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Abstract: Methods for dimensionality reduction are showing significant contributions to knowledge
generation in high-dimensional modeling scenarios throughout many disciplines. By achieving a
lower dimensional representation (also called embedding), fewer computing resources are needed
in downstream machine learning tasks, thus leading to a faster training time, lower complexity,
and statistical flexibility. In this work, we investigate the utility of three prominent unsupervised
embedding techniques (principal component analysis—PCA, uniform manifold approximation
and projection—UMAP, and variational autoencoders—VAEs) for solving classification tasks in the
domain of toxicology. To this end, we compare these embedding techniques against a set of molecular
fingerprint-based models that do not utilize additional pre-preprocessing of features. Inspired by
the success of transfer learning in several fields, we further study the performance of embedders
when trained on an external dataset of chemical compounds. To gain a better understanding of
their characteristics, we evaluate the embedders with different embedding dimensionalities, and
with different sizes of the external dataset. Our findings show that the recently popularized UMAP
approach can be utilized alongside known techniques such as PCA and VAE as a pre-compression
technique in the toxicology domain. Nevertheless, the generative model of VAE shows an advantage
in pre-compressing the data with respect to classification accuracy.

Keywords: manifold learning; machine learning; rdkit; embeddings; Tox21; principal component
analysis; autoencoder

1. Introduction

Chemical (or molecular) representation is an important topic in cheminformatics [1]
and quantitative structure–activity relationships (QSARs), as QSAR model quality depends
largely on the predictive features defined by the task at hand, i.e., mapping a feature space
(X) onto a target chemical or biological activity (y). Besides using molecular descriptors,
which are numerous and sometimes hard to explain [2], the development of deep learn-
ing [3–5] and big data [6–9] gave rise to the utilization of various representations such as
molecular fingerprints [10] and NLP-based methods like Mol2Vec [11]. With the advent
of graph neural networks, researchers also started to learn from molecular images them-
selves [12]. More and more researchers are utilizing diverse representations to compare
and find suitable features for solving the modeling problem [13–16] as no single feature
set appears to be the optimal one. Hence, sometimes, combinations of features are also
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utilized [16]. Another difficulty in machine learning (and consequently cheminformatics)
is the so-called curse of dimensionality, a term coined by Richard Bellman [17], which
refers to various problems that arise when working with high-dimensional data (such
as fingerprints) including increased chances of overfitting and spurious results. With
high dimensionality, distances and densities (such as neighborhoods) might no longer be
representative [18]. A well-established strategy, besides feature selection, to cope with
this issue is dimensionality reduction, i.e., transforming the data into a low-dimensional
space such that the resulting low-dimensional representation preserves certain proper-
ties of the original data. Such an approach has proven to be highly useful for numerous
downstream machine learning tasks like classification [19], anomaly detection [20], and
recommender systems [21]. Generally speaking, algorithms for dimensionality reduction
can be categorized into three main groups, namely, matrix factorization, neighbor graphs,
and deep learning-based approaches. Matrix factorization algorithms include approaches
such as latent Dirichlet allocation [22], non-negative matrix factorization [23], and linear
autoencoders [24]. However, the most commonly used approach is principal component
analysis (PCA) [25]. It is founded on eigenvalue and eigenvector decomposition of sym-
metric semipositive definite matrices, and hence constitutes a clean linear orthogonal basis
transformation to maximize variance explanation of both samples and variables. Indeed,
the derived low-dimensional space—often referred to as scores—is a linear mapping of
the original features. However, the systematic part of the original data is furthermore
a linear mapping of the scores. In this way, PCA is a mathematically transparent and
chemically interpretable tool for mapping data to a low-dimensional space and translating
between this space and the original feature space. The linearity of PCA is what makes the
method mathematically more concise than some nonlinear methods, but at the price of
variance maximization as well as the inability to capture nonlinear phenomena in single
dimensions. When it comes to nonlinear methods for dimensionality reduction, there are
a number of noteworthy approaches, such as locally linear embedding [26], Laplacian
eigenmaps [27], or t-SNE [26]. One of the most effective and commonly used methods
that also falls into this category is uniform manifold approximation and projection for
dimension reduction or UMAP [28]. It is a nonlinear method that works by utilizing
local manifold approximations and combining their local fuzzy simplicial set represen-
tations in order to create a topological representation of the high-dimensional data. It
then minimizes the cross-entropy between topological representations, thus optimizing
the layout of the data representation. UMAP was employed already in understanding
patterns in chemical/structural [29,30] and biological data [31,32] by transferring them to a
lower dimensional space. More recently however, the category of nonlinear dimension-
ality reduction approaches has been extended with deep learning-based algorithms. The
most prominent approach here is the traditional autoencoder model [33]. Autoencoders
are (typically nonlinear) neural network architectures that learn to copy their input onto
their output by passing the input through an intermediate bottleneck layer. As they were
originally proposed, there has been a number of adaptations of the original autoencoder
with variational autoencoders or VAEs [34] as one of the latest state-of-the-art methods.
Autoencoders are often applied in cheminformatics for tasks like chemical space navigation
and de novo molecular generation [4,29,35] or prediction [36]. The aim of this work is thus
to evaluate chemical space information generated from fingerprints and investigate the
impact of generating embeddings in an unsupervised manner using prominent linear and
nonlinear methods. That is, we specifically look into the utility of PCA, UMAP, and VAE
(hereinafter embedders) as pre-compression techniques for solving classification tasks with
12 binary toxic outcomes.

