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Abstract: Virus-like particles from a variety of RNA bacteriophages have turned out to be useful
platforms for delivery of vaccine antigens in a highly immunogenic format. Here we update the
current state of development of RNA phage VLPs as platforms for presentation of diverse antigens
by genetic, enzymatic, and chemical display methods.
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1. Introduction

Since their discovery in the early 1960s the single-strand RNA bacteriophages have
played important roles in the development of Molecular Biology. Even now, deep in the
genomics era it is worth remembering that bacteriophage MS2′s was the first genome ever
sequenced [1]. Before recombinant DNA, RNA phages were extensively utilized in studies
of protein synthesis because they provided unique access to a pure form of mRNA. They
also provided an extensively studied example of RNA-protein recognition, and have served
as powerful models of RNA virus structure and assembly. We now know the detailed 3D
structures of something such as 30 RNA phage capsids. To better grasp the full scope of
knowledge in this area, consult Paul Pumpen’s comprehensive treatise, single-stranded
RNA phages: from molecular biology to nanotechnology [2]. Here, we focus on the use of
RNA phage-derived virus-like particles as platforms for vaccine development.

The term virus-like particle (VLP) has several alternative usages [3], so we begin by
noting that for our purposes a VLP is the non-infectious capsid that forms when viral
structural proteins self-assemble in the absence of an intact viral genome. Structurally and
immunologically they can be virtually indistinguishable from authentic virions, which ex-
plains why VLPs derived from Human papilloma and Hepatitis-B virus structural proteins
have been so effective as vaccines against their corresponding viruses. Here we describe the
use of VLPs as scaffolds for immunogenic presentation of heterologous antigens. We focus
on VLP-based platforms derived from several specific RNA bacteriophages, emphasizing
our own experience where it applies, but also describing some other relevant advances in
the field.

Why are RNA phage VLPs useful as vaccine platforms? First, like virus particles gen-
erally, VLPs are intrinsically immunogenic. Their nano-particulate nature ensures efficient
uptake by antigen-presenting cells and their densely repetitive multivalent structures pro-
mote efficient B-cell receptor cross-linking, thereby stimulating differentiation and antibody
production [4–6]. These features combine to guarantee that almost anything presented on
the VLP surface elicits a strong antibody response. Furthermore, the ability of these VLPs
to package their own mRNAs creates the genotype-phenotype linkage necessary for an
affinity-selection technology analogous to phage display. This means that an epitope can
be identified by biopanning on a neutralizing antibody target, and then presented to the
immune system in the same structural context present during its affinity-optimization. In
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favorable cases, the resulting VLP selectant can serve as a vaccine to elicit antibodies with
specificities similar to that of the selecting antibody.

For our purposes, bacteriophage MS2 will serve as the prototype. The viral capsid
consists of 180 copies of a 129-amino acid coat protein. It folds as a homodimer of in-
tertwining subunits (Figure 1) with dimerization accomplished, in part, by edge-to-edge
interactions between each subunit’s 5-stranded ß-sheet [7,8]. Additionally, each monomer
throws an alpha-helical arm over the ß-sheet of its companion subunit, thus forming the
protein’s hydrophobic core and completing the dimer-stabilizing interactions. The resulting
10-stranded ß-sheet provides the recognition surface for a unique hairpin in viral RNA.
This specific RNA-protein interaction mediates coat protein’s translational repression and
genome encapsidation functions. The co-assembly of coat protein dimers with one copy of
the maturase protein and the 3569 nucleotide RNA genome completes the viral particle.
Maturase is essential for virus infectivity because it mediates receptor binding and genome
entry, but neither the maturase protein nor the viral genome are necessary for assembly
of 90 dimers into the icosahedral VLPs that form when coat protein is expressed from
a plasmid in E. coli. This makes possible the manipulation of the VLP by conventional
recombinant DNA methods in plasmid-based systems entirely divorced from the other
requirements of the phage’s biology. The other RNA phages broadly follow the molecular
precedents set by MS2. We will note differences as they become relevant.
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Figure 1. The structure of RNA phage coat proteins and VLPs as exemplified by MS2. At the bottom
left is a top-down view of the coat protein dimer. Note the proximity of N- and C-termini of the two
subunits, which facilitated construction of a single-chain dimer, and the locations of the AB-loops.
At the top left is a side-view of the dimer with its AB-loops in yellow space-fill. On the right, the
structure of the VLP showing the density of display of AB-loop surface display (yellow).

