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Abstract: Alzheimer’s disease (AD) is a neurodegenerative pathology characterized by the presence
of neurofibrillary tangles and amyloid plaques, the latter mainly composed of Aβ(1–40) and Aβ(1–42)
peptides. The control of the Aβ aggregation process as a therapeutic strategy for AD has prompted
the interest to investigate the conformation of the Aβ peptides, taking advantage of computational
and experimental techniques. Mixtures composed of systematically different proportions of HFIP and
water have been used to monitor, by NMR, the conformational transition of the Aβ(1–42) from soluble
α-helical structure to β-sheet aggregates. In the previous studies, 50/50 HFIP/water proportion
emerged as the solution condition where the first evident Aβ(1–42) conformational changes occur. In
the hypothesis that this solvent reproduces the best condition to catch transitional helical-β-sheet
Aβ(1–42) conformations, in this study, we report an extensive NMR conformational analysis of
Aβ(1–42) in 50/50 HFIP/water v/v. Aβ(1–42) structure was solved by us, giving evidence that the
evolution of Aβ(1–42) peptide from helical to the β-sheet may follow unexpected routes. Molecular
dynamics simulations confirm that the structural model we calculated represents a starting condition
for amyloid fibrils formation.
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1. Introduction

Neurodegenerative diseases represent an increasingly common debilitating condi-
tion due to the current average lifespan. Among the neurodegenerative pathologies,
Alzheimer’s disease (AD) is one of the most studied [1–3]. This disorder is characterized,
at the histological level, by the presence of neurofibrillary tangles and amyloid plaques,
mainly composed of 39–42 amino acid-long peptides known as amyloid-β peptides (Aβ).
Aβ(1–40) and Aβ(1–42), like other amyloid peptides—transytiretin, IAPP [4–8]—derive
from a noncorrect cleavage of the transmembrane amyloid precursor protein (APP). They
are in a metastable equilibrium at the neuronal cell membrane interface, where slight
changes in the chemical–physical conditions—e.g., metal ions, pH, temperature—induce
conformational transitions to form β-sheet structures, evolving in starch-like amyloid
fibrils [9–11]. Accumulation of synaptotoxic and neurotoxic Aβ(1–42) fibrils on neurons
and glial cells cause activation of proinflammatory cascades, leading to mitochondrial
dysfunction and increased oxidative stress, which induces impairment of intracellular
signaling pathways, deregulation of calcium metabolism, apoptosis, and cell death [12].

The control of the Aβ aggregation process as a therapeutic strategy for AD has
prompted the interest to investigate the conformation of the Aβ peptides, taking advan-
tage of computational and experimental techniques [13]; NMR spectroscopy has been
extensively used to study the structure of Aβ(1–42) and its shorter fragments in several
environmental conditions, where soluble helical structures are favored. Detergent micelles
have been used to reproduce the cell membrane interface [14–19]: in sodium dodecyl
sulfate (SDS) and lithium dodecyl sulfate (LiDS) micelles, the short fragments