRef] [PubMed]

10. Huppert, J.L.; Balasubramanian, S. G-quadruplexes in promoters throughout the human genome. Nucleic Acids Res. 2007, 35,
406-413. [CrossRef] [PubMed]

11. Maizels, N.; Gray, L.T. The G4 Genome. PLoS Genet. 2013, 9, e1003468. [CrossRef] [PubMed]

12. Bedrat, A.; Lacroix, L.; Mergny, J.-L. Re-evaluation of G-quadruplex propensity with G4Hunter. Nucleic Acids Res. 2016, 44,

1746-1759. [CrossRef]


http://doi.org/10.1016/j.trechm.2019.07.002
http://www.ncbi.nlm.nih.gov/pubmed/32923997
http://doi.org/10.1073/pnas.48.12.2013
http://doi.org/10.1042/bj1410537
http://doi.org/10.1093/nar/gkl655
http://doi.org/10.1016/j.bbrc.2019.12.103
http://doi.org/10.1093/nar/gkaa738
http://doi.org/10.1093/nar/gky307
http://doi.org/10.1093/nar/gki609
http://www.ncbi.nlm.nih.gov/pubmed/15914667
http://doi.org/10.1093/nar/gkl1057
http://www.ncbi.nlm.nih.gov/pubmed/17169996
http://doi.org/10.1371/journal.pgen.1003468
http://www.ncbi.nlm.nih.gov/pubmed/23637633
http://doi.org/10.1093/nar/gkw006

Pharmaceuticals 2021, 14, 769 32 of 40

13.

14.

15.

16.

17.

18.

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Brazda, V.; Kolomaznik, J.; Lysek, J.; Bartas, M.; Fojta, M.; ét’astny, J.; Mergny, ].L. G4Hunter web application: A web server for
G-quadruplex prediction. Bioinformatics 2019, 35, 3493-3495. [CrossRef] [PubMed]

Hon, J.; Martinek, T.; Zendulka, J.; Lexa, M. Pgsfinder: An exhaustive and imperfection-tolerant search tool for potential
quadruplex-forming sequences in R. Bioinformatics 2017, 33, 3373-3379. [CrossRef]

Klimentova, E.; Polacek, J.; Simecek, P.; Alexiou, P. Penguinn: Precise Exploration of Nuclear G-Quadruplexes Using Interpretable
Neural Networks. Front. Genet. 2020, 11, 1287. [CrossRef]

Garant, ].M.; Perreault, ].P; Scott, M.S. Motif independent identification of potential RNA G-quadruplexes by G4RNA screener.
Bioinformatics 2017, 33, 3532-3537. [CrossRef]

Chambers, V.S.; Marsico, G.; Boutell, ].M.; Di Antonio, M.; Smith, G.P.; Balasubramanian, S. High-throughput sequencing of DNA
G-quadruplex structures in the human genome. Nat. Biotechnol. 2015, 33, 877-881. [CrossRef]

Sen, D.; Gilbert, W. Formation of parallel four-stranded complexes by guanine-rich motifs in DNA and its implications for meiosis.
Nature 1988, 334, 364-366. [CrossRef] [PubMed]

Bryan, T.M. G-quadruplexes at telomeres: Friend or foe? Molecules 2020, 25, 3686. [CrossRef]

Balasubramanian, S.; Hurley, L.H.; Neidle, S. Targeting G-quadruplexes in gene promoters: A novel anticancer strategy? Nat. Rev.
Drug Discov. 2011, 10, 261-275. [CrossRef] [PubMed]

Haénsel-Hertsch, R.; Beraldi, D.; Lensing, S.V.; Marsico, G.; Zyner, K; Parry, A.; Di Antonio, M.; Pike, J.; Kimura, H.; Narita, M.;
et al. G-quadruplex structures mark human regulatory chromatin. Nat. Genet. 2016, 48, 1267-1272. [CrossRef] [PubMed]
Spiegel, J.; Cuesta, S.M.; Adhikari, S.; Hansel-Hertsch, R.; Tannahill, D.; Balasubramanian, S. G-quadruplexes are transcription
factor binding hubs in human chromatin. Genome Biol. 2021, 22, 117. [CrossRef] [PubMed]

Lago, S.; Nadai, M.; Cernilogar, EM.; Kazerani, M.; Dominiguez Moreno, H.; Schotta, G.; Richter, S.N. Promoter G-quadruplexes
and transcription factors cooperate to shape the cell type-specific transcriptome. Nat. Commun. 2021, 12, 3885. [CrossRef]
[PubMed]

Jara-Espejo, M.; Peres Line, S.R. DNA G-quadruplex stability, position and chromatin accessibility are associated with CpG island
methylation. FEBS J. 2020, 287, 483-495. [CrossRef]

Shen, J.; Varshney, D.; Simeone, A.; Zhang, X.; Adhikari, S.; Tannahill, D.; Balasubramanian, S. Promoter G-quadruplex folding
precedes transcription and is controlled by chromatin. Genome Biol. 2021, 22, 143. [CrossRef]

Komtirkova, D.; Kovatikova, A.S.; Bartova, E. G-quadruplex structures colocalize with transcription factories and nuclear speckles
surrounded by acetylated and dimethylated histones H3. Int. J. Mol. Sci. 2021, 22, 1995. [CrossRef] [PubMed]

Hoffmann, R.F; Moshkin, YM.; Mouton, S.; Grzeschik, N.A.; Kalicharan, R.D.; Kuipers, J.; Wolters, A.H.G.; Nishida, K,
Romashchenko, A.V,; Postberg, J.; et al. Guanine quadruplex structures localize to heterochromatin. Nucleic Acids Res. 2016, 44,
152-163. [CrossRef]

Varshney, D.; Spiegel, J.; Zyner, K.; Tannahill, D.; Balasubramanian, S. The regulation and functions of DNA and RNA G-
quadruplexes. Nat. Rev. Mol. Cell Biol. 2020, 21, 459-474. [CrossRef]

Lee, WT.C; Yin, Y,; Morten, M.].; Tonzi, P.; Gwo, P.P.; Odermatt, D.C.; Modesti, M.; Cantor, S.B.; Gari, K.; Huang, T.T.; et al.
Single-molecule imaging reveals replication fork coupled formation of G-quadruplex structures hinders local replication stress
signaling. Nat. Commun. 2021, 12, 2525. [CrossRef]

Tran, PL.T,; Rieu, M.; Hodeib, S.; Joubert, A.; Ouellet, ].; Alberti, P.; Bugaut, A.; Allemand, J.F; Boulé, ].B.; Croquette, V. Folding
and persistence times of intramolecular G-quadruplexes transiently embedded in a DNA duplex. Nucleic Acids Res. 2021, 49,
5189-5201. [CrossRef]

Murat, P.; Marsico, G.; Herdy, B.; Ghanbarian, A.; Portella, G.; Balasubramanian, S. RNA G-quadruplexes at upstream open
reading frames cause DHX36- and DHX9-dependent translation of human mRNAs. Genome Biol. 2018, 19, 229. [CrossRef]
Dutta, A.; Maji, N.; Sengupta, P.; Banerjee, N.; Kar, S.; Mukherjee, G.; Chatterjee, S.; Basu, M. Promoter G-quadruplex favours
epigenetic reprogramming-induced atypical expression of ZEB1 in cancer cells. Biochim. Biophys. Acta Gen. Subj. 2021, 1865,
129899. [CrossRef] [PubMed]

Marsico, G.; Chambers, V.S.; Sahakyan, A.B.; McCauley, P.; Boutell, ].M.; Antonio, M.D.; Balasubramanian, S. Whole genome
experimental maps of DNA G-quadruplexes in multiple species. Nucleic Acids Res. 2019, 47, 3862-3874. [CrossRef]

Zaccaria, F.; Fonseca Guerra, C. RNA versus DNA G-Quadruplex: The Origin of Increased Stability. Chem. Eur. |. 2018, 24,
16315-16322. [CrossRef] [PubMed]

Vannutelli, A.; Belhamiti, S.; Garant, ].-M.; Ouangraoua, A.; Perreault, ].-P. Where are G-quadruplexes located in the human
transcriptome? NAR Genomics Bioinform. 2020, 2, 1qaa035. [CrossRef]

Biffi, G.; Di Antonio, M.; Tannahill, D.; Balasubramanian, S. Visualization and selective chemical targeting of RNA G-quadruplex
structures in the cytoplasm of human cells. Nat. Chem. 2014, 6, 75-80. [CrossRef] [PubMed]

Tassinari, M.; Richter, S.N.; Gandellini, P. Biological relevance and therapeutic potential of G-quadruplex structures in the human
noncoding transcriptome. Nucleic Acids Res. 2021, 49, 3617-3633. [CrossRef]

Kwok, C.K.; Marsico, G.; Sahakyan, A.B.; Chambers, V.S.; Balasubramanian, S. RG4-seq reveals widespread formation of
G-quadruplex structures in the human transcriptome. Nat. Methods 2016, 13, 841-844. [CrossRef] [PubMed]

Yang, S.Y.; Lejault, P; Chevrier, S.; Boidot, R.; Robertson, A.G.; Wong, ] M.Y.; Monchaud, D. Transcriptome-wide identification of
transient RNA G-quadruplexes in human cells. Nat. Commun. 2018, 9, 4730. [CrossRef]


http://doi.org/10.1093/bioinformatics/btz087
http://www.ncbi.nlm.nih.gov/pubmed/30721922
http://doi.org/10.1093/bioinformatics/btx413
http://doi.org/10.3389/fgene.2020.568546
http://doi.org/10.1093/bioinformatics/btx498
http://doi.org/10.1038/nbt.3295
http://doi.org/10.1038/334364a0
http://www.ncbi.nlm.nih.gov/pubmed/3393228
http://doi.org/10.3390/molecules25163686
http://doi.org/10.1038/nrd3428
http://www.ncbi.nlm.nih.gov/pubmed/21455236
http://doi.org/10.1038/ng.3662
http://www.ncbi.nlm.nih.gov/pubmed/27618450
http://doi.org/10.1186/s13059-021-02324-z
http://www.ncbi.nlm.nih.gov/pubmed/33892767
http://doi.org/10.1038/s41467-021-24198-2
http://www.ncbi.nlm.nih.gov/pubmed/34162892
http://doi.org/10.1111/febs.15065
http://doi.org/10.1186/s13059-021-02346-7
http://doi.org/10.3390/ijms22041995
http://www.ncbi.nlm.nih.gov/pubmed/33671470
http://doi.org/10.1093/nar/gkv900
http://doi.org/10.1038/s41580-020-0236-x
http://doi.org/10.1038/s41467-021-22830-9
http://doi.org/10.1093/nar/gkab306
http://doi.org/10.1186/s13059-018-1602-2
http://doi.org/10.1016/j.bbagen.2021.129899
http://www.ncbi.nlm.nih.gov/pubmed/33930476
http://doi.org/10.1093/nar/gkz179
http://doi.org/10.1002/chem.201803530
http://www.ncbi.nlm.nih.gov/pubmed/30215872
http://doi.org/10.1093/nargab/lqaa035
http://doi.org/10.1038/nchem.1805
http://www.ncbi.nlm.nih.gov/pubmed/24345950
http://doi.org/10.1093/nar/gkab127
http://doi.org/10.1038/nmeth.3965
http://www.ncbi.nlm.nih.gov/pubmed/27571552
http://doi.org/10.1038/s41467-018-07224-8