2. Results and Discussion
2.1. Setting the Baseline

Before presenting the results of embeddings as predictive features, we present here the
baseline models trained on raw fingerprints. The results are shown in Table 1. Furthermore,
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we compared the results to recent work [37] where the results are also presented by means
of MCC and trained on fingerprints (like in the present study). The limitations of this
comparison are as follows: (a) the train–test splits are not the same; (b) there is a difference
in fingerprint parameters; (c) we limited hyperparameter optimization, as our aim was
to compare the results of the embeddings; (d) we used average values of the predictions
on the test set for several random states; and (e) Zhang et al. use a Bayesian optimization
instead of the grid-search we used. We also want to note that the classification results
from Zhang et al. [37] show higher MCC values than the results in this work. Besides
the mentioned differences, in our work, instead of using nested-CV, we report on a true
external test set. The purpose of this comparison is to present the expectations towards the
individual labels in Tox21.

Table 1. A comparison of our baseline results trained on fingerprints to a similar study from Zhang et al. [37]. The
results from Zhang are denoted with a “Z“, while the respective classifiers are as follows: L—lightGBM, R—random
forests, S—support vector machines, X—XGBM, D—deep neural networks. The classifiers from this work are k-nearest
neighbor classifier (KNN), logistic regression (LR), and random forests classifier (RFC), which are represented by their mean
values per classifier, respectively. Additionally, the mean and max of all classifiers in this work are compared. The best
baseline models in our work are marked with an superscript “a“, while the best models from Zhang are marked with an
superscript “b“.

Label (endpoint) Mean
(all)

Max
(all) KNN LR RFC Z-L Z-R Z-S Z-X Z-D

NR-AR 0.52 0.62 a0.59 0.4 0.56 0.50 0.62 0.43 0.60 b0.68
NR-AR-LBD 0.57 0.63 0.61 0.48 a0.62 0.60 0.71 0.60 b0.73 0.72

NR-AhR 0.44 0.47 a0.45 0.44 0.43 0.52 b0.61 0.47 0.54 0.59
NR-Aromatase 0.29 0.35 a0.32 0.25 0.29 0.28 b0.52 0.32 0.50 0.48

NR-ER 0.29 0.34 a0.33 0.24 0.29 0.37 0.42 0.32 0.40 b0.44
NR-ER-LBD 0.35 0.47 0.37 0.26 a0.42 0.45 0.56 0.36 b0.59 0.58

NR-PPAR-gamma 0.18 0.26 0.14 0.18 a0.22 0.32 0.50 0.30 b0.52 0.47
SR-ARE 0.28 0.36 0.25 a0.31 0.29 0.46 0.49 0.36 0.46 0.48

SR-ATAD5 0.24 0.26 a0.25 0.22 0.24 0.37 b0.59 0.36 0.53 0.55
SR-HSE 0.18 0.25 0.15 0.18 a0.20 0.31 b0.37 0.21 0.40 b0.37

SR-MMP 0.44 0.47 0.44 a0.47 0.43 0.63 b0.65 0.54 0.64 0.63
SR-p53 0.22 0.26 0.21 a0.24 0.23 0.42 b0.57 0.37 0.52 0.55

2.2. Embedding Chemical Spaces

In this section, the classification results of models trained on embeddings (inter-
nal/external) are presented and discussed. For the purpose of training the models, the
fingerprints were subjected to transformations into low-dimensional spaces by either
PCA, UMAP, or VAE. Visual examples of the transformations (CS1 and CS2) are shown in
Figure 1 for both data sets.
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Figure 1. Exemplary visualization of CS1 (red) and CS2 (blue) show in 2D embedded space generated from molecular
fingerprints by means of (a) principal component analysis (PCA), (b) uniform manifold approximation and projection
(UMAP), and (c) variational autoencoders (VAEs).
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Our first observation by visually inspecting Figure 1 is that the three studied embed-
ding algorithms produce greatly different data representations owing to the underlying
differences in how they operate. Furthermore, we observe that CS1 covers a larger chemical
space in comparison with CS2 owing to the difference in data set size. Additionally, some
areas of CS1 data space are barely covered in CS2, making it harder to transfer knowledge
for these compounds. This behavior appears more pronounced in UMAP and VAE data
representations. Finally, UMAP and VAE appear to produce a number of smaller observ-
able clusters in comparison with PCA. This is an inherent consequence of UMAP, where
indeed the underlying graphs of the samples are pruned, while PCA is a linear mapping,
making it impossible to introduce discrete clusters if they are not directly present in the
raw data.

2.3. Impact of Embedding Size and Information Content

In this section, we want to evaluate the contribution of the number of latent variables
(dimensions) and the data input size for creating embeddings from the external data set
prior to solving the classification tasks (see Figure 2). The embedding approaches were
varied in input size (200–30,000 compounds from CS1) and number of dimensions (2–15
latent variables) and evaluated for three random states, three different classifiers (RFC,
KNN, LR), and three embedders (PCA, UMAP, VAE) as described in the Materials and
Methods section. The results are depicted in Figures 2–4.
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The results for PCA (Figure 2) show on average an increase in the predictive quality
of the models with a growing number of dimensions (principal components). The effect
of information content by means of CS1 size is shown to be negligible as the MCC score
remains steady for all different sizes of CS1.

Models embedded with UMAP (Figure 3) show distinctively different patterns com-
pared with PCA. For KNN and RFC, there is a clear trend for increasing dimensions and
information content, while there seems to be some randomness in LR with an existing
trend for model improvement when increasing dimensions and information content. The
third embedding algorithm, VAE, shows similar patterns to UMAP (see Figure 4). An
observable difference to UMAP is that, for RFC and KNN, it seems to approach a plateau,
while UMAP shows a steady increase. All machine learning methods show a clear increase
of model quality with an increase of dimensions and CS1 data size.