2. The Bacteriophage MS2 VLP as Display Platform

A surface loop connecting MS2 coat protein’s A and B ß-strands is prominently dis-
played on the VLP surface and offers a natural location for display of foreign peptides
(Figure 1). The first use of MS2 for epitope display was reported in 1993 with the construc-
tion of several AB-loop insertions [9]. One, for example, displayed a 24-amino-acid peptide
from influenza virus, which turned out to be strongly immunogenic in mice. Unsurpris-
ingly however, most AB-loop insertions perturb coat protein folding [10,11]. This initially
limited MS2′s utility as a display platform but later construction of a single-chain dimer
enhanced the protein’s tolerance of insertions by stabilizing it against all sorts of mutational
perturbations [10–12]. Figure 1 shows the physical proximity of the N- and C-termini of
coat protein subunits in the dimer. Duplicating the coat-encoding DNA sequence and then
fusing the reading frames of the two copies created the single-chain dimer. It maintains
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both the RNA binding and VLP assembly functions of the wild-type in a protein that is far
more stable and considerably more tolerant of a variety of mutational insults [10,11,13,14].
Initial experiments showed that random sequence peptides up to ten amino acids (the
longest then tested) were tolerated almost universally when inserted into the AB-loop of
the single-chain dimer’s C-terminal half. The frequency of folding failures increased with
increasing peptide length, but we now know that peptides up to at least 24 amino acids
are frequently accepted, especially at lower growth temperatures. Because both ends of
AB-loop insertions are tethered, the displayed peptides are conformationally constrained.
An alternative, unconstrained display site is present at the coat protein N-terminus. N-
terminal fusions tend to be less disruptive of protein folding since they do not interrupt
the coat protein sequence, but even they benefit from the stabilizing influence of the single-
chain dimer. Furthermore, because it has only half the number of N-termini, use of the
single-chain dimer reduces the crowding at three-fold capsid symmetry axes that might
sometimes interfere with VLP assembly [10].

The existence of display sites that broadly tolerate peptide insertions or fusions,
together with the genotype/phenotype linkage provided by coat protein’s ability to en-
capsidate its own mRNA, enabling two complementary approaches to vaccine design.
First, the MS2 platform allows the deliberate, engineered presentation of already-identified
epitopes. Second, it supports epitope identification by affinity-selection from complex
random-sequence or antigen-fragment libraries by biopanning on antibody targets. When
a selecting antibody has neutralizing activity, the VLPs it selects sometimes have the ability
to elicit neutralizing antibody responses. The platform thus integrates epitope discovery
and antigen presentation functions into a single particle.

3. Engineered Display of a Known Epitope: An MS2 VLP-Based Universal
HPV Vaccine

Human papillomavirus (HPV) is the cause of nearly all cervical cancer. Existing HPV
vaccines are based on genome-less VLPs assembled from the HPV L1 protein, the major
structural component of the HPV virion. Like VLPs generally, L1-derived VLPs are highly
immunogenic and therefore are extremely effective in preventing HPV infection [15]. How-
ever, because of L1 variability, over a hundred different HPV types exist in nature. Since the
efficacy of existing HPV vaccines is largely restricted to homologous serotypes, VLPs made
from HPV16 L1, for example, protect against HPV16 infection but are largely ineffective
against other types. This is why the most broadly protective vaccines presently comprise
nine different type-specific VLPs, which together protect against the most common HPV
infections. The minor capsid protein, L2, is more conserved than L1, but is not present
in these vaccines, and in any case is normally hidden and therefore non-immunogenic in
the authentic HPV virion. L2 is apparently only transiently exposed during cell entry, at
which point it becomes susceptible to neutralization by anti-L2 antibodies if, somehow,
they are already present. We produced two versions of a universal HPV vaccine by in-
troducing a 17-amino acid peptide from L2 at the N-terminus of MS2 coat protein, and
into the AB-loop of PP7 coat protein. We immunized mice with the resulting VLPs. In
both cases, animals mounted high titer anti-L2 responses that conferred protection against
genital infection by highly divergent HPV pseudovirion serotypes. Importantly, the VLP-
induced antibody responses were durable, falling only a slightly during sixteen months
after immunization. [16–18].