Pharmaceuticals 2021, 14, 769 33 of 40

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

Yang, X.; Cheema, J.; Zhang, Y.; Deng, H.; Duncan, S.; Umar, M.L; Zhao, J.; Liu, Q.; Cao, X.; Kwok, C.K; et al. RNA G-quadruplex
structures exist and function in vivo in plants. Genome Biol. 2020, 21, 226. [CrossRef]

Shao, X.; Zhang, W.; Umar, M.I.; Wong, H.Y.; Seng, Z.; Xie, Y.; Zhang, Y.; Yang, L.; Kwok, C.K.; Deng, X. RNA G-quadruplex
structures mediate gene regulation in bacteria. MBio 2020, 11, €02926-19. [CrossRef]

Renard, I.; Grandmougin, M.; Roux, A.; Yang, S.Y.; Lejault, P; Pirrotta, M.; Wong, ] M.Y.; Monchaud, D. Small-molecule affinity
capture of DNA/RNA quadruplexes and their identification in vitro and in vivo through the G4RP protocol. Nucleic Acids Res.
2019, 47, 502-510. [CrossRef]

Maizels, N. G4-associated human diseases. EMBO Rep. 2015, 16, 910-922. [CrossRef] [PubMed]

De Magis, A.; Manzo, S.G.; Russo, M.; Marinello, J.; Morigi, R.; Sordet, O.; Capranico, G. DNA damage and genome instability by
G-quadruplex ligands are mediated by R loops in human cancer cells. Proc. Natl. Acad. Sci. USA 2019, 116, 816-825. [CrossRef]
[PubMed]

Zell, J.; Sperti, ER.; Britton, S.; Monchaud, D. DNA folds threaten genetic stability and can be leveraged for chemotherapy. RSC
Chem. Biol. 2021, 2, 47-76. [CrossRef]

Maffia, A.; Ranise, C.; Sabbioneda, S. From R-loops to G-quadruplexes: Emerging new threats for the replication fork. Int. . Mol.
Sci. 2020, 21, 1506. [CrossRef]

Rodriguez, R.; Miller, K. M.; Forment, ].V.; Bradshaw, C.R.; Nikan, M.; Britton, S.; Oelschlaegel, T.; Xhemalce, B.; Balasubramanian,
S.; Jackson, S.P. Small-molecule-induced DNA damage identifies alternative DNA structures in human genes. Nat. Chem. Biol.
2012, 8, 301-310. [CrossRef] [PubMed]

Yadav, P; Kim, N.; Kumari, M.; Verma, S.; Sharma, T.K.; Yadav, V.; Kumar, A. G-quadruplex structures in bacteria: Biological
relevance and potential as an antimicrobial target. J. Bacteriol. 2021, 203, €0057720. [CrossRef]

Ruggiero, E.; Richter, S.N. Viral G-quadruplexes: New frontiers in virus pathogenesis and antiviral therapy. In Annual Reports in
Medicinal Chemistry; Elsevier: Amsterdam, The Netherlands, 2020; Volume 54, pp. 101-131.

Abiri, A.; Lavigne, M.; Rezaei, M.; Nikzad, S.; Zare, P.; Mergny, J.L.; Rahimi, H.R. Unlocking G-quadruplexes as antiviral targets.
Pharmacol. Rev. 2021, 73, 897-923. [CrossRef]

Saranathan, N.; Vivekanandan, P. G-Quadruplexes: More Than Just a Kink in Microbial Genomes. Trends Microbiol. 2019, 27,
148-163. [CrossRef]

Seifert, H.S. Above and beyond Watson and Crick: Guanine Quadruplex Structures and Microbes. Annu. Rev. Microbiol. 2018, 72,
49-69. [CrossRef]

Metifiot, M.; Amrane, S.; Litvak, S.; Andreola, M.L. G-quadruplexes in viruses: Function and potential therapeutic applications.
Nucleic Acids Res. 2014, 42, 12352-12366. [CrossRef]

Perrone, R.; Lavezzo, E.; Riello, E.; Manganelli, R.; Palt, G.; Toppo, S.; Provvedi, R.; Richter, S.N. Mapping and characterization of
G-quadruplexes in Mycobacterium tuberculosis gene promoter regions. Sci. Rep. 2017, 7, 5743. [CrossRef]

Tlu¢kova, K.; Marusi¢, M.; Téthova, P; Bauer, L.; Sket, P; Plavec, J.; Viglasky, V. Human papillomavirus G-quadruplexes.
Biochemistry 2013, 52, 7207-7216. [CrossRef]

Zhao, C.; Qin, G,; Niu, J.; Wang, Z.; Wang, C.; Ren, J.; Qu, X. Targeting RNA G-Quadruplex in SARS-CoV-2: A Promising
Therapeutic Target for COVID-19? Angew. Chem. Int. Ed. 2021, 60, 432—438. [CrossRef]

Asamitsu, S.; Obata, S.; Yu, Z.; Bando, T.; Sugiyama, H. Recent progress of targeted G-quadruplex-preferred ligands toward
cancer therapy. Molecules 2019, 24, 429. [CrossRef]

Sun, D.; Thompson, B.; Cathers, B.E.; Salazar, M.; Kerwin, S.M.; Trent, ].O.; Jenkins, T.C.; Neidle, S.; Hurley, L.H. Inhibition of
human telomerase by a G-Quadruplex-Interactive compound. J. Med. Chem. 1997, 40, 2113-2116. [CrossRef]

Duarte, A.R.; Cadoni, E.; Ressurreicao, A.S.; Moreira, R.; Paulo, A. Design of Modular G-quadruplex Ligands. Chem. Med. Chem.
2018, 13, 869-893. [CrossRef] [PubMed]

Umar, M.I; Ji, D.; Chan, C.Y.; Kwok, C.K. G-quadruplex-based fluorescent turn-on ligands and aptamers: From development to
applications. Molecules 2019, 24, 2416. [CrossRef] [PubMed]

Li, Q; Xiang, J.-F,; Yang, Q.-F; Sun, H.-X.; Guan, A.-].; Tang, Y.-L. GALDB: A database for discovering and studying G-quadruplex
ligands. Nucleic Acids Res. 2013, 41, D1115-D1123. [CrossRef]

Sun, Z.Y.; Wang, X.N.; Cheng, 5.Q.; Su, X.X.; Ou, T.M. Developing novel G-quadruplex ligands: From interaction with nucleic
acids to interfering with nucleic acid—protein interaction. Molecules 2019, 24, 396. [CrossRef]

Martino, L.; Pagano, B.; Fotticchia, I.; Neidle, S.; Giancola, C. Shedding light on the interaction between TMPyP4 and human
telomeric quadruplexes. J. Phys. Chem. B 2009, 113, 14779-14786. [CrossRef]

Read, M.; Harrison, R.J.; Romagnoli, B.; Tanious, FA.; Gowan, S.H.; Reszka, A.P.; Wilson, W.D.; Kelland, L.R.; Neidle, S.
Structure-based design of selective and potent G quadruplex-mediated telomerase inhibitors. Proc. Natl. Acad. Sci. USA 2001, 98,
4844-4849. [CrossRef]

Zuffo, M.; Guédin, A.; Leriche, E.D.; Doria, E; Pirota, V.; Gabelica, V.; Mergny, J.L.; Freccero, M. More is not always better:
Finding the right trade-off between affinity and selectivity of a G-quadruplex ligand. Nucleic Acids Res. 2018, 46, e115. [CrossRef]
[PubMed]

Asamitsu, S.; Bando, T.; Sugiyama, H. Ligand Design to Acquire Specificity to Intended G-Quadruplex Structures. Chem. Eur. |.
2019, 25, 417-430. [CrossRef]


http://doi.org/10.1186/s13059-020-02142-9
http://doi.org/10.1128/mBio.02926-19
http://doi.org/10.1093/nar/gkz215
http://doi.org/10.15252/embr.201540607
http://www.ncbi.nlm.nih.gov/pubmed/26150098
http://doi.org/10.1073/pnas.1810409116
http://www.ncbi.nlm.nih.gov/pubmed/30591567
http://doi.org/10.1039/D0CB00151A
http://doi.org/10.3390/ijms21041506
http://doi.org/10.1038/nchembio.780
http://www.ncbi.nlm.nih.gov/pubmed/22306580
http://doi.org/10.1128/JB.00577-20
http://doi.org/10.1124/pharmrev.120.000230
http://doi.org/10.1016/j.tim.2018.08.011
http://doi.org/10.1146/annurev-micro-090817-062629
http://doi.org/10.1093/nar/gku999
http://doi.org/10.1038/s41598-017-05867-z
http://doi.org/10.1021/bi400897g
http://doi.org/10.1002/anie.202011419
http://doi.org/10.3390/molecules24030429
http://doi.org/10.1021/jm970199z
http://doi.org/10.1002/cmdc.201700747
http://www.ncbi.nlm.nih.gov/pubmed/29512884
http://doi.org/10.3390/molecules24132416
http://www.ncbi.nlm.nih.gov/pubmed/31262059
http://doi.org/10.1093/nar/gks1101
http://doi.org/10.3390/molecules24030396
http://doi.org/10.1021/jp9066394
http://doi.org/10.1073/pnas.081560598
http://doi.org/10.1093/nar/gky607
http://www.ncbi.nlm.nih.gov/pubmed/29986058
http://doi.org/10.1002/chem.201802691

Pharmaceuticals 2021, 14, 769 34 of 40

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

Neidle, S. Challenges in developing small-molecule quadruplex therapeutics. In Annual Reports in Medicinal Chemistry; Elsevier:
Amsterdam, The Netherlands, 2020; Volume 54, pp. 517-546.