PCA by definition only extracts linear features, and the ability to capture nonlinear
behavior relies on the upstream use of nonlinear classifiers. Here, we indeed see that
nonlinear phenomena are captured using kNN or RFC in contrast to logistic regression.
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On the other hand, PCA is powerful in filtering off stochastic white noise, simply because
of the nature of white noise where there is no dependency across features. Indeed, this
phenomenon is observed for the PCA embedding as the performance is insensitive towards
the size of training data as well as classifier type, simply pointing out that the principal
components’ directions are well defined even for small data set. It is interesting to observe
that, with UMAP, we see a saturation regarding the number of dimensions (6, 8, 10, and
15 perform similarly), while with VAE, we observe the effect, but to a lesser extent. VAE
seems to benefit more from input data size in comparison with UMAP, which we attribute
to deep learning methods typically requiring larger data sizes for learning [38]. In further
evaluations, we compared only the results on maximum dimension size (15) and maximum
set size (30,000 compounds in CS1).
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2.4. Internal versus External Knowledge

To evaluate whether the external knowledge (from CS1) is beneficial for the classi-
fication task in CS2, we list the MCC score of each embedding algorithm, trained (a) on
external data from CS1 and (b) on internal data from CS2, in Table 2. One has to keep in
mind that CS1 size was varied, while CS2 is fixed.
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Table 2. Comparison of external and internal embeddings for PCA, UMAP, and VAE. Each cell
represents the mean MCC score across nine different machine learning models (three random states
× three classifiers). Values marked with an asterisk (*) highlight cases where, on average, models
trained using external knowledge outperformed models trained on internal knowledge. Additionally,
results marked with a quotation mark (‘) highlight cases where using external or internal knowledge
yielded equal results (when rounded off to two decimal places).

Label
PCA UMAP VAE

IN EX IN EX IN EX

NR-AR 0.45 0.43 ‘ 0.47 ‘ 0.47 0.45 0.44
NR-AR-LBD 0.45 0.43 * 0.45 * 0.53 ‘ 0.43 ‘ 0.43

NR-AhR ‘ 0.33 ‘ 0.33 * 0.34 * 0.35 ‘ 0.34 ‘ 0.34
NR-Aromatase 0.22 0.18 0.18 0.15 ‘ 0.21 ‘ 0.21

NR-ER 0.22 0.21 ‘ 0.23 ‘ 0.23 ‘ 0.27 0.24
NR-ER-LBD 0.31 0.26 ‘ 0.26 ‘ 0.26 ‘ 0.28 ‘ 0.28

NR-PPAR-gamma ‘ 0.14 ‘ 0.14 * 0.09 * 0.11 0.11 0.09
SR-ARE * 0.19 * 0.21 * 0.19 * 0.2 * 0.19 * 0.2

SR-ATAD5 0.16 0.13 * 0.12 * 0.16 * 0.14 * 0.15
SR-HSE * 0.09 * 0.11 ‘ 0.08 ‘ 0.08 * 0.07 * 0.1

SR-MMP ‘ 0.36 ‘ 0.36 ‘ 0.32 ‘ 0.32 * 0.35 * 0.36
SR-p53 0.19 0.18 0.16 0.14 * 0.15 * 0.17

Our results have a few important takeaways. In comparison with PCA, both UMAP
and VAE were able to achieve better results overall when fitted on external knowledge
versus fitting on internal knowledge. With external knowledge, PCA achieved better
results on two labels and equal results (rounded on two decimals) on three. UMAP and
VAE performed similarly as both approaches performed better when trained on external
knowledge on five labels and performed equally to respective models trained on internal
knowledge on five labels (out of 12 labels in total). It is important to note that, even
though UMAP and VAE showed similar performance overall, they performed differently
for different labels. For example, UMAP showed a strong improvement in MCC score for
NR-AR-LBD when using external knowledge, whereas VAE did not improve in comparison
with VAE trained on internal knowledge. There was only one label (SR-ARE) for which all
three embedding algorithms yielded better results when trained on external knowledge.

2.5. Should We Embed? Does Embedding Win over Baseline?

Figure 5 and Table 3 compare the MCC score of all embedders (internal and external)
to the fingerprint baseline model (FPR-BL) on each classification task. From Figure 5, it is
clear that the fingerprint baseline model performs better overall for most of the labels.

Table 3 shows that the embedders do not increase in the score in general. However, for
the NR-ER label, VAE embedders show an increase in MCC score. To present embedding
capabilities, we compared the maximum values per embedder in Table 3. Each value is the
maximum of nine machine learning experiments (three classifiers × three random states).
For easier comparison, we set the FPR-BL maximum per label to 100%. The results show
that 3 out of 12 labels embedded features can reach or surpass the baseline, namely, NR-AR,
NR-AR-LBD, and NR-ER. With PCA, both internally and externally, the maximum value
never reached those of the baseline, while with externally trained UMAP, only one target
performed on par with the baseline. With the variational autoencoder, the baseline was
reached three times. This shows the dominance of VAE over other embedders given the
constraints in our experiments. In conclusion, by embedding molecular fingerprints, we can
obtain a comparable and sometimes improved classification accuracy with toxicological
models compared with no embedding. The main advantage in applying embedding
techniques on the molecular fingerprints in this way is a reduced model complexity, by
utilizing smaller feature sets, without the need to sacrifice predictive accuracy.
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Figure 5. Comparison of machine learning classifications mean + error bar across all feature sets: FPR-BL = fingerprint
baseline, PCA = principal component analysis (EX = external, IN = internal), UMP = uniform manifold approximation and
projection, VAE = variational autoencoders. Each bar present nine runs (three classifiers × three random states).