4. Vaccines by Affinity-Selection

In addition to its role as the major structural protein of the virus capsid, coat protein
functions as a specific RNA-binding protein to accomplish translational repression of
replicase synthesis and encapsidation of the viral genome. Both functions depend on
recognition of a hairpin at the start of the replicase cistron. As coat protein accumulates
during the late phases of infection the dimer recognizes this hairpin (the translational
operator) and prevents access of ribosomes to the replicase translation initiation site. This
RNA-binding event was also thought to serve as a unique packaging signal (or pac site)
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responsible for genome encapsidation. In this view, a single RNA-protein interaction
mediated the transition from the viral genome synthesis phase to the virus assembly stage
of the infection cycle. We now understand that this picture is too simple. In reality, genome
encapsidation is accomplished through interactions of multiple coat protein dimers with
operator-like structures distributed at more-or-less regular intervals throughout the viral
RNA [19]. The coat protein-operator/pac site interaction itself is the strongest of these
interactions but is not itself entirely indispensable. Phage viability persists even when
the coat protein-pac site interaction is completely inactivated by mutations in the operator
hairpin [20]. Such mutants make smaller plaques, but they are not dead, presumably
because the packaging function is redundantly distributed throughout the genome. This
may account for the fact that coat protein expressed from a plasmid efficiently encapsidates
its own mRNA even in the absence of its unique translational operator/pac site [11].

This ability to package its own RNA accounts for the linkage of genotype to phenotype
that makes affinity-selection on the MS2 platform possible. The ~400 nucleotides of the
coat sequence itself are fully capable of efficient packaging into VLPs. Complex peptide
libraries, whether random sequences or antigen fragments, can be produced by insertion
into the AB-loop. The resulting VLPs encapsidate the same mRNA that encodes their coat
protein and whatever specific guest peptide it displays. Libraries are then subjected to
biopanning on an antibody target followed by reverse-transcription and polymerase chain
reaction to recover affinity-selected sequences. When recloned, the sequences produce
VLPs for additional rounds of biopanning. Usually, two to four rounds are sufficient to
arrive at a relatively simple, or even unique population of affinity-selected VLPs that bind
a target antibody. Depending on the complexity of the target epitope, the resulting peptide
can be an efficient epitope mimic, able to elicit antibodies with specificities like that of the
selecting antibody. In other words, a neutralizing antibody can select a vaccine that elicits
a neutralizing antibody response. The approach is most likely to succeed when the epitope
is linear. Conformational epitopes are harder to mimic with peptides. Below we present
an example.

5. Affinity-Selection from Random-Sequence Libraries

The malaria blood stage is a potential vaccine target. Most disease pathology comes
from parasite multiplication within red blood cells, and natural immunity, when it exists,
seems to depend largely on antibody responses to blood stage antigens. The main barrier
to a malaria vaccine is the identification of an antigen able to provoke a strong immune
response that neutralizes a wide range of parasite variants. An ideal vaccine antigen would
be conserved across a broad spectrum of P. falciparum strains and would be essential for
parasite viability. The merozoite protein called RH5 meets these criteria; it is necessary for
parasite invasion of erythrocytes and its amino acid sequence is conserved across a wide
range of P. falciparum strains. The essential role of RH5 is affirmed by its presence in all
strains tested so far, and by the complete failure of efforts to genetically delete it. RH5
is exposed only transiently during cell attachment and entry, a fact that likely explains
its poor immunogenicity. Although it is only briefly exposed to the immune system, it is
nevertheless susceptible to neutralization when antibodies are already present at the time
the pathogen attempts entry. Only a minority of patients produces a significant anti-RH5
response, and then only after prolonged chronic malaria exposure.