Drygin, D.; Siddiqui-Jain, A.; O’Brien, S.; Schwaebe, M.; Lin, A.; Bliesath, J.; Ho, C.B.; Proffitt, C.; Trent, K.; Whitten, J.P.; et al.
Anticancer activity of CX-3543: A direct inhibitor of rRNA biogenesis. Cancer Res. 2009, 69, 7653-7661. [CrossRef] [PubMed]
Xu, H.; Antonio, M.D.; McKinney, S.; Mathew, V.; Ho, B.; O'Neil, N.J.; Santos, N.D.; Silvester, J.; Wei, V.; Garcia, J.; et al. CX-5461 is
a DNA G-quadruplex stabilizer with selective lethality in BRCA1/2 deficient tumours. Nat. Commun. 2017, 8, 14432. [CrossRef]
Masud, T.; Soong, C.; Xu, H.; Biele, J.; Bjornson, S.; McKinney, S.; Aparicio, S. Ubiquitin-mediated DNA damage response is
synthetic lethal with G-quadruplex stabilizer CX-5461. Sci. Rep. 2021, 11, 9812. [CrossRef] [PubMed]

Xu, X.; Feng, H.; Dai, C.; Lu, W.; Zhang, J.; Guo, X; Yin, Q.; Wang, J.; Cui, X; Jiang, F. Therapeutic efficacy of the novel selective
RNA polymerase I inhibitor CX-5461 on pulmonary arterial hypertension and associated vascular remodelling. Br. ]. Pharmacol.
2021, 178, 1605-1619. [CrossRef]

Neidle, S. Human telomeric G-quadruplex: The current status of telomeric G-quadruplexes as therapeutic targets in human
cancer. FEBS |. 2010, 277, 1118-1125. [CrossRef]

Burger, A.M,; Dai, F,; Schultes, C.M.; Reszka, A.P.; Moore, M.].; Double, J.A.; Neidle, S. The G-quadruplex-interactive molecule
BRACO-19 inhibits tumor growth, consistent with telomere targeting and interference with telomerase function. Cancer Res. 2005,
65,1489-1496. [CrossRef]

Machireddy, B.; Sullivan, H.J.; Wu, C. Binding of BRACO19 to a telomeric G-quadruplex DNA probed by all-atom molecular
dynamics simulations with explicit solvent. Molecules 2019, 24, 1010. [CrossRef]

Hamon, F; Largy, E.; Guédin-Beaurepaire, A.; Rouchon-Dagois, M.; Sidibe, A.; Monchaud, D.; Mergny, ].L.; Riou, ].E; Nguyen,
C.H.; Teulade-Fichou, M.P. An acyclic oligoheteroaryle that discriminates strongly between diverse G-Quadruplex topologies.
Angew. Chem. Int. Ed. 2011, 50, 8745-8749. [CrossRef] [PubMed]

Résadean, D.M.; Sheng, B.; Dash, J.; Pantos, G.D. Amino-Acid-Derived Naphthalenediimides as Versatile G-Quadruplex Binders.
Chem. Eur. ]. 2017, 23, 8491-8499. [CrossRef]

Hu, M.H.; Chen, S.B.; Wang, B.; Ou, TM.; Gu, L.Q.; Tan, J.H.; Huang, Z.S. Specific targeting of telomeric multimeric G-
quadruplexes by a new triaryl-substituted imidazole. Nucleic Acids Res. 2017, 45, 1606-1618. [CrossRef] [PubMed]

Rigo, R.; Palumbo, M; Sissi, C. G-quadruplexes in human promoters: A challenge for therapeutic applications. Biochim. Biophys.
Acta Gen. Subj. 2017, 1861, 1399-1413. [CrossRef]

Micco, M.; Collie, G.W.; Dale, A.G.; Ohnmacht, S.A.; Pazitna, I.; Gunaratnam, M.; Reszka, A.P.; Neidle, S. Structure-based design
and evaluation of naphthalene diimide G-quadruplex ligands as telomere targeting agents in pancreatic cancer cells. J. Med.
Chem. 2013, 56, 2959-2974. [CrossRef] [PubMed]

Marchetti, C.; Zyner, K.G.; Ohnmacht, S.A.; Robson, M.; Haider, S.M.; Morton, ].P.; Marsico, G.; Vo, T.; Laughlin-Toth, S.; Ahmed,
A.A; et al. Targeting Multiple Effector Pathways in Pancreatic Ductal Adenocarcinoma with a G-Quadruplex-Binding Small
Molecule. J. Med. Chem. 2018, 61, 2500-2517. [CrossRef]

Carvalho, J.; Pereira, E.; Marquevielle, J.; Campello, M.P.C.; Mergny, J.L.; Paulo, A.; Salgado, G.E; Queiroz, J.A.; Cruz, C.
Fluorescent light-up acridine orange derivatives bind and stabilize KRAS-22RT G-quadruplex. Biochimie 2018, 144, 144-152.
[CrossRef]

Shin-ya, K.; Wierzba, K.; Matsuo, K.; Ohtani, T.; Yamada, Y.; Furihata, K.; Hayakawa, Y.; Seto, H. Telomestatin, a novel telomerase
inhibitor from Streptomyces anulatus. J. Am. Chem. Soc. 2001, 123, 1262-1263. [CrossRef]

Sullivan, H.J.; Readmond, C.; Radicella, C.; Persad, V.; Fasano, T.J.; Wu, C. Binding of Telomestatin, TMPyP4, BSU6037, and
BRACO19 to a Telomeric G-Quadruplex-Duplex Hybrid Probed by All-Atom Molecular Dynamics Simulations with Explicit
Solvent. ACS Omega 2018, 3, 14788-14806. [CrossRef]

Gavathiotis, E.; Heald, R.A.; Stevens, M.EG.; Searle, M.S. Drug recognition and stabilisation of the parallel-stranded DNA
quadruplex d(TTAGGGT)4 containing the human telomeric repeat. J. Mol. Biol. 2003, 334, 25-36. [CrossRef] [PubMed]
Mulholland, K.; Siddiquei, F.; Wu, C. Binding modes and pathway of RHPS4 to human telomeric G-quadruplex and duplex
DNA probed by all-atom molecular dynamics simulations with explicit solvent. Phys. Chem. Chem. Phys. 2017, 19, 18685-18694.
[CrossRef] [PubMed]

Muoio, D.; Berardinelli, F.; Leone, S.; Coluzzi, E.; di Masi, A.; Doria, F.; Freccero, M.; Sgura, A.; Folini, M.; Antoccia, A.
Naphthalene diimide-derivatives G-quadruplex ligands induce cell proliferation inhibition, mild telomeric dysfunction and cell
cycle perturbation in U251MG glioma cells. FEBS ]. 2018, 285, 3769-3785. [CrossRef] [PubMed]

Marchetti, C.; Minarini, A.; Tumiatti, V.; Moraca, E; Parrotta, L.; Alcaro, S.; Rigo, R.; Sissi, C.; Gunaratnam, M.; Ohnmacht, S.A;
et al. Macrocyclic naphthalene diimides as G-quadruplex binders. Bioorg. Med. Chem. 2015, 23, 3819-3830. [CrossRef]

Hu, M.H.; Zhou, J.; Luo, W.H.; Chen, S.B.; Huang, Z.S.; Wu, R; Tan, ].H. Development of a Smart Fluorescent Sensor That
Specifically Recognizes the c-MYC G-Quadruplex. Anal. Chem. 2019, 91, 2480-2487. [CrossRef]

Vummidi, B.R.; Alzeer, ].; Luedtke, N.W. Fluorescent Probes for G-Quadruplex Structures. ChemBioChem 2013, 14, 540-558.
[CrossRef]

Largy, E.; Granzhan, A.; Hamon, F; Verga, D.; Teulade-Fichou, M.-P. Visualizing the Quadruplex: From Fluorescent Ligands to
Light-Up Probes. In Quadruplex Nucleic Acids; Royal Society of Chemistry: London, UK, 2012; pp. 111-177.

Kwok, C.K,; Merrick, C.J. G-Quadruplexes: Prediction, Characterization, and Biological Application. Trends Biotechnol. 2017, 35,
997-1013. [CrossRef]


http://doi.org/10.1158/0008-5472.CAN-09-1304
http://www.ncbi.nlm.nih.gov/pubmed/19738048
http://doi.org/10.1038/ncomms14432
http://doi.org/10.1038/s41598-021-88988-w
http://www.ncbi.nlm.nih.gov/pubmed/33963218
http://doi.org/10.1111/bph.15385
http://doi.org/10.1111/j.1742-4658.2009.07463.x
http://doi.org/10.1158/0008-5472.CAN-04-2910
http://doi.org/10.3390/molecules24061010
http://doi.org/10.1002/anie.201103422
http://www.ncbi.nlm.nih.gov/pubmed/21812083
http://doi.org/10.1002/chem.201700957
http://doi.org/10.1093/nar/gkw1195
http://www.ncbi.nlm.nih.gov/pubmed/27923993
http://doi.org/10.1016/j.bbagen.2016.12.024
http://doi.org/10.1021/jm301899y
http://www.ncbi.nlm.nih.gov/pubmed/23514618
http://doi.org/10.1021/acs.jmedchem.7b01781
http://doi.org/10.1016/j.biochi.2017.11.004
http://doi.org/10.1021/ja005780q
http://doi.org/10.1021/acsomega.8b01574
http://doi.org/10.1016/j.jmb.2003.09.018
http://www.ncbi.nlm.nih.gov/pubmed/14596797
http://doi.org/10.1039/C7CP03313C
http://www.ncbi.nlm.nih.gov/pubmed/28696445
http://doi.org/10.1111/febs.14628
http://www.ncbi.nlm.nih.gov/pubmed/30095224
http://doi.org/10.1016/j.bmc.2015.03.076
http://doi.org/10.1021/acs.analchem.8b05298
http://doi.org/10.1002/cbic.201200612
http://doi.org/10.1016/j.tibtech.2017.06.012

Pharmaceuticals 2021, 14, 769 35 of 40

92.

93.

94.

95.

96.

97.