Table 3. Classification results across all data sets and labels expressed by maximum values of the MCC. The fingerprint-
based model maxima (FPR-BL) were set as 100%, while the embedding models referred to these 100%. Results assigned
with an asterisk (*) outperformed baseline.

Label (endpoint) FPR-BL PCA-EX PCA-IN UMAP-EX UMAP-IN VAE-EX VAE-IN

NR-AR 100 95 99 96 96 97 * 100
NR-AR-LBD 100 92 98 * 100 97 98 * 102

NR-AhR 100 84 85 90 86 83 85
NR-Aromatase 100 65 82 75 74 84 75

NR-ER 100 83 85 86 95 * 103 * 101
NR-ER-LBD 100 70 90 79 88 90 83

NR-PPAR-gamma 100 81 82 68 81 78 75
SR-ARE 100 74 69 70 69 63 63

SR-ATAD5 100 63 99 92 84 75 88
SR-HSE 100 82 77 56 90 65 55

SR-MMP 100 92 87 83 83 93 89
SR-p53 100 99 95 79 87 85 93

2.6. Insights into Latent Representations

The embedders compress information in an unsupervised way, thus the resulting
output is based on the efficacy of the utilized approach; underlying data; and, to an extent,
how well the hyperparameters are tuned. Therefore, it is difficult to predict whether
utilizing the same compression techniques would be beneficial for use cases that are
different from our problem of predicting 12 toxic outcomes. To better understand how the
classification tasks can profit from compression, we calculated silhouette coefficients on
the calculated embeddings within the data sets, s (Equation (1)), in the latent space (for 2D
and 3D latent spaces as well as using external embeddings):

s(i) = b(i)−a(i)
max{a(i), b(i)} , i f |Ci| > 1

s(i) = 0, i f |Ci| = 0
(1)

In this equation, a(i) is the mean distance between a molecule i and all other molecules
in the same cluster and b(i) is the mean distance of molecule i to all molecules in any other
cluster. For each label, the coefficients are plotted in Figure 6. The average silhouette
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coefficients per label were correlated to the predictive quality (MCC), as shown in Table 4.
Besides that, we compared the baseline models (raw fingerprints) and the imbalance ratio
with respect to the MCC results of the classifiers that utilize embeddings. The results show
that the predictive quality correlates almost perfectly (0.98+) with the baseline models,
which means that achieving a good classification on raw data (i.e., fingerprints) will most
likely also lead to good results after embedding.
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coefficients, respectively. The dashed red line is the average value of both. The scatter plot visualizes their coordinates in the
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Table 4. Correlation of average classification results of the embedded classifiers (PCA-EX, UMAP-EX.
VAE-EX) with the imbalance ratio (Pos class %) and baseline fingerprints classifiers (FPR-BL) with
their respective silhouette coefficients—s(PCA), s(UMAP), and s(VAE).

PCA-EX UMAP-EX VAE-EX

s(PCA) 0.74
s(UMAP) 0.86

s(VAE) 0.85
Pos class % 0.11 0.02 0.13

FPR-BL 0.98 0.98 0.99

Nevertheless, there is also a high correlation between the calculated silhouette coeffi-
cients and the predictive quality of embedded classifiers. This indicates that, even though
the embedders distribute the classes without prior knowledge, they still seem to keep more
relevant information regarding the given classification task. This turned out to be more
relevant for the nonlinear methods (i.e., UMAP and VAE) than for PCA.

3. Materials and Methods

In this section, we present the data for conducting the study, the machine learning
methods used for solving the classification tasks, the embedding techniques utilized, and
the overall modeling pipeline.

3.1. Data

The data for the classification experiment (here named compound set 2 or CS2) were
downloaded from the Tox21 public repository [39]. The chosen set is the 2014 Tox21
challenge subset with 12 toxicological endpoints related to stress response and nuclear
receptor panels. This dataset was studied in many works and was subject to a plethora
of reports on the outcomes [3,15,40,41]. Hence, it represents a baseline dataset for QSAR
classification as it is imbalanced, chemically diverse, and large (~10k compounds), but
has also several endpoints with different predictive capabilities (modeling challenges).
Owing to the mentioned challenges this dataset offers, it has been subject to numerous
studies in advanced machine learning methods [3,40], balancing methods [15,42], as well as
novelties in chemical representation such as conformational resampling [41] and multitask
learning [3]. We subjected the data to preprocessing as they consist of duplicated structures,
which was reported previously [15]. During preprocessing, we removed structures that
did not have valid SMILES or identifiers [7] and they were additionally converted to their
canonical SMILES. Furthermore, we removed duplicates by both their IDs and SMILES. We
removed inorganic compounds and metal-containing compounds as well as fragments. The
procedure is inspired by [15,43] to keep the active part of the compounds. For the predictive
tasks, Morgan fingerprints (FPR) were calculated for the 8314 structures by means of
the RDKit library [44]. Owing to the possibility of colliding bits in fingerprints [45,46],
we set the fingerprint vector length to 5120 bits and the radius to 2. In order to foster
reproducibility, we made the scripts that are used for data preprocessing and feature
engineering available already in our recent work [16].

The compounds used for generating external embeddings were retrieved from [47]
and consist of 68,679 compounds. This compound set 1 (i.e., CS1) was preprocessed in the
same manner as the Tox21 dataset described above. After preprocessing and duplicate
removal, a total of 54,820 structures remained. During modeling, the structures present in
both sets (CS1 and CS2) were removed from CS2 to avoid a target leak.