Anti-RH5 antibodies, including certain mAbs potently inhibit invasion. We conducted
affinity selection using one such antibody, 5A08, hoping that the resulting VLP selectant
would elicit antibodies that recognize the target epitope on RH5 itself and inhibit entry.
These experiments used a mixture of four MS2-based random-sequence peptide libraries
comprised of 6-mers, 7-mers, 8-mers and 10-mers, each with ~1010 individual members.
After only two selection rounds, all of the several dozen selectants we analyzed had
converged on the same peptide sequence, SAIKKPVT [21]. Comparison of the peptide
to the RH5 sequence reveals a four-amino acid identity (AIKK) near the N-terminus,
apparently identifying the 5A08 epitope. Immunization of mice with the 5A8 VLP selectant
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yielded antisera that reacted with RH5 in schizonts and with the purified protein in ELISA,
and inhibited invasion of red blood cells.

6. Antigen-Fragment Libraries

Advances in DNA synthesis technology have given us the ability to conveniently
produce libraries representing diverse fragments of any chosen antigen. Microchip-based
methods enable the programmed parallel synthesis of many thousands of specific oligonu-
cleotide sequences, which can then be used as mutagenic primers to introduce AB-loop
insertions into MS2 coat protein. For example, we made VLP libraries designed to theoret-
ically display all possible 10-mer peptides of the dengue virus 3 proteome [22]. Dengue
virus proteins are made from a single large polyprotein by proteolytic processing. To
construct the library, we scanned through the polyprotein sequence with a 10-amino acid
window in 1-amino acid steps. Reverse translation yielded DNA sequences encoding
each polyprotein 10-mer. Primer design was completed by attaching flanking sequences
able to anneal to the site of insertion in MS2. After synthesis on a microchip, the mixture
(~4000 sequences) was amplified by PCR to obtain an amount sufficient to serve as primers
in a site-directed mutagenesis reaction [23] to create the library. We introduced the plasmid
library into an E. coli expression strain to obtain the actual VLP library, which was then
subjected on biopanning on dengue convalescent patient sera. The selected population was
analyzed by Ion Torrent sequence analysis, allowing creation of a profile representing the
various linear epitopes recognized by antibodies in infected individuals. We have extended
the method to other viral and bacterial pathogens, including Zika virus (unpublished) and
Chlamydia trachomatis [24].

Another illustrative example comes from ongoing unpublished work that seeks to
identify linear epitopes recognized by antibodies in the sera of SARS-CoV-2-infected
patients. In this case, an antigen fragment library was constructed on MS2 VLPs displaying
a complex mixture of peptides ranging from 9 to 14 amino acids in length. They scan
through the sequences of each of four viral structural proteins, namely spike, nucleocapsid,
envelope and membrane proteins in steps of three-amino acids. Patient sera were chosen
for their high neutralizing activity and applied to a single round of biopanning. The
abundance of each peptide in the selected VLP population was determined by Ion Torrent
sequence analysis, and then its relative enrichment was determined by normalizing it to
its abundance after selection by non-neutralizing serum, which we then plotted against
its position in the amino acid sequence (Figure 2). A typical result for the spike epitopes
recognized by one patient’s sera is shown in Figure 3. VLPs from each peak will be tested
for the ability to elicit neutralizing antibodies in animals.
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Figure 2. One example of affinity-selection of epitopes from a SARS-CoV-2 antigen fragment library.
Peptide-VLPs were enriched by affinity-selection on serum with high neutralization activity from
a single patient. Individual peptides were identified and their relative abundances relative to non-
neutralizing sera were determined by Ion Torrent sequence analysis. Their positions in the spike
protein amino acid sequence (x-axis) are plotted against their relative enrichment (y-axis). Similar
plots were obtained for spike and other viral structural proteins and with serum from a number
of patients (not shown). Those results will be joined with these as part of a fuller analysis to be
presented elsewhere.
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Figure 3. A comparison of the structures of MS2 and AP205 coat proteins. Despite extensive
divergence of amino acid sequence, their three-dimensional structures are largely conserved. Note
however, that the structural homolog of the N-terminal-most ß-strand of MS2 is moved to the
C-terminus in AP205, causing the two sequences to be related by circular permutation.

7. PP7 VLPs

Bacteriophage PP7, a virus of P. aeruginosa, produces a coat protein that diverges
markedly in amino acid sequence from MS2. Nevertheless, it folds into a highly similar
dimer that also assembles into an icosahedral VLP when expressed from a plasmid in E. coli.
As noted briefly above, we previously produced one version of a universal HPV vaccine
based on insertion of an L2 epitope into one of PP7′s AB-loops [25]. Like MS2, PP7 coat
protein’s tolerance of AB-loop insertions benefits significantly from the single-chain dimer
construct. Although we have not yet specifically utilized PP7 VLPs for affinity-selection,
the observation that they encapsidate coat-specific mRNA [25] suggests that, like MS2, they
could be used for epitope identification by biopanning on antibody targets.