98.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Chilka, P; Desai, N.; Datta, B. Small molecule fluorescent probes for G-quadruplex visualization as potential cancer theranostic
agents. Molecules 2019, 24, 752. [CrossRef]

Shivalingam, A.; Izquierdo, M.A.; Marois, A.L.; Vy8niauskas, A.; Suhling, K.; Kuimova, M.K.; Vilar, R. The interactions between a
small molecule and G-quadruplexes are visualized by fluorescence lifetime imaging microscopy. Nat. Commun. 2015, 6, 8178.
[CrossRef]

Kotar, A.; Wang, B.; Shivalingam, A.; Gonzalez-Garcia, J.; Vilar, R.; Plavec, ]. NMR Structure of a Triangulenium-Based Long-Lived
Fluorescence Probe Bound to a G-Quadruplex. Angew. Chem. Int. Ed. 2016, 55, 12508-12511. [CrossRef]

Liu, L.Y;; Liu, W,; Wang, K.N.; Zhu, B.C,; Xia, X.Y.; Ji, L.N.; Mao, Z.W. Quantitative Detection of G-Quadruplex DNA in Live Cells
Based on Photon Counts and Complex Structure Discrimination. Angew. Chem. Int. Ed. 2020, 59, 9719-9726. [CrossRef]

Zhang, S.; Sun, H.; Wang, L.; Liu, Y,; Chen, H.; Li, Q.; Guan, A ; Liu, M.; Tang, Y. Real-time monitoring of DNA G-quadruplexes
in living cells with a small-molecule fluorescent probe. Nucleic Acids Res. 2018, 46, 7522-7532. [CrossRef]

Di Antonio, M.; Ponjavic, A.; Radzevi¢ius, A.; Ranasinghe, R.T.; Catalano, M.; Zhang, X.; Shen, J.; Needham, L.M.; Lee, S.E;
Klenerman, D.; et al. Single-molecule visualization of DNA G-quadruplex formation in live cells. Nat. Chem. 2020, 12, 832-837.
[CrossRef]

Ofer, N.; Weisman-Shomer, P.; Shklover, J.; Fry, M. The quadruplex r(CGG)n destabilizing cationic porphyrin TMPyP4 cooperates
with hnRNPs to increase the translation efficiency of fragile X premutation mRNA. Nucleic Acids Res. 2009, 37, 2712-2722.
[CrossRef]

Morris, M.J.; Wingate, K.L.; Silwal, J.; Leeper, T.C.; Basu, S. The porphyrin TmPyP4 unfolds the extremely stable G-quadruplex
in MT3-MMP mRNA and alleviates its repressive effect to enhance translation in eukaryotic cells. Nucleic Acids Res. 2012, 40,
4137-4145. [CrossRef]

Zamiri, B.; Reddy, K.; Macgregor, R.B.; Pearson, C.E. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-
associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNAbinding proteins. J. Biol. Chem. 2014, 289,
4653-4659. [CrossRef] [PubMed]

Huang, H.; Zhang, J.; Harvey, S.E.; Hu, X.; Cheng, C. RNA G-quadruplex secondary structure promotes alternative splicing via
the RNA-binding protein hnRNPF. Genes Dev. 2017, 31, 2296-2309. [CrossRef]

Ghosh, A.; Ekka, M.K,; Tawani, A.; Kumar, A.; Chakraborty, D.; Maiti, S. Restoration of miRNA-149 Expression by TmPyP4
Induced Unfolding of Quadruplex within Its Precursor. Biochemistry 2019, 58, 514-525. [CrossRef] [PubMed]

Banco, M.T.; Ferré-D’Amaré, A.R. The emerging structural complexity of G-quadruplex RNAs. RNA 2021, 27, 390-402. [CrossRef]
[PubMed]

Tao, Y.; Zheng, Y.; Zhai, Q.; Wei, D. Recent advances in the development of small molecules targeting RNA G-quadruplexes for
drug discovery. Bioorg. Chem. 2021, 110, 104804. [CrossRef]

Song, J.; Perreault, ].-P.; Topisirovic, I.; Richard, S. RNA G-quadruplexes and their potential regulatory roles in translation.
Translation 2016, 4, €1244031. [CrossRef]

Fay, M.M.; Lyons, S.M.; Ivanov, P. RNA G-Quadruplexes in Biology: Principles and Molecular Mechanisms. J. Mol. Biol. 2017, 429,
2127-2147. [CrossRef] [PubMed]

Halder, K.; Largy, E.; Benzler, M.; Teulade-Fichou, M.P.; Hartig, J.S. Efficient Suppression of Gene Expression by Targeting
5'-UTR-Based RNA Quadruplexes with Bisquinolinium Compounds. ChemBioChem 2011, 12, 1663-1668. [CrossRef]

Miglietta, G.; Cogoi, S.; Marinello, J.; Capranico, G.; Tikhomirov, A.S.; Shchekotikhin, A.; Xodo, L.E. RNA G-Quadruplexes in
Kirsten Ras (KRAS) Oncogene as Targets for Small Molecules Inhibiting Translation. J. Med. Chem. 2017, 60, 9448-9461. [CrossRef]
[PubMed]

Katsuda, Y.; Sato, S.I.; Asano, L.; Morimura, Y.; Furuta, T.; Sugiyama, H.; Hagihara, M.; Uesugi, M. A Small Molecule That
Represses Translation of G-Quadruplex-Containing mRNA. J. Am. Chem. Soc. 2016, 138, 9037-9040. [CrossRef] [PubMed]

Di Antonio, M.; Biffi, G.; Mariani, A.; Raiber, E.A.; Rodriguez, R.; Balasubramanian, S. Selective RNA versus DNA G-quadruplex
targeting by situ click chemistry. Angew. Chem. Int. Ed. 2012, 51, 11073-11078. [CrossRef]

Rocca, R.; Talarico, C.; Moraca, F,; Costa, G.; Romeo, I; Ortuso, F.; Alcaro, S.; Artese, A. Molecular recognition of a carboxy
pyridostatin toward G-quadruplex structures: Why does it prefer RNA? Chem. Biol. Drug Des. 2017, 90, 919-925. [CrossRef]
Kwok, C.K,; Sahakyan, A.B.; Balasubramanian, S. Structural Analysis using SHALIPE to Reveal RNA G-Quadruplex Formation
in Human Precursor MicroRNA. Angew. Chem. Int. Ed. 2016, 55, 8958-8961. [CrossRef]

Santos, T.; Pereira, P.; Campello, M.P.C.; Paulo, A.; Queiroz, J.A.; Cabrita, E.; Cruz, C. RNA G-quadruplex as supramolecular
carrier for cancer-selective delivery. Eur. J. Pharm. Biopharm. 2019, 142, 473-479. [CrossRef]

Santos, T.; Miranda, A.; Campello, M.P.C.; Paulo, A.; Salgado, G.; Cabrita, E.J.; Cruz, C. Recognition of nucleolin through
interaction with RNA G-quadruplex. Biochem. Pharmacol. 2020, 189, 114208. [CrossRef]

Carvalho, J.; Santos, T.; Carrilho, R.; Sousa, F.; Salgado, G.F.; Queiroz, J.A.; Cruz, C. Ligand screening to pre-miRNA 149
G-quadruplex investigated by molecular dynamics. J. Biomol. Struct. Dyn. 2020, 38, 2276-2286. [CrossRef] [PubMed]

Chen, X.C.; Chen, S.B.; Dai, J.; Yuan, ].H.; Ou, TM.; Huang, Z.S.; Tan, ].H. Tracking the Dynamic Folding and Unfolding of RNA
G-Quadruplexes in Live Cells. Angew. Chem. Int. Ed. 2018, 57, 4702-4706. [CrossRef] [PubMed]

Chen, S.B.; Hu, M.H,; Liu, G.C.,; Wang, J.; Ou, TM.; Gu, L.Q.; Huang, Z.S.; Tan, ].H. Visualization of NRAS RNA G-Quadruplex
Structures in Cells with an Engineered Fluorogenic Hybridization Probe. J. Am. Chem. Soc. 2016, 138, 10382-10385. [CrossRef]


http://doi.org/10.3390/molecules24040752
http://doi.org/10.1038/ncomms9178
http://doi.org/10.1002/anie.201606877
http://doi.org/10.1002/anie.202002422
http://doi.org/10.1093/nar/gky665
http://doi.org/10.1038/s41557-020-0506-4
http://doi.org/10.1093/nar/gkp130
http://doi.org/10.1093/nar/gkr1308
http://doi.org/10.1074/jbc.C113.502336
http://www.ncbi.nlm.nih.gov/pubmed/24371143
http://doi.org/10.1101/gad.305862.117
http://doi.org/10.1021/acs.biochem.8b00880
http://www.ncbi.nlm.nih.gov/pubmed/30585723
http://doi.org/10.1261/rna.078238.120
http://www.ncbi.nlm.nih.gov/pubmed/33483368
http://doi.org/10.1016/j.bioorg.2021.104804
http://doi.org/10.1080/21690731.2016.1244031
http://doi.org/10.1016/j.jmb.2017.05.017
http://www.ncbi.nlm.nih.gov/pubmed/28554731
http://doi.org/10.1002/cbic.201100228
http://doi.org/10.1021/acs.jmedchem.7b00622
http://www.ncbi.nlm.nih.gov/pubmed/29140695
http://doi.org/10.1021/jacs.6b04506
http://www.ncbi.nlm.nih.gov/pubmed/27410677
http://doi.org/10.1002/anie.201206281
http://doi.org/10.1111/cbdd.13015
http://doi.org/10.1002/anie.201603562
http://doi.org/10.1016/j.ejpb.2019.07.017
http://doi.org/10.1016/j.bcp.2020.114208
http://doi.org/10.1080/07391102.2019.1632743
http://www.ncbi.nlm.nih.gov/pubmed/31204609
http://doi.org/10.1002/anie.201801999
http://www.ncbi.nlm.nih.gov/pubmed/29453903
http://doi.org/10.1021/jacs.6b04799

Pharmaceuticals 2021, 14, 769 36 of 40

118.

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

136.

137.

138.

139.

140.

141.

142.

143.

Laguerre, A.; Stefan, L.; Larrouy, M.; Genest, D.; Novotna, J.; Pirrotta, M.; Monchaud, D. A Twice-As-smart synthetic G-quartet:
PyroTASQ is both a smart quadruplex ligand and a smart fluorescent probe. J. Am. Chem. Soc. 2014, 136, 12406-12414. [CrossRef]
[PubMed]

Laguerre, A.; Hukezalie, K.; Winckler, P.; Katranji, F.; Chanteloup, G.; Pirrotta, M.; Perrier-Cornet, ].M.; Wong, ] M.Y.; Monchaud,
D. Visualization of RNA-Quadruplexes in Live Cells. ]. Am. Chem. Soc. 2015, 137, 8521-8525. [CrossRef]

Laguerre, A.; Wong, ] M.Y.,; Monchaud, D. Direct visualization of both DNA and RNA quadruplexes in human cells via an
uncommon spectroscopic method. Sci. Rep. 2016, 6, 32141. [CrossRef]

Murat, P; Singh, Y.; Defrancq, E. Methods for investigating G-quadruplex DNA /ligand interactions. Chem. Soc. Rev. 2011, 40,
5293-5307. [CrossRef] [PubMed]

Jaumot, J.; Gargallo, R. Experimental Methods for Studying the Interactions between G-Quadruplex Structures and Ligands. Curr.
Pharm. Des. 2012, 18, 1900-1916. [CrossRef]

Vorlickova, M.; Kejnovskd, I.; Bednarova, K.; Ren¢iuk, D.; Kypr, J. Circular dichroism spectroscopy of DNA: From duplexes to
quadruplexes. Chirality 2012, 24, 691-698. [CrossRef]