3.2. Machine Learning Methods

The task at hand is to predict the labels in Tox21, which are binary classes. For this, we
employed three common classifiers, namely a random forests classifier (RFC) [48], logistic
regression (LR) [49], and a k-nearest neighbor classifier (kNN) [50]. These algorithms
are conventional tools when conducting machine learning studies and represent different
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inductive biases (e.g., assuming that the relationship between input attributes and the
output of a LR algorithm is linear)). As the datasets are imbalanced, which makes them
challenging when trying to avoid random classification issues [51], we employed penaliza-
tion and optimization techniques to improve classification outcomes. In our experiments,
we first randomly split the data into a train and test set with a 3:1 ratio (i.e., 75% of the
data are part of the train set). To penalize the models for misclassification of the minor
class (active compounds), we employed the Matthews correlation coefficient (MCC) [52] as
a scoring function, as it was shown in our previous studies to work well for imbalanced
sets [13,53]. MCC is defined by Equation (2), where TP, TN, FN, and FP are the elements of
the confusion matrix given in Table 5.

MCC =
TP·TN − FP·FN√

(TP + FP)·(TP + FN)·(TN + FP)·(TN + FN)
(2)

Table 5. Elements of the confusion matrix that show the possible outcomes when predicting labels in Tox21.

Experimental/Model Positive (Model) (1) Negative (Model) (0)

Positive (Experimental) (1) TP (experimentally active and
predicted active)

FN (experimentally active, but
predicted as inactive)

Negative (Experimental) (0) FP (experimentally inactive, but
predicted as active)

TN (inactive experimentally and
predicted)

The models were tuned with respect to their hyperparameters, which were found
using exhaustive grid-search evaluated by cross-validation [54]. All models were trained
with the scikit-learn library for Python [55].

3.3. Transfer Learning with Embeddings
3.3.1. Principal Component Analysis (PCA)

PCA [25] is an algorithm for dimensionality reduction based on the maximization of
variance in a lower-dimensional projected space. In that regard, PCA can be perceived as a
linear autoencoder [56]. The mathematics of PCA is described in many textbooks, but in
short, the original data (X~(n,p)) are represented by the product of two matrices, namely
the scores (T~(n,k)) and the loadings (P~(p,k)), Equation (3):

X = TPT + E (3)

where E~(n,p) is the residual matrix and n, p, and k are the number of samples, variables, and
components, respectively. The parameters are estimated to capture as much of the variance
in the original data in a least squares sense, and further to be orthogonal matrices, i.e.,

{T, P} = argmaxT,P

(
‖X− TPT‖2

2

)
(4)

The combination of vectors of T and P are referred to as principal components, and
used in various ways in, e.g., exploratory data analysis to map the multivariate sample
distribution as well as interrogating feature2feature correlation structure, as well as—like
in this work—to represent the data in a few meaningful features used for further analysis.
A rewrite of Equation (4) above shows that the score space (T) is a linear mapping by the
orthogonal basis represented by P: T = XP, and hence a rotation of the coordinate system
as depicted in Figure 7.
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Figure 7. An example of dimensionality reduction by means of PCA. Instances/points in a 3D space
(original space) are transformed into a 2D space of two latent variables called principal components
(PC1 and PC2).

3.3.2. Uniform Manifold Approximation and Projection (UMAP)

The recent work of McInnes et al. [28] has tackled the problem of dimensionality
reduction by generalizing linear approaches like PCA in order to be sensitive to a possible
nonlinear structure in data. By applying a completely new field of mathematics, which
is based on Riemannian geometry and algebraic topology, they developed the uniform
manifold approximation and projection (UMAP) algorithm.

Using every available data point, UMAP first creates a graph with respect to the
distances on the underlying topology and to the k-neighborhood of each element (as
seen in Figure 8). The Laplacian eigenmaps dimensionality reduction method is then
applied on that graph. The resulting graph is further modified by a forced directed
graph layout algorithm, which minimizes the cross-entropy between this modified graph
and the original one. In this manner, the resulting low-dimensional data representation
is optimized to well preserve both the local and global structure of the original data.
The main advantage of UMAP over PCA is that it is able to capture a more complex
(nonlinear) structure in high-dimensional data, which is a desirable characteristic in our
use-case. UMAP is able to achieve this by initially constructing a high-dimensional graph
representation of the original data, followed by optimizing a low-dimensional graph to
be as structurally similar to the original as possible. In this manner, the resulting low-
dimensional data representation is able to well preserve both the local and global structure
of the original data.
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3.3.3. Variational Autoencoders (VAE)

Since the work of Kramer [58], autoencoders have become a popular alternative to
PCA in providing an effective method to reduce the dimensionality of data. This type
of neural network is defined by a two-part architecture, which consists of an encoder
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and a decoder. In its simplest form, it has only one hidden layer (i.e., the information
bottleneck), which is a low-dimensional representation of the original data. It is trained
in an unsupervised manner to encode the data in a way that keeps the information loss
minimal when the decoder attempts to recreate the input from the hidden layer. One
popular extension of this approach is to use variational inference when extracting the
latent representation [59]. The main difference lies in the fact that the network does not
encode the input as a single point. Rather, it makes strong assumptions that the input
data can be represented as a probability distribution like Gaussian and encodes the mean
and variance of the data separately. As seen in Figure 9, the decoder of the variational
autoencoder then samples the latent representation to produce a probability distribution of
the low-dimensional representation. Such a probabilistic approach allows the variational
autoencoder to be a generative model, i.e., the decoder is capable of creating completely
new data that are similar to the observed data used for training the model.
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Figure 9. Architecture illustration of the variational autoencoder. Encoder compresses the input X into a latent representation
Z. VAE is different to a standard autoencoder as it assumes that the input data have an underlying probability distribution
(e.g., Gaussian) for which they try to optimize parameters. The decoder then attempts to reconstruct the original input from
the representation by minimizing the reconstruction loss.