Zhao et al. have more recently taken PP7 VLP engineering to another level by demon-
strating its tolerance of fusions at both the N- and C-termini [26]. Peptides, and even
protein domains as large as 150 amino acids, are frequently tolerated. They also showed
that peptides can be displayed by insertion into the linker that joins the two halves of
a PP7 single-chain dimer. By utilizing this junctional site and the C-terminus together,
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a peptide epitope and a protein domain were displayed on the same VLP. Surprisingly,
single-chain dimer recombinants assembled into T = 4 icosahedra. Given one display site
per single-chain dimer, these particles displayed 120 copies of the foreign protein rather
that the 90 expected of a similar T = 3 particle or the 180 obtained from assembly of the
conventional coat protein dimer. These observations raise the possibility that PP7 could
serve as a more generalizable display platform than MS2, which in its current configura-
tions at least, does not so easily tolerate extensive fusions at its termini. Less coat protein
crowding at the three-fold symmetry axes of PP7 presumably explains this difference;
the PP7 structure is simply more open at these sites. It also has the added advantage of
high thermal stability conferred by the presence of inter-dimer disulfide crosslinks. PP7,
therefore, merits additional investigation as a versatile display platform.

8. Genetic Display on Qß VLPs

It has long been known that Qß virions contain two versions of coat protein. The major
form is 133 amino acids in length and is structurally homologous to the MS2 structure
shown in Figure 1. However, the virus particle also contains small amounts of the so-called
readthrough protein, a C-terminally elongated form produced by partial suppression of
an opal termination codon at the end of the coat reading frame. Readthrough protein
is necessary for virus infectivity, but is not strictly needed for VLP formation, naturally
suggesting its use as a display site for foreign peptides and proteins. Pumpens et al.
exploited this property to perform some of the earliest experiments in peptide display on
RNA phage VLPs [27–30]. In authentic phage, readthrough protein is normally present at
only a few copies per virion, but the use of plasmids allows straight-forward manipulation
of the two factors that control the level of its incorporation in VLPs: (1) the relative
expression levels of the two proteins, and (2) the length of the extension. The maximum
copy number for full-length readthrough under these conditions is around 10 per particle,
whereas a version truncated to only 10–24 amino acids can be displayed in as many as
80 copies [28]. Foreign sequences inserted in place of the natural extension also end up
on the VLP surface. Although peptide display valency can be varied over a wide range,
again there is a limit to how many copies VLP assembly will tolerate. Early studies with
recombinant proteins showed incorporation frequencies between 14% and 48% [30]. Later
work by Brown et al. [31] fused the 58 amino-acid Z-domain of S. aureus protein-A to the
Qß coat C-terminus and showed that, depending on growth conditions, between 20 and
30 copies could be presented on these mosaic VLPs.

In some cases, it has been possible to exploit the Qß readthrough phenomenon to actually
display peptides and proteins on intact, infectious recombinant bacteriophages [32,33]. Appar-
ently, some portions of the readthrough protein are dispensable and can be interrupted
with foreign sequences. The importance of readthrough protein for infectivity and the
existence of the virion’s variable upper limit on extension copy number imposes additional
constraints on display density that may restrict the utility of infectious Qß, but the ability
to produce the particle by growing it as a self-replicating viral entity introduces the possi-
bility of using its relatively low replication fidelity to spontaneously mutagenize and then
affinity-optimize displayed peptides and proteins [32,33]. So far, Qß has been little used
for this purpose, but it deserves further effort.