Carvalho, J.; Queiroz, J.A.; Cruz, C. Circular dichroism of G-Quadruplex: A laboratory experiment for the study of topology and
ligand binding. J. Chem. Educ. 2017, 94, 1547-1551. [CrossRef]

Villar-Guerra, R.D.; Trent, ].O.; Chaires, ].B. G-Quadruplex Secondary Structure Obtained from Circular Dichroism Spectroscopy.
Angew. Chem. Int. Ed. 2018, 57, 7171-7175. [CrossRef]

Eriksson, M.; Nordén, B. Linear and circular dichroism of drug-nucleic acid complexes. Methods Enzymol. 2001, 340, 68-98.
[CrossRef]

Garbett, N.C.; Ragazzon, P.A.; Chaires, ].O.B. Circular dichroism to determine binding mode and affinity of ligand-dna interactions.
Nat. Protoc. 2007, 2, 3166-3172. [CrossRef] [PubMed]

O’Hagan, M.P.; Morales, ].C.; Galan, M.C. Binding and Beyond: What Else Can G-Quadruplex Ligands Do? Eur. J. Org. Chem.
2019, 2019, 4995-5017. [CrossRef]

Rodriguez, R.; Pantos, G.D.; Gongalves, D.PN.; Sanders, ].K.M.; Balasubramanian, S. Ligand-driven G-quadruplex conformational
switching by using an unusual mode of interaction. Angew. Chem. Int. Ed. 2007, 46, 5405-5407. [CrossRef] [PubMed]

He, ].H,; Liu, H.Y,; Li, Z,; Tan, ].H.; Ou, TM.; Huang, S.L.; An, LK,; Li, D.; Gu, L.Q.; Huang, Z.S. New quinazoline derivatives for
telomeric G-quadruplex DNA: Effects of an added phenyl group on quadruplex binding ability. Eur. J. Med. Chem. 2013, 63, 1-13.
[CrossRef]

Cousins, A.R.O,; Ritson, D.; Sharma, P.; Stevens, M.E.G.; Moses, ].E.; Searle, M.S. Ligand selectivity in stabilising tandem parallel
folded G-quadruplex motifs in human telomeric DNA sequences. Chem. Commun. 2014, 50, 15202-15205. [CrossRef]

Xing, X.; Wang, X.; Xu, L.; Tai, Y.; Dai, L.; Zheng, X.; Mao, W.; Xu, X.; Zhou, X. Light-driven conformational regulation of human
telomeric G-quadruplex DNA in physiological conditions. Org. Biomol. Chem. 2011, 9, 6639—6645. [CrossRef]

Wang, Z.F,; Li, M.H.; Chen, WW.; Hsu, S.T.D.; Chang, T.C. A novel transition pathway of ligand-induced topological conversion
from hybrid forms to parallel forms of human telomeric G-quadruplexes. Nucleic Acids Res. 2016, 44, 3958-3968. [CrossRef]
Marchand, A.; Granzhan, A; Iida, K.; Tsushima, Y.; Ma, Y.; Nagasawa, K.; Teulade-Fichou, M.-P,; Gabelica, V. Ligand-Induced
Conformational Changes with Cation Ejection upon Binding to Human Telomeric DNA G-Quadruplexes. . Am. Chem. Soc. 2015,
137, 750-756. [CrossRef]

Smidlehner, T.; Piantanida, I.; Pescitelli, G. Polarization spectroscopy methods in the determination of interactions of small
molecules with nucleic acids-Tutorial. Beilstein ]. Org. Chem. 2017, 14, 84-105. [CrossRef]

Nanjunda, R.; Musetti, C.; Kumar, A.; Ismail, M. A ; Farahat, A.A.; Wang, S.; Sissi, C.; Palumbo, M.; Boykin, D.W.; Wilson, W.D.
Heterocyclic Dications as a New Class of Telomeric G-Quadruplex Targeting Agents. Curr. Pharm. Des. 2012, 18, 1934-1947.
[CrossRef]

Becher, J.; Berdnikova, D.V.; Ihmels, H.; Stremmel, C. Synthesis and investigation of quadruplex-DNA-binding, 9-O-substituted
berberine derivatives. Beilstein |. Org. Chem. 2020, 16, 2795-2806. [CrossRef]

Wickhorst, PJ.; Thmels, H. Berberrubine phosphate: A selective fluorescent probe for quadruplex dna. Molecules 2021, 26, 2566.
[CrossRef]

Zuffo, M.; Doria, E; Botti, S.; Bergamaschi, G.; Freccero, M. G-quadruplex fluorescence sensing by core-extended naphthalene
diimides. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1303-1311. [CrossRef]

Gluszyniska, A.; Juskowiak, B.; Rubis, B. Binding study of the fluorescent carbazole derivative with human telomeric G-
quadruplexes. Molecules 2018, 23, 3154. [CrossRef]

Yaku, H.; Murashima, T.; Tateishi-Karimata, H.; Nakano, S.i.; Miyoshi, D.; Sugimoto, N. Study on effects of molecular crowding
on G-quadruplex-ligand binding and ligand-mediated telomerase inhibition. Methods 2013, 64, 19-27. [CrossRef] [PubMed]
Krafcikova, M.; Dzatko, S.; Caron, C.; Granzhan, A.; Fiala, R.; Loja, T.; Teulade-Fichou, M.P; Fessl, T.; Hansel-Hertsch, R.; Mergny,
J.L.; et al. Monitoring DNA-Ligand Interactions in Living Human Cells Using NMR Spectroscopy. J. Am. Chem. Soc. 2019, 141,
13281-13285. [CrossRef] [PubMed]

Salgado, G.F,; Cazenave, C.; Kerkour, A.; Mergny, J.L. G-quadruplex DNA and ligand interaction in living cells using NMR
spectroscopy. Chem. Sci. 2015, 6, 3314-3320. [CrossRef] [PubMed]


http://doi.org/10.1021/ja506331x
http://www.ncbi.nlm.nih.gov/pubmed/25101894
http://doi.org/10.1021/jacs.5b03413
http://doi.org/10.1038/srep32141
http://doi.org/10.1039/c1cs15117g
http://www.ncbi.nlm.nih.gov/pubmed/21720638
http://doi.org/10.2174/138161212799958486
http://doi.org/10.1002/chir.22064
http://doi.org/10.1021/acs.jchemed.7b00160
http://doi.org/10.1002/anie.201709184
http://doi.org/10.1016/S0076-6879(01)40418-6
http://doi.org/10.1038/nprot.2007.475
http://www.ncbi.nlm.nih.gov/pubmed/18079716
http://doi.org/10.1002/ejoc.201900692
http://doi.org/10.1002/anie.200605075
http://www.ncbi.nlm.nih.gov/pubmed/17562537
http://doi.org/10.1016/j.ejmech.2013.01.051
http://doi.org/10.1039/C4CC07487D
http://doi.org/10.1039/C1OB05939D
http://doi.org/10.1093/nar/gkw145
http://doi.org/10.1021/ja5099403
http://doi.org/10.3762/bjoc.14.5
http://doi.org/10.2174/138161212799958422
http://doi.org/10.3762/bjoc.16.230
http://doi.org/10.3390/molecules26092566
http://doi.org/10.1016/j.bbagen.2016.11.034
http://doi.org/10.3390/molecules23123154
http://doi.org/10.1016/j.ymeth.2013.03.028
http://www.ncbi.nlm.nih.gov/pubmed/23562626
http://doi.org/10.1021/jacs.9b03031
http://www.ncbi.nlm.nih.gov/pubmed/31394899
http://doi.org/10.1039/C4SC03853C
http://www.ncbi.nlm.nih.gov/pubmed/28706695

Pharmaceuticals 2021, 14, 769 37 of 40

144.

145.
146.
147.
148.

149.

150.

151.

152.

153.

154.

155.

156.

157.

158.

159.

160.

161.

162.

163.

164.

165.

166.

167.

168.

169.

170.

Krafcikova, M.; Hansel-Hertsch, R.; Trantirek, L.; Foldynova-Trantirkova, S. In Cell NMR Spectroscopy: Investigation of G-
Quadruplex Structures Inside Living Xenopus laevis Oocytes. In Methods in Molecular Biology; Springer: Berlin, Germany, 2019;
Volume 2035, pp. 397—405.

Carver, T.R,; Slichter, C.P. Polarization of nuclear spins in metals. Phys. Rev. 1953, 92, 212-213. [CrossRef]

Ni, F. Recent developments in transferred NOE methods. Prog. Nucl. Magn. Reson. Spectrosc. 1994, 26, 517-606. [CrossRef]
Mayer, M.; Meyer, B. Characterization of ligand binding by saturation transfer difference NMR spectroscopy. Angew. Chem. Int.
Ed. 1999, 38, 1784-1788. [CrossRef]

Dalvit, C.; Fogliatto, G.P.; Stewart, A.; Veronesi, M.; Stockman, B. WaterLOGSY as a method for primary NMR screening: Practical
aspects and range of applicability. J. Biomol. NMR 2001, 21, 349-359. [CrossRef]

Liu, W,; Lin, C.; Wu, G.; Dai, J.; Chang, T.C.; Yang, D. Structures of 1:1 and 2:1 complexes of BMVC and MYC promoter
G-quadruplex reveal a mechanism of ligand conformation adjustment for G4-recognition. Nucleic Acids Res. 2019, 47, 11931-11942.
[CrossRef]

Kerkour, A.; Mergny, J.L.; Salgado, G.F. NMR based model of human telomeric repeat G-quadruplex in complex with 2,4,6-
triarylpyridine family ligand. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1293-1302. [CrossRef]

Kerkour, A.; Marquevielle, J.; Ivashchenko, S.; Yatsunyk, L.A.; Mergny, J.L.; Salgado, G.F. High-resolution three-dimensional NMR
structure of the KRAS proto-oncogene promoter reveals key features of a G-quadruplex involved in transcriptional regulation. J.
Biol. Chem. 2017, 292, 8082-8091. [CrossRef]

Ferreira, R.; Artali, R.; Benoit, A.; Gargallo, R.; Eritja, R.; Ferguson, D.M.; Sham, Y.Y.; Mazzini, S. Structure and Stability of Human
Telomeric G-Quadruplex with Preclinical 9-Amino Acridines. PLoS ONE 2013, 8, e57701. [CrossRef]

Dickerhoff, J.; Dai, J.; Yang, D. Structural recognition of the MYC promoter G-quadruplex by a quinoline derivative: Insights into
molecular targeting of parallel G-quadruplexes. Nucleic Acids Res. 2021, 49, 5905-5915. [CrossRef] [PubMed]

Tawani, A.; Mishra, S.K.; Kumar, A. Structural insight for the recognition of G-quadruplex structure at human c-myc promoter
sequence by flavonoid Quercetin. Sci. Rep. 2017, 7, 3600. [CrossRef]

Chung, W.J.; Heddi, B.; Hamon, E; Teulade-Fichou, M.P,; Phan, A.T. Solution structure of a G-quadruplex bound to the
bisquinolinium compound phen-DC3. Angew. Chem. Int. Ed. 2014, 53, 999-1002. [CrossRef] [PubMed]

Liu, W,; Zhong, Y.-F,; Liu, L.-Y,; Shen, C.-T.; Zeng, W.; Wang, F.; Yang, D.; Mao, Z.-W. Solution structures of multiple G-quadruplex
complexes induced by a platinum(II)-based tripod reveal dynamic binding. Nat. Commun. 2018, 9, 3496. [CrossRef] [PubMed]
Gimenez, D.; Phelan, A.; Murphy, C.D.; Cobb, S.L. 19F NMR as a tool in chemical biology. Beilstein ]. Org. Chem. 2021, 17, 293-318.
[CrossRef]

Ishizuka, T.; Bao, H.L.; Xu, Y. 19F NMR Spectroscopy for the Analysis of DNA G-Quadruplex Structures Using 19F-Labeled
Nucleobase. In Methods in Molecular Biology; Springer: Berlin, Germany, 2019; Volume 2035, pp. 407-433.