3.3.4. Embedder Training

The embedders are trained on molecular fingerprints. For this purpose, we created
two sets of embedders: (1) embedders created with the external data set (CS1), which are
then consecutively used to encode CS2, which results in the transformed representation
of CS2 (hereinafter, external embeddings (EX)); and (2) embedders that were created on
the respective pre-split train set of CS2 and used to encode the pre-split test set of CS2
(hereinafter, internal embeddings (IN)). Both procedures are shown in Figure 10. The two
sets of embeddings were used for solving the classification task of the 12 toxicological labels
alongside commonly used fingerprints. We have fitted the three embedding techniques
(i.e., PCA, UMAP, VAE) on the fingerprints from the CS1 set in eight different data sizes
of randomly selected compounds (200, 500, 1000, 2000, 5000, 10,000, 20,000, and 30,000
compounds) and embedding dimensions (i.e., number of latent variables: 2, 4, 6, 8, 10, and
15). The concept of how to train and apply embedders on chemical spaces is shown in
Figure 11. The Tox21 dataset was transformed with each of the embedders subsequently
and used in the machine learning prediction for each of the 12 toxicological endpoints. The
full experimental matrix consists of 18,288 individual machine learning experiments (see
Table 6).
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of CS2 were utilized for training predictive classification tasks.
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Figure 11. Schematics of chemical space transformation from fingerprint through a pre-trained embedder model. The
transformation can either be conducted from an external data set to the data set of interest or within the data set of interest,
but split into the train and test set.
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Table 6. Experimental matrix. See abbreviations below the table.

Predictive Variables Classifier Seed Embedder Emb. Dim. CS1
Data Size

N
Models

Fingerprints (raw data) RFC, KNN, LR 1–3 N/A N/A N/A 144

Internal emb. RFC, KNN, LR 1–3 PCA, UMAP, VAE 2–15 N/A 9072

External emb. RFC, KNN, LR 1–3 PCA, UMAP, VAE 2–15 200–30,000 9072

CS1—compound set 1, Seed—random state in machine learning, RFC—random forests classifier, KNN—k-nearest neighbours classifier,
LR—logistic regression, emb—Embeddings.

3.3.5. Modeling

A modeling pipeline was created and written in the programming language Python
(v3.6.0). The pipeline is set as follows: (1) data for CS1 and CS2 are loaded, where CS2 in-
volves the Tox21 modeling data (fingerprints—FPs, labels/endpoints) and CS2 fingerprints;
(2) FPs columns for both CS1 and CS2 below 5% variance are removed; (3) removal of
structures from CS2 which appear in CS1; (4) train and apply embedders; and (5) optimize
classification models and apply them on embedded data, as shown in Table 6.

4. Limitations and Future Outlook

This study includes several limitations. First there are many other chemical repre-
sentations besides fingerprints. Among those, interesting results may be revealed from
approaches such as Mol2Vec [11] or graph-based methods [12]. The fingerprints parameters
(5120-bit length and radius 3) do not have an optimal representation, but are rather based
on suggestions from past research [46]. We limited also the embedded data set sizes owing
to computational performance issues in training thousands of models. Therefore, with just
a few latent variables uses compared with fingerprint, we might have experienced some
information loss. Furthermore, there is a plethora of machine learning methods; here, we
used only three that are well described and different by their paradigms in learning. The
hyperparameters space for either machine learning or embedding algorithms can also be
further explored for each individual method as well as the methods for choosing them,
like Bayesian optimization [16,37]. These methods can also be applied to smaller labeled
datasets, which is one of our aims in future research.

5. Conclusions

In this work, we evaluated the effects of pre-compression techniques on chemical
space information generated from fingerprints and utilized in the domain of toxicology.
Specifically, we focused on prominent linear and nonlinear techniques like PCA, UMAP,
and VAE and showed their utility when using QSAR models, which are related to stress
response and nuclear receptors. We showed that, with external knowledge that is trans-
ferred via a pre-trained embedder, we can classify toxicity outcomes with a reasonable
model quality. The quality of the prediction, however, depends to a large extent on the class
separation within each of the 12 toxic outcomes. The results of the silhouette coefficients
suggest that nonlinear methods can achieve a much higher performance than PCA. More-
over, our research revealed that, for the utilized data sets, VAE exhibits much better results
when compared with PCA and UMAP. Nevertheless, the recently popularized UMAP
approach can still be employed for pre-compression as it shows the ability to maintain
high-dimensional relationships.
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16. Lovrić, M.; Pavlović, K.; Žuvela, P.; Spataru, A.; Lučić, B.; Kern, R.; Wong, M.W. Machine learning in prediction of intrinsic
aqueous solubility of drug-like compounds: Generalization, complexity, or predictive ability? J. Chemom. 2021, e3349. [CrossRef]

17. Bellman, R.E. Dynamic programming. Science 1966, 153, 34–37. [CrossRef] [PubMed]
18. Aggarwal, C.C.; Hinneburg, A.; Keim, D.A. On the surprising behavior of distance metrics in high dimensional space. In Database