9. Display on Qß VLPs by Chemical Conjugation

Genetic insertion of sequences into coat protein genes is not the only approach to
peptide display. Chemical conjugation of chemically synthesized peptides has long been
used to produce highly immunogenic epitope-specific vaccines. It has the important
advantage that because the technique utilizes preformed VLPs, there is no worry that the
added peptide will interfere with coat protein folding and VLP assembly. Except in cases
where the peptide causes VLP aggregation (e.g., if it is too hydrophobic), production of the
peptide-VLP vaccine is virtually assured. Furthermore, peptides can be conjugated at even
higher valencies than are typical attainable by genetic display. This, in turn, can sometimes
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give even higher immunogenicity. A variety of conjugation chemistries are available,
but one commonly-used approach simply incorporates a cysteine residue at one end of
the synthetic peptide, and then employs a bifunctional cross-linker (e.g., succinimidyl
6-[(β-maleimidopropionamido) hexanoate, SMPH) to join it to lysine amino groups on
the VLP surface. Conjugation efficiency depends on the availability of primary amines,
of course, a property that varies among the various RNA phage coat proteins. Each Qß
subunit provides up to six available surface lysines and has proven itself a suitable target
for such reactions. The VLP of the Acinetobacter phage, AP205 (see below), is similarly
reactive, as are mutant MS2 VLPs engineered to present additional lysines (unpublished
results). VLPs displaying an average of 240 peptides or more are routinely obtained.

Epitopes displayed at these densities provoke high-titer anti-peptide responses almost
invariably. In fact, peptide-VLPs are so immunogenic that they can efficiently break immune
tolerance and elicit high-titer antibody responses even against self-antigens [34–38]. This has
led to the idea that it could be possible to replace expensive, inconvenient-to-administer
therapeutic monoclonal antibodies with cheap, and potentially longer-lasting vaccines.
Although perhaps suitable for only a subset of diseases now treated with mAbs, such
vaccines could be effective alternatives in some cases. Peptide-VLP vaccines have been
produced for a variety of self-antigens. For illustration, consider the recent example of
PCSK9 [39,40].

Proprotein convertase subtilisin/kexin type 9 (PCSK9) is a serum protein involved in
the control of circulating low-density lipoprotein (LDL) levels. It functions by mediating
the internalization and degradation of the LDL-receptor (LDL-R). Lowering LDL-R in turn
leads to increased levels of circulating LDL-cholesterol. It has long been recognized that
reduced PCSK9 activity leads to decreased serum cholesterol levels and to decreased risk
of heart disease. So, for example, loss-of-function mutations of PCSK9 lead to dramatically
decreased circulating cholesterol and reduced risk of heart disease. Gain-of-function
mutations have the opposite effect. One approach to PCSK9 inhibition is to elicit an anti-
PCSK9 antibody response with a vaccine capable of breaking tolerance to this particular
self-antigen. Crossey et al. describe Qß VLPs displaying synthetic peptide epitopes from
the PCSK9 sequence [39,40]. They have the predicted effects on LDLR and cholesterol
levels in immunized animals.

Many potential vaccine targets are non-peptide/protein antigens, of course. Alterna-
tive conjugation chemistries make possible the attachment of huge variety of molecular
types to VLPs. Yin et al., for example, [41–43] used click chemistry to attach tumor-
associated carbohydrate antigens to Qß’s amino groups. Carbohydrate antigens require
conjugation to protein carriers simply for the T-help needed for durable IgG antibody
responses, of course. However, in addition to serving this carrier function, VLPs have
the added advantage that they present dense, repetitive antigen arrays for potent B-cell
stimulation. Display valency is an important variable influencing the strength and quality
of antibody responses to carbohydrate antigens and by adjusting the reaction conditions, a
wide variety of antigen densities are achievable.

Finally, Qß conjugants have also been used to raise antibodies even to some small
molecule haptens, e.g., nicotine. In that case, the goal was to produce an anti-smoking
vaccine. Although clinical trials failed to demonstrate the desired level of anti-smoking
effect [44], the vaccine was nonetheless effective in provoking high titer antibodies [45,46],
The hope persists that VLPs might yet provide the basis of vaccines against drugs of abuse.