Bao, H.L.; Ishizuka, T.; Iwanami, A.; Oyoshi, T.; Xu, Y. A Simple and Sensitive 19F NMR Approach for Studying the Interaction of
RNA G-Quadruplex with Ligand Molecule and Protein. Chem. Sel. 2017, 2, 4170-4175. [CrossRef]

Bao, H.L,; Ishizuka, T.; Sakamoto, T.; Fujimoto, K.; Uechi, T.; Kenmochi, N.; Xu, Y. Characterization of human telomere RNA
G-quadruplex structures in vitro and in living cells using 19F NMR spectroscopy. Nucleic Acids Res. 2017, 45, 5501-5511.
[CrossRef]

Bao, H.L.; Liu, H.S,; Xu, Y. Hybrid-type and two-tetrad antiparallel telomere DNA G-quadruplex structures in living human cells.
Nucleic Acids Res. 2019, 47, 4940-4947. [CrossRef]

Bao, H.L.; Xu, Y. Telomeric DNA-RNA-hybrid G-quadruplex exists in environmental conditions of HeLa cells. Chem. Commun.
2020, 56, 6547-6550. [CrossRef]

Parkinson, G.N.; Collie, G.W. X-ray Crystallographic Studies of G-Quadruplex Structures. In Methods in Molecular Biology;
Springer: Berlin, Germany, 2019; Volume 2035, pp. 131-155.

Clark, G.R;; Pytel, P.D.; Squire, C.J.; Neidle, S. Structure of the first parallel DNA quadruplex-drug complex. . Am. Chem. Soc.
2003, 125, 4066—4067. [CrossRef]

Haider, S.M.; Parkinson, G.N.; Neidle, S. Structure of a G-quadruplex-ligand complex. . Mol. Biol. 2003, 326, 117-125. [CrossRef]
Lin, L.Y.; McCarthy, S.; Powell, B.M.; Manurung, Y.; Xiang, .M.; Dean, W.L.; Chaires, B.; Yatsunyk, L.A. Biophysical and X-ray
structural studies of the (GGGTT)3GGG G-quadruplex in complex with N-methyl mesoporphyrin IX. PLoS ONE 2020, 15,
€0241513. [CrossRef] [PubMed]

McQuaid, K.; Abell, H.; Gurung, S.P,; Allan, D.R.; Winter, G.; Sorensen, T.; Cardin, D.J.; Brazier, J.A.; Cardin, C.J.; Hall, ]J.P.
Structural Studies Reveal Enantiospecific Recognition of a DNA G-Quadruplex by a Ruthenium Polypyridyl Complex. Angew.
Chem. Int. Ed. 2019, 58, 9881-9885. [CrossRef] [PubMed]

Guarra, F; Marzo, T.; Ferraroni, M.; Papi, F; Bazzicalupi, C.; Gratteri, P.; Pescitelli, G.; Messori, L.; Biver, T.; Gabbiani, C.
Interaction of a gold(i) dicarbene anticancer drug with human telomeric DNA G-quadruplex: Solution and computationally
aided X-ray diffraction analysis. Dalt. Trans. 2018, 47, 16132-16138. [CrossRef] [PubMed]

Bazzicalupi, C.; Ferraroni, M.; Bilia, A.R.; Scheggi, F.; Gratteri, P. The crystal structure of human telomeric DNA complexed with
berberine: An interesting case of stacked ligand to G-tetrad ratio higher than 1:1. Nucleic Acids Res. 2013, 41, 632-638. [CrossRef]
Prado, E.; Bonnat, L.; Bonnet, H.; Lavergne, T.; Van Der Heyden, A.; Pratviel, G.; Dejeu, J.; Defrancq, E. Influence of the SPR
Experimental Conditions on the G-Quadruplex DNA Recognition by Porphyrin Derivatives. Langmuir 2018, 34, 13057-13064.
[CrossRef]


http://doi.org/10.1103/PhysRev.92.212.2
http://doi.org/10.1016/0079-6565(94)90000-0
http://doi.org/10.1002/(SICI)1521-3773(19990614)38:12&lt;1784::AID-ANIE1784&gt;3.0.CO;2-Q
http://doi.org/10.1023/A:1013302231549
http://doi.org/10.1093/nar/gkz1015
http://doi.org/10.1016/j.bbagen.2016.12.016
http://doi.org/10.1074/jbc.M117.781906
http://doi.org/10.1371/annotation/e49600ba-2cfa-45c6-9984-2b337ad73add
http://doi.org/10.1093/nar/gkab330
http://www.ncbi.nlm.nih.gov/pubmed/33978746
http://doi.org/10.1038/s41598-017-03906-3
http://doi.org/10.1002/anie.201308063
http://www.ncbi.nlm.nih.gov/pubmed/24356977
http://doi.org/10.1038/s41467-018-05810-4
http://www.ncbi.nlm.nih.gov/pubmed/30158518
http://doi.org/10.3762/bjoc.17.28
http://doi.org/10.1002/slct.201700711
http://doi.org/10.1093/nar/gkx109
http://doi.org/10.1093/nar/gkz276
http://doi.org/10.1039/D0CC02053B
http://doi.org/10.1021/ja0297988
http://doi.org/10.1016/S0022-2836(02)01354-2
http://doi.org/10.1371/journal.pone.0241513
http://www.ncbi.nlm.nih.gov/pubmed/33206666
http://doi.org/10.1002/anie.201814502
http://www.ncbi.nlm.nih.gov/pubmed/30958918
http://doi.org/10.1039/C8DT03607A
http://www.ncbi.nlm.nih.gov/pubmed/30378627
http://doi.org/10.1093/nar/gks1001
http://doi.org/10.1021/acs.langmuir.8b02942

Pharmaceuticals 2021, 14, 769 38 of 40

171.

172.

173.

174.

175.

176.
177.

178.

179.

180.

181.

182.

183.

184.

185.

186.

187.

188.

189.

190.

191.

192.

193.

194.

195.

196.

Perenon, M.; Bonnet, H.; Lavergne, T.; Dejeu, J.; Defrancq, E. Surface plasmon resonance study of the interaction of: N -methyl
mesoporphyrin IX with G-quadruplex DNA. Phys. Chem. Chem. Phys. 2020, 22, 4158-4164. [CrossRef] [PubMed]

Miranda, A.; Santos, T.; Largy, E.; Cruz, C. Locking up the as1411 aptamer with a flanking duplex: Towards an improved
nucleolin-targeting. Pharmaceuticals 2021, 14, 121. [CrossRef] [PubMed]

Vo, T,; Paul, A.; Kumar, A.; Boykin, D.W.; Wilson, W.D. Biosensor-surface plasmon resonance: A strategy to help establish a new
generation RNA-specific small molecules. Methods 2019, 167, 15-27. [CrossRef] [PubMed]

Tan, W.; Zhou, |.; Gu, J.; Xu, M.; Xu, X.; Yuan, G. Probing the G-quadruplex from hsa-miR-3620-5p and inhibition of its interaction
with the target sequence. Talanta 2016, 154, 560-566. [CrossRef] [PubMed]

Pagano, B.; Mattia, C.A.; Giancola, C. Applications of isothermal titration calorimetry in biophysical studies of G-quadruplexes.
Int. ]. Mol. Sci. 2009, 10, 2935-2957. [CrossRef]

Giancola, C.; Pagano, B. Energetics of ligand binding to G-quadruplexes. Top. Curr. Chem. 2013, 330, 211-242. [CrossRef]
Funke, A.; Weisz, K. Revealing the Energetics of Ligand-Quadruplex Interactions Using Isothermal Titration Calorimetry. In
Methods in Molecular Biology; Springer: Berlin, Germany, 2019; Volume 2035, pp. 45-61.

Funke, A.; Dickerhoff, J.; Weisz, K. Towards the Development of Structure-Selective G-Quadruplex-Binding Indolo[3,2-
b]quinolines. Chem. Eur. ]. 2016, 22, 3170-3181. [CrossRef]

Funke, A.; Weisz, K. Comprehensive Thermodynamic Profiling for the Binding of a G-Quadruplex Selective Indoloquinoline. J.
Phys. Chem. 2017, 121, 5735-5743. [CrossRef]

Funke, A ; Karg, B.; Dickerhoff, J.; Balke, D.; Miiller, S.; Weisz, K. Ligand-Induced Dimerization of a Truncated Parallel MYC
G-Quadruplex. ChemBioChem 2018, 19, 505-512. [CrossRef] [PubMed]

Pérez-Arnaiz, C.; Busto, N.; Santolaya, J.; Leal, ] M.; Barone, G.; Garcia, B. Kinetic evidence for interaction of TMPyP4 with two
different G-quadruplex conformations of human telomeric DNA. Biochim. Biophys. Acta Gen. Subj. 2018, 1862, 522-531. [CrossRef]
Dupont, ].I; Henderson, K.L.; Metz, A.; Le, VH.; Emerson, ].P.; Lewis, E.A. Calorimetric and spectroscopic investigations of
the binding of metallated porphyrins to G-quadruplex DNA. Biochim. Biophys. Acta Gen. Subj. 2016, 1860, 902-909. [CrossRef]
[PubMed]

Bon¢ina, M.; Podlipnik, C.; Piantanida, L; Eilmes, J.; Teulade-Fichou, M.P; Vesnaver, G.; Lah, J. Thermodynamic fingerprints of
ligand binding to human telomeric G-quadruplexes. Nucleic Acids Res. 2015, 43, 10376-10386. [CrossRef] [PubMed]

Bon¢ina, M.; Hamon, E; Islam, B.; Teulade-Fichou, M.P; Vesnaver, G.; Haider, S.; Lah, J. Dominant Driving Forces in Human
Telomere Quadruplex Binding-Induced Structural Alterations. Biophys. J. 2015, 108, 2903-2911. [CrossRef] [PubMed]

Alniss, H.; Zamiri, B.; Khalaj, M.; Pearson, C.E.; Macgregor, R.B. Thermodynamic and spectroscopic investigations of TMPyP4
association with guanine- and cytosine-rich DNA and RNA repeats of C9orf72. Biochem. Biophys. Res. Commun. 2018, 495,
2410-2417. [CrossRef]

Yuan, G.; Zhang, Q.; Zhou, J.; Li, H. Mass spectrometry of G-quadruplex DNA: Formation, recognition, property, conversion, and
conformation. Mass Spectrom. Rev. 2011, 30, 1121-1142. [CrossRef]

Li, H. Mass Spectroscopic Study of G-Quadruplex. In Methods in Molecular Biology; Springer: Berlin, Germany, 2019; Volume 2035,
pp. 105-116.