Theory—ICDT 2001. Lecture Notes in Computer Science; van den Bussche, J., Vianu, V., Eds.; Springer: Berlin/Heidelberg, Germany,
2001; Volume 1973. [CrossRef]

19. Geng, X.; Zhan, D.-C.; Zhou, Z.-H. Supervised nonlinear dimensionality reduction for visualization and classification. IEEE Trans.
Syst. Man Cybern. Part B 2005, 35, 1098–1107. [CrossRef] [PubMed]

20. Sakurada, M.; Yairi, T. Anomaly detection using autoencoders with nonlinear dimensionality reduction. In Proceedings of
the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis—MLSDA’14, Gold Coast, QLD, Australia, 2
December 2014; p. 4.

https://tripod.nih.gov/tox21/assays/index.html
https://tripod.nih.gov/tox21/assays/index.html
https://zenodo.org/record/4248826
http://doi.org/10.1186/s13321-020-00460-5
http://www.ncbi.nlm.nih.gov/pubmed/33431035
http://doi.org/10.1016/j.drudis.2018.06.016
http://www.ncbi.nlm.nih.gov/pubmed/29936244
http://doi.org/10.3389/fenvs.2015.00080
http://doi.org/10.1186/s13321-019-0397-9
http://doi.org/10.1021/ci400187y
http://www.ncbi.nlm.nih.gov/pubmed/23795551
http://doi.org/10.1186/s13321-017-0204-4
http://doi.org/10.1002/minf.201800082
http://doi.org/10.4155/fmc-2016-0163
http://doi.org/10.1002/minf.201800041
http://doi.org/10.1021/ci100050t
http://doi.org/10.1021/acs.jcim.7b00616
http://www.ncbi.nlm.nih.gov/pubmed/29268609
http://doi.org/10.1186/s13321-020-00479-8
http://www.ncbi.nlm.nih.gov/pubmed/33597034
http://doi.org/10.3390/molecules26061617
http://www.ncbi.nlm.nih.gov/pubmed/33803931
http://doi.org/10.3389/fenvs.2016.00002
http://doi.org/10.1186/s13321-020-00468-x
http://www.ncbi.nlm.nih.gov/pubmed/33372637
http://doi.org/10.1002/cem.3349
http://doi.org/10.1126/science.153.3731.34
http://www.ncbi.nlm.nih.gov/pubmed/17730601
http://doi.org/10.1007/3-540-44503-X_27
http://doi.org/10.1109/TSMCB.2005.850151
http://www.ncbi.nlm.nih.gov/pubmed/16366237


Pharmaceuticals 2021, 14, 758 16 of 17

21. Duricic, T.; Hussain, H.; Lacic, E.; Kowald, D.; Helic, D.; Lex, E. Empirical comparison of graph embeddings for trust-based
collaborative filtering. In Proceedings of the 25th International Symposium on Methodologies for Intelligent Systems, Graz,
Austria, 23–25 September 2020.

22. Blei, D.M.; Ng, A.Y.; Jordan, M.I. Latent Dirichlet allocation. J. Mach. Learn. Res 2003, 3, 993–1022.
23. Choi, S. Algorithms for orthogonal nonnegative matrix factorization. In Proceedings of the 2008 IEEE International Joint

Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China, 1–6 June 2008; pp.
1828–1832.

24. Sampson, G.; Rumelhart, D.E.; McClelland, J.L. The PDP research group parallel distributed processing: Explorations in the
microstructures of cognition. Language 1987, 63, 871. [CrossRef]

25. Hotelling, H. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol. 1933, 24, 417–441.
[CrossRef]

26. Van der Maaten, L. Hinton G visualizing data using t-SNE. J. Mach. Learn. Res. 2008, 9, 2579–2605.
27. Belkin, M.; Niyogi, P. Laplacian Eigenmaps for dimensionality reduction and data representation. Neural Comput. 2003, 15,

1373–1396. [CrossRef]
28. McInnes, L.; Healy, J.; Melville, J. UMAP: Uniform Manifold Approximation and Projection for dimension reduction. J. Open

Source Softw. 2018, 3, 861. [CrossRef]
29. Shrivastava, A.; Kell, D. FragNet, a contrastive learning-based transformer model for clustering, interpreting, visualizing, and

navigating chemical space. Molecules 2021, 26, 2065. [CrossRef]
30. Probst, D.; Reymond, J.-L. Visualization of very large high-dimensional data sets as minimum spanning trees. J. Cheminformatics

2020, 12, 12. [CrossRef] [PubMed]
31. Becht, E.; McInnes, L.; Healy, J.; Dutertre, C.-A.; Kwok, I.W.H.; Ng, L.G.; Ginhoux, F.; Newell, E.W. Dimensionality reduction for

visualizing single-cell data using UMAP. Nat. Biotechnol. 2019, 37, 38–44. [CrossRef] [PubMed]
32. Obermeier, M.M.; Wicaksono, W.A.; Taffner, J.; Bergna, A.; Poehlein, A.; Cernava, T.; Lindstaedt, S.; Lovric, M.; Bogotá,

C.A.M.; Be1rg, G. Plant resistome profiling in evolutionary old bog vegetation provides new clues to understand emergence of
multi-resistance. ISME J. 2021, 15, 921–937. [CrossRef] [PubMed]

33. Bengio, Y.; Lamblin, P.; Popovici, D.; Larochelle, H. Greedy layer-wise training of deep networks. Adv. Neural. Inf. Process. Syst.
2007, 153–160. [CrossRef]

34. Kingma, D.P.; Welling, M. Auto-encoding variational bayes. In Proceedings of the 2nd International Conference on Learning
Representations, ICLR 2014, Banff, AB, Canada, 14–16 April 2014.