10. AP205 Offers New Display Modes

In references [47–49], Acinetobacter phage 205 (AP205) is another of the single-strand
RNA bacteriophages, but the sequence of its coat protein diverges so sharply from MS2’s
that it is difficult to see any sequence similarity. It is in the comparison of their homologous
3D structures that a clear relationship is revealed. Their tertiary structures are obviously
similar, but their sequences are, in effect, circular permutants of one another [50]. Compared
to MS2, it is as though a segment of roughly 10 amino acids had been transposed from the
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AP205 N-terminus to its C-terminus. In MS2, the AB-loop occupies amino acids 13–15, so
the AP205 circular permutation effectively moves its N- and C-termini to the top of what
would be the AB-loop in MS2 (and most other RNA phages) (Figure 3). This means that
the coat protein termini, which are both relatively inaccessible in the MS2 VLP, present
themselves prominently at the AP205 VLP surface. Peptides fused to either end are not only
thoroughly exposed, but also positioned so they are unlikely to interfere with assembly.

Tissot et al. took advantage of AP205’s structural peculiarities to display a selection of
peptides and small proteins ranging in size from 8 to 55 amino acids [47]. Linker/spacer
sequences were attached genetically to the coat protein ends together with appropriate
restriction endonuclease cleavage sites to facilitate recombinant manipulation. VLPs were
obtained for each of the six peptides tested. Since then, additional experience shows
that AP205 is not quite the universal acceptor of fusions that was originally hoped for
(unpublished results), but is nevertheless well-suited to the N- and C-terminal presentation
modes. In a more recent illustrative example, Liu et al. fused the receptor-binding domain
of the SARS-CoV-2 spike protein to the C-terminus of an AP205 coat protein single-chain
dimer [51]. Although produced in large amounts in E. coli, the protein failed to fold
properly, and instead accumulated as insoluble aggregates. Nevertheless, the protein was
refolded from these inclusion bodies and assembled in vitro into a VLP with the expected
immunogenicity. In mice it elicited antibodies that bind the spike protein and neutralize
the virus.

AP205 has also shown itself an effective platform for the so-called spytag/spycatcher
technology, an efficient cross-linking system based on the covalent bond forming capability
of CnaB2, an immunoglobulin-like collagen adhesin domain from the fibronectin binding
protein of S. pyogenes. CnaB2 naturally forms an autocatalyzed, intramolecular isopeptide
linkage that stabilizes its fold. However, the domain can be split into 138- and 13-amino
acid fragments, called spycatcher and spytag, respectively, that retain the ability to form
this linkage even when each is fused to different proteins. Spytag/spycatcher therefore
serves as a universal intermolecular crosslinking technology that requires no additional
chemistry to covalently join two proteins. So, for example, fusing spytag to one of AP205
coat protein’s termini creates a VLP that can accept any other protein which has already
been fused to its spycatcher partner [52,53]. Because the process attaches a protein to a
preformed VLP, the necessity of genetically fusing the antigen directly to coat protein is
eliminated, along with any tendency of the fusion to interfere with coat protein folding or
assembly. It does, of course, require the separate production of platform and antigen with
the necessity of performing a subsequent reaction that joins the two. Display density of
large antigens can be limited by surface crowding considerations, but valencies of at least
60 copies/VLP can typically be obtained. Because it makes possible the relatively straight-
forward synthesis of VLPs displaying practically any arbitrarily chosen antigen, AP205
has become a popular plug-and-play vaccine platform [53–58]. Recently, Fougeroux et al.
described the production of a promising vaccine candidate for SARS-CoV-2 by decoration
of AP205 particles with the virus’ receptor-binding domain [53].

11. Even More RNA Phages

About a thousand new members of the ssRNA phage family were recently identified
in metagenome sequence data. Genes for coat proteins of eighty of these never-cultured
phages were synthesized, cloned and over-expressed as VLPs in bacteria [59]. Remarkably,
the 3D structures of twenty-two such VLPs were determined by X-ray crystallography [60].
Even though their amino acid sequences diverge widely, each preserves certain key features
of the tertiary fold exemplified by MS2. Each has at least a four-stranded ß-sheet (which
becomes eight stranded in the dimer) and at least one alpha-helix extending over the
ß-sheet of its companion subunit. The diversity of RNA phage VLPs of course offers new
potential vehicles for peptide antigen presentation. Indeed, several have already shown
they can accept both N- and C-terminal fusions [61]. Evolution has been exploring VLP
design space for many millions of years. The diversity of these ancient forms, together
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with the potential of new protein engineering and directed evolution methods to improve
their properties, makes us feel that RNA phage VLPs still have contributions to make.
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