Lecours, M.].; Marchand, A.; Anwar, A.; Guetta, C.; Hopkins, W.S.; Gabelica, V. What stoichiometries determined by mass
spectrometry reveal about the ligand binding mode to G-quadruplex nucleic acids. Biochim. Biophys. Acta Gen. Subj. 2017, 1861,
1353-1361. [CrossRef]

Marchand, A.; Strzelecka, D.; Gabelica, V. Selective and Cooperative Ligand Binding to Antiparallel Human Telomeric DNA
G-Quadruplexes. Chem. Eur. J. 2016, 22, 9551-9555. [CrossRef]

Ceschi, S.; Largy, E.; Gabelica, V.; Sissi, C. A two-quartet G-quadruplex topology of human KIT2 is conformationally selected by a
perylene derivative. Biochimie 2020, 179, 77-84. [CrossRef]

Marchand, A.; Rosu, F.; Zenobi, R.; Gabelica, V. Thermal Denaturation of DNA G-Quadruplexes and Their Complexes with
Ligands: Thermodynamic Analysis of the Multiple States Revealed by Mass Spectrometry. |. Am. Chem. Soc. 2018, 140,
12553-12565. [CrossRef]

Paul, D.; Marchand, A.; Verga, D.; Teulade-Fichou, M.P; Bombard, S.; Rosu, F.; Gabelica, V. Probing ligand and cation binding
sites in G-quadruplex nucleic acids by mass spectrometry and electron photodetachment dissociation sequencing. Analyst 2019,
144, 3518-3524. [CrossRef] [PubMed]

Scalabrin, M.; Palumbo, M.; Richter, S.N. Highly Improved Electrospray lonization-Mass Spectrometry Detection of G-
Quadruplex-Folded Oligonucleotides and Their Complexes with Small Molecules. Anal. Chem. 2017, 89, 8632-8637. [CrossRef]
[PubMed]

Carvalho, J.; Cruz, C. Forster resonance energy transfer for studying nucleic acids denaturation: A chemical and biological
sciences laboratory experiment. Biochem. Mol. Biol. Educ. 2020, 48, 329-336. [CrossRef]

Carvalho, J.; Quintela, T.; Gueddouda, N.M.; Bourdoncle, A.; Mergny, ].L.; Salgado, G.F.; Queiroz, J.A.; Cruz, C. Phenanthroline
polyazamacrocycles as G-quadruplex DNA binders. Org. Biomol. Chem. 2018, 16, 2776-2786. [CrossRef]

Lavrado, J.; Borralho, PM.; Ohnmacht, S.A.; Castro, R.E.; Rodrigues, C.M.P,; Moreira, R.; Dos Santos, D.J.V.A.; Neidle, S.; Paulo,
A. Synthesis, G-quadruplex stabilisation, docking studies, and effect on cancer cells of indolo[3,2-b]quinolines with one, two, or
three basic side chains. Chem. Med. Chem. 2013, 8, 1648-1661. [CrossRef]


http://doi.org/10.1039/C9CP06321H
http://www.ncbi.nlm.nih.gov/pubmed/32039427
http://doi.org/10.3390/ph14020121
http://www.ncbi.nlm.nih.gov/pubmed/33557379
http://doi.org/10.1016/j.ymeth.2019.05.005
http://www.ncbi.nlm.nih.gov/pubmed/31077819
http://doi.org/10.1016/j.talanta.2016.02.037
http://www.ncbi.nlm.nih.gov/pubmed/27154715
http://doi.org/10.3390/ijms10072935
http://doi.org/10.1007/128-2012-347
http://doi.org/10.1002/chem.201504416
http://doi.org/10.1021/acs.jpcb.7b02686
http://doi.org/10.1002/cbic.201700593
http://www.ncbi.nlm.nih.gov/pubmed/29228465
http://doi.org/10.1016/j.bbagen.2017.10.020
http://doi.org/10.1016/j.bbagen.2015.09.004
http://www.ncbi.nlm.nih.gov/pubmed/26363462
http://doi.org/10.1093/nar/gkv1167
http://www.ncbi.nlm.nih.gov/pubmed/26546516
http://doi.org/10.1016/j.bpj.2015.05.001
http://www.ncbi.nlm.nih.gov/pubmed/26083930
http://doi.org/10.1016/j.bbrc.2017.12.108
http://doi.org/10.1002/mas.20315
http://doi.org/10.1016/j.bbagen.2017.01.010
http://doi.org/10.1002/chem.201601937
http://doi.org/10.1016/j.biochi.2020.09.015
http://doi.org/10.1021/jacs.8b07302
http://doi.org/10.1039/C9AN00398C
http://www.ncbi.nlm.nih.gov/pubmed/31020955
http://doi.org/10.1021/acs.analchem.7b01282
http://www.ncbi.nlm.nih.gov/pubmed/28787153
http://doi.org/10.1002/bmb.21353
http://doi.org/10.1039/C8OB00247A
http://doi.org/10.1002/cmdc.201300288

Pharmaceuticals 2021, 14, 769 39 of 40

197.

198.

199.

200.

201.

202.

203.

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

217.

218.

219.

220.

Lavrado, J.; Brito, H.; Borralho, PM.; Ohnmacht, S.A.; Kim, N.S.; Leitao, C.; Pisco, S.; Gunaratnam, M.; Rodrigues, C.M.P.; Moreira,
R.; et al. KRAS oncogene repression in colon cancer cell lines by G-quadruplex binding indolo[3,2-c]quinolines. Sci. Rep. 2015, 5,
9696. [CrossRef]

Cadoni, E.; Magalh, PR.; Em, RM.; Mendes, E.; Jorge, V.; Carvalho, ].; Cruz, C.; Victor, B.L.; Paulo, A. New (Iso) quinolinyl-
pyridine-2,6-dicarboxamide G-Quadruplex Stabilizers. A Structure-Activity Relationship Study. Pharmaceuticals 2021, 14, 669.
[CrossRef]

Noureini, S.K.; Esmaeili, H.; Abachi, F; Khiali, S.; Islam, B.; Kuta, M.; Saboury, A.A.; Hoffmann, M.; Sponer, J.; Parkinson, G.;
et al. Selectivity of major isoquinoline alkaloids from Chelidonium majus towards telomeric G-quadruplex: A study using a
transition-FRET (t-FRET) assay. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 2020-2030. [CrossRef] [PubMed]

Rakers, V.; Cadinu, P.;; Edel, ].B.; Vilar, R. Development of microfluidic platforms for the synthesis of metal complexes and
evaluation of their DNA affinity using online FRET melting assays. Chem. Sci. 2018, 9, 3459-3469. [CrossRef]

De Cian, A.; Guittat, L.; Shin-ya, K,; Riou, ].E; Mergny, J.L. Affinity and selectivity of G4 ligands measured by FRET. Nucleic Acids
Symp. Ser. 2005, 49, 235-236. [CrossRef] [PubMed]

Luo, Y;; Granzhan, A.; Verga, D.; Mergny, ].L. FRET-MC: A fluorescence melting competition assay for studying G4 structures
in vitro. Biopolymers 2021, 112, e23415. [CrossRef] [PubMed]

Monchaud, D.; Allain, C.; Teulade-Fichou, M.P. Development of a fluorescent intercalator displacement assay (G4-FID) for
establishing quadruplex-DNA affinity and selectivity of putative ligands. Bioorg. Med. Chem. Lett. 2006, 16, 4842—4845. [CrossRef]
Monchaud, D.; Teulade-Fichou, M.P. G4-FID: A fluorescent DNA probe displacement assay for rapid evaluation of quadruplex
ligands. Methods Mol. Biol. 2010, 608, 257-271. [CrossRef] [PubMed]

Monchaud, D.; Allain, C.; Bertrand, H.; Smargiasso, N.; Rosu, F,; Gabelica, V.; De Cian, A.; Mergny, J.L.; Teulade-Fichou, M.P.
Ligands playing musical chairs with G-quadruplex DNA: A rapid and simple displacement assay for identifying selective
G-quadruplex binders. Biochimie 2008, 90, 1207-1223. [CrossRef] [PubMed]

Largy, E.; Hamon, E.; Teulade-Fichou, M.P. Development of a high-throughput G4-FID assay for screening and evaluation of
small molecules binding quadruplex nucleic acid structures. Anal. Bioanal. Chem. 2011, 400, 3419-3427. [CrossRef]

Tran, PL.T,; Largy, E.; Hamon, F,; Teulade-Fichou, M.P.; Mergny, J.L. Fluorescence intercalator displacement assay for screening
G4 ligands towards a variety of G-quadruplex structures. Biochimie 2011, 93, 1288-1296. [CrossRef]

Beauvineau, C.; Guetta, C.; Teulade-Fichou, M.P.; Mahuteau-Betzer, F. PhenDV, a turn-off fluorescent quadruplex DNA probe for
improving the sensitivity of drug screening assays. Org. Biomol. Chem. 2017, 15, 7117-7121. [CrossRef]

Desai, N.; Shah, V.; Datta, B. Assessing G4-binding ligands in vitro and in cellulo using dimeric carbocyanine dye displacement
assay. Molecules 2021, 26, 1400. [CrossRef]

del Villar-Guerra, R.; Gray, R.D.; Trent, J.O.; Chaires, ].B. A rapid fluorescent indicator displacement assay and principal
component/cluster data analysis for determination of ligand-nucleic acid structural selectivity. Nucleic Acids Res. 2018, 46, e41.
[CrossRef]