35. Kwon, Y.; Yoo, J.; Choi, Y.-S.; Son, W.-J.; Lee, D.; Kang, S. Efficient learning of non-autoregressive graph variational autoencoders
for molecular graph generation. J. Cheminformatics 2019, 11, 70. [CrossRef] [PubMed]

36. Bjerrum, E.J.; Sattarov, B. Improving chemical autoencoder latent space and molecular de novo generation diversity with
heteroencoders. Biomolecules 2018, 8, 131. [CrossRef]

37. Zhang, J.; Mucs, D.; Norinder, U.; Svensson, F. LightGBM: An effective and scalable algorithm for prediction of chemical
toxicity–application to the Tox21 and mutagenicity data sets. J. Chem. Inf. Model. 2019, 59, 4150–4158. [CrossRef] [PubMed]

38. Ding, J.; Li, X.; Gudivada, V.N. Augmentation and evaluation of training data for deep learning. In Proceedings of the 2017 IEEE
International Conference on Big Data (IEEE Big Data 2017), Boston, MA, USA, 11–14 December 2017; pp. 2603–2611.

39. Ehuang, R.; Exia, M.; Nguyen, D.-T.; Ezhao, T.; Esakamuru, S.; Ezhao, J.; Shahane, S.A.; Erossoshek, A.; Esimeonov, A.
Tox21Challenge to build predictive models of nuclear receptor and stress response pathways as mediated by exposure to
environmental chemicals and drugs. Front. Environ. Sci. 2016, 3, 85. [CrossRef]

40. Fernandez, M.; Ban, F.; Woo, G.; Hsing, M.; Yamazaki, T.; Leblanc, E.; Rennie, P.S.; Welch, W.J.; Cherkasov, A. Toxic colors: The use
of deep learning for predicting toxicity of compounds merely from their graphic images. J. Chem. Inf. Model. 2018, 58, 1533–1543.
[CrossRef] [PubMed]

41. Hemmerich, J.; Asilar, E.; Ecker, G. Conformational oversampling as data augmentation for molecules. In Transactions on Petri
Nets and Other Models of Concurrency XV; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; pp.
788–792.

42. Klimenko, K.; Rosenberg, S.A.; Dybdahl, M.; Wedebye, E.B.; Nikolov, N.G. QSAR modelling of a large imbalanced aryl
hydrocarbon activation dataset by rational and random sampling and screening of 80,086 REACH pre-registered and/or
registered substances. PLoS ONE 2019, 14, e0213848. [CrossRef] [PubMed]

43. Fourches, D.; Muratov, E.; Tropsha, A. Trust, but verify: On the importance of chemical structure curation in cheminformatics and
QSAR modeling research. J. Chem. Inf. Model. 2010, 50, 1189–1204. [CrossRef]

44. Greg Landrum, RDKit. Available online: http://rdkit.org (accessed on 21 May 2020).
45. Gütlein, M.; Kramer, S. Filtered circular fingerprints improve either prediction or runtime performance while retaining inter-

pretability. J. Cheminform. 2016, 8, 60. [CrossRef] [PubMed]
46. Landrum G RDKit: Colliding Bits III. Available online: http://rdkit.blogspot.com/2016/02/colliding-bits-iii.html (accessed on

23 December 2019).
47. Alygizakis, N.; Slobodnik, J. S32 | REACH2017 | >68,600 REACH Chemicals. 2018. Available online: https://zenodo.org/

record/4248826 (accessed on 23 December 2020).
48. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]

http://doi.org/10.2307/415721
http://doi.org/10.1037/h0071325
http://doi.org/10.1162/089976603321780317
http://doi.org/10.21105/joss.00861
http://doi.org/10.3390/molecules26072065
http://doi.org/10.1186/s13321-020-0416-x
http://www.ncbi.nlm.nih.gov/pubmed/33431043
http://doi.org/10.1038/nbt.4314
http://www.ncbi.nlm.nih.gov/pubmed/30531897
http://doi.org/10.1038/s41396-020-00822-9
http://www.ncbi.nlm.nih.gov/pubmed/33177608
http://doi.org/10.7551/mitpress/7503.003.0024
http://doi.org/10.1186/s13321-019-0396-x
http://www.ncbi.nlm.nih.gov/pubmed/33430985
http://doi.org/10.3390/biom8040131
http://doi.org/10.1021/acs.jcim.9b00633
http://www.ncbi.nlm.nih.gov/pubmed/31560206
http://doi.org/10.3389/fenvs.2015.00085
http://doi.org/10.1021/acs.jcim.8b00338
http://www.ncbi.nlm.nih.gov/pubmed/30063345
http://doi.org/10.1371/journal.pone.0213848
http://www.ncbi.nlm.nih.gov/pubmed/30870500
http://doi.org/10.1021/ci100176x
http://rdkit.org
http://doi.org/10.1186/s13321-016-0173-z
http://www.ncbi.nlm.nih.gov/pubmed/27853484
http://rdkit.blogspot.com/2016/02/colliding-bits-iii.html
https://zenodo.org/record/4248826
https://zenodo.org/record/4248826
http://doi.org/10.1023/A:1010933404324


Pharmaceuticals 2021, 14, 758 17 of 17

49. Hastie, T.; Tibshirani, R.; Friedman, J. The Elements of Statistical Learning; Springer: New York, NY, USA, 2009.
50. Cover, T.; Hart, P. Nearest neighbor pattern classfication. IEEE Trans. Inf. Theory 1967, 13, 21–27. [CrossRef]
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