Santos, T.; Pereira, P; Sousa, F.; Queiroz, J.A.; Cruz, C. Purification of supercoiled G-quadruplex pDNA for in vitro transcription.
Sep. Purif. Technol. 2016, 163, 59-71. [CrossRef]

Smith, J.S.; Johnson, E.B. Isolation of G-quadruplex DNA using NMM-sepharose affinity chromatography. Methods Mol. Biol.
2010, 608, 207-221. [CrossRef]

Ferreira, J.; Santos, T.; Pereira, P.; Corvo, M.C.; Queiroz, ].A.; Sousa, F.; Cruz, C. Naphthalene amine support for G-quadruplex
isolation. Analyst 2017, 142, 2982-2994. [CrossRef] [PubMed]

Chang, T,; Liu, X.; Cheng, X; Qi, C.; Mei, H.; Shangguan, D. Selective isolation of G-quadruplexes by affinity chromatography. J.
Chromatogr. 2012, 1246, 62-68. [CrossRef] [PubMed]

Musumeci, D.; Amato, J.; Randazzo, A.; Novellino, E.; Giancola, C.; Montesarchio, D.; Pagano, B. G-quadruplex on oligo affinity
support (G4-OAS): An easy affinity chromatography-based assay for the screening of G-quadruplex ligands. Anal. Chem. 2014,
86, 4126-4130. [CrossRef] [PubMed]

Musumeci, D.; Amato, J.; Zizza, P; Platella, C.; Cosconati, S.; Cingolani, C.; Biroccio, A.; Novellino, E.; Randazzo, A.; Giancola,
C.; et al. Tandem application of ligand-based virtual screening and G4-OAS assay to identify novel G-quadruplex-targeting
chemotypes. Biochim. Biophys. Acta Gen. Subj. 2017, 1861, 1341-1352. [CrossRef] [PubMed]

Platella, C.; Musumeci, D.; Arciello, A.; Doria, F; Freccero, M.; Randazzo, A.; Amato, J.; Pagano, B.; Montesarchio, D. Controlled
Pore Glass-based oligonucleotide affinity support: Towards High Throughput Screening methods for the identification of
conformation-selective G-quadruplex ligands. Anal. Chim. Acta 2018, 1030, 133-141. [CrossRef]

Pirota, V.; Platella, C.; Musumeci, D.; Benassi, A.; Amato, J.; Pagano, B.; Colombo, G.; Freccero, M.; Doria, F.; Montesarchio, D.
On the binding of naphthalene diimides to a human telomeric G-quadruplex multimer model. Int. J. Biol. Macromol. 2021, 166,
1320-1334. [CrossRef]

Ray, S.; Tillo, D.; Boer, R.E.; Assad, N.; Barshai, M.; Wu, G.; Orenstein, Y.; Yang, D.; Schneekloth, ].S.; Vinson, C. Custom DNA
Microarrays Reveal Diverse Binding Preferences of Proteins and Small Molecules to Thousands of G-Quadruplexes. ACS Chem.
Biol. 2020, 15, 925-935. [CrossRef]

Wu, G; Tillo, D.; Ray, S.; Chang, T.C.; Schneekloth, J.S.; Vinson, C.; Yang, D. Custom G4 microarrays reveal selective G-quadruplex
recognition of small molecule BMVC: A large-scale assessment of ligand binding selectivity. Molecules 2020, 25, 3465. [CrossRef]
[PubMed]


http://doi.org/10.1038/srep09696
http://doi.org/10.3390/ph14070669
http://doi.org/10.1016/j.bbagen.2017.05.002
http://www.ncbi.nlm.nih.gov/pubmed/28479277
http://doi.org/10.1039/C8SC00528A
http://doi.org/10.1093/nass/49.1.235
http://www.ncbi.nlm.nih.gov/pubmed/17150720
http://doi.org/10.1002/bip.23415
http://www.ncbi.nlm.nih.gov/pubmed/33368198
http://doi.org/10.1016/j.bmcl.2006.06.067
http://doi.org/10.1007/978-1-59745-363-9_15
http://www.ncbi.nlm.nih.gov/pubmed/20012426
http://doi.org/10.1016/j.biochi.2008.02.019
http://www.ncbi.nlm.nih.gov/pubmed/18343231
http://doi.org/10.1007/s00216-011-5018-z
http://doi.org/10.1016/j.biochi.2011.05.011
http://doi.org/10.1039/C7OB01705G
http://doi.org/10.3390/molecules26051400
http://doi.org/10.1093/nar/gky019
http://doi.org/10.1016/j.seppur.2016.02.036
http://doi.org/10.1007/978-1-59745-363-9_13
http://doi.org/10.1039/C7AN00648A
http://www.ncbi.nlm.nih.gov/pubmed/28744540
http://doi.org/10.1016/j.chroma.2012.02.026
http://www.ncbi.nlm.nih.gov/pubmed/22398385
http://doi.org/10.1021/ac500444m
http://www.ncbi.nlm.nih.gov/pubmed/24725064
http://doi.org/10.1016/j.bbagen.2017.01.024
http://www.ncbi.nlm.nih.gov/pubmed/28130159
http://doi.org/10.1016/j.aca.2018.04.071
http://doi.org/10.1016/j.ijbiomac.2020.11.013
http://doi.org/10.1021/acschembio.9b00934
http://doi.org/10.3390/molecules25153465
http://www.ncbi.nlm.nih.gov/pubmed/32751510

Pharmaceuticals 2021, 14, 769 40 of 40

221.

222.

223.

224.

225.

226.

227.

228.

229.

230.

231.

Felsenstein, K.M.; Saunders, L.B.; Simmons, ].K.; Leon, E.; Calabrese, D.R.; Zhang, S.; Michalowski, A.; Gareiss, P.; Mock, B.A.;
Schneekloth, J.S. Small Molecule Microarrays Enable the Identification of a Selective, Quadruplex-Binding Inhibitor of MYC
Expression. ACS Chem. Biol. 2016, 11, 138-148. [CrossRef] [PubMed]

Calabrese, D.R.; Chen, X.; Leon, E.C.; Gaikwad, S.M.; Phyo, Z.; Hewitt, WM.; Alden, S.; Hilimire, T.A.; He, E; Michalowski, A.M.;
et al. Chemical and structural studies provide a mechanistic basis for recognition of the MYC G-quadruplex. Nat. Commun. 2018,
9, 4229. [CrossRef] [PubMed]

Gracie, K.; Dhamodharan, V.; Pradeepkumar, P.I.; Dhamodharan, V.; Graham, D. Qualitative SERS analysis of G-quadruplex
DNAs using selective stabilising ligands. Analyst 2014, 139, 4458-4465. [CrossRef]

Aznauryan, M.; Noer, S.L.; Pedersen, C.W.; Mergny, ]J.L.; Teulade-Fichou, M.P;; Birkedal, V. Ligand Binding to Dynamically
Populated G-Quadruplex DNA. ChemBioChem 2021, 22, 1811-1817. [CrossRef]

Rosu, E; De Pauw, E.; Guittat, L.; Alberti, P.; Lacroix, L.; Mailliet, P.; Riou, J.F.; Mergny, J.L. Selective interaction of ethidium
derivatives with quadruplexes: An equilibrium dialysis and electrospray ionization mass spectrometry analysis. Biochemistry
2003, 42, 10361-10371. [CrossRef]

Saad, M.; Guédin, A.; Amor, S.; Bedrat, A.; Tourasse, N.J.; Fayyad-Kazan, H.; Pratviel, G.; Lacroix, L.; Mergny, ].L. Mapping and
characterization of G-quadruplexes in the genome of the social amoeba Dictyostelium discoideum. Nucleic Acids Res. 2019, 47,
4363-4374. [CrossRef]

Jamroskovic, J.; Obi, I.; Movahedi, A.; Chand, K.; Chorell, E.; Sabouri, N. Identification of putative G-quadruplex DNA structures
in S. pombe genome by quantitative PCR stop assay. DNA Repair. 2019, 82, 102678. [CrossRef]

Wu, G.; Han, H. A DNA Polymerase Stop Assay for Characterization of G-Quadruplex Formation and Identification of G-
Quadruplex-Interactive Compounds. In Methods in Molecular Biology; Springer: Berlin, Germany, 2019; Volume 2035, pp. 223-231.
Gomez, D.; Mergny, ].L.; Riou, J.E. Detection of telomerase inhibitors based on G-quadruplex ligands by a modified telomeric
repeat amplification protocol assay. Cancer Res. 2002, 62, 3365-3368.

Panda, D.; Saha, P.; Chaudhuri, R.; Prasanth, T.; Ravichandiran, V.; Dash, ]. A Competitive Pull-Down Assay Using G-quadruplex
DNA Linked Magnetic Nanoparticles to Determine Specificity of G-quadruplex Ligands. Anal. Chem. 2019, 91, 7705-7711.
[CrossRef]

Flusberg, D.A.; Rizvi, N.F,; Kutilek, V.; Andrews, C.; Saradjian, P.; Chamberlin, C.; Curran, P; Swalm, B.; Kattar, S.; Smith, G.F;
et al. Identification of G-Quadruplex-Binding Inhibitors of Myc Expression through Affinity Selection-Mass Spectrometry. SLAS
Discov. 2019, 24, 142-157. [CrossRef] [PubMed]


http://doi.org/10.1021/acschembio.5b00577
http://www.ncbi.nlm.nih.gov/pubmed/26462961
http://doi.org/10.1038/s41467-018-06315-w
http://www.ncbi.nlm.nih.gov/pubmed/30315240
http://doi.org/10.1039/C4AN00551A
http://doi.org/10.1002/cbic.202000792
http://doi.org/10.1021/bi034531m
http://doi.org/10.1093/nar/gkz196
http://doi.org/10.1016/j.dnarep.2019.102678
http://doi.org/10.1021/acs.analchem.9b00889
http://doi.org/10.1177/2472555218796656
http://www.ncbi.nlm.nih.gov/pubmed/30204533

	Introduction 
	Overview of G4-Interacting Ligands 
	DNA G4-Interacting Ligands 
	RNA G4-Interacting Ligands 

	Methods to Characterize G4/Ligand Interactions 
	Structure-Based Methods to Investigate G4/Ligand Interactions 
	Circular Dichroism (CD) 
	Nuclear Magnetic Resonance (NMR) 
	X-ray Crystallography 

	Affinity- and Apparent Affinity-Based Methods to Investigate G4/Ligand Interactions 
	Surface Plasmon Resonance (SPR) 
	Isothermal Titration Calorimetry (ITC) 
	Mass Spectrometry (MS) 

	High-Throughput Methods to Investigate G4/Ligand Interactions 
	FRET-Melting 
	G4-FID Screening 
	Affinity Chromatography Screening 
	Microarrays-Based Screening 


	Conclusions 
	References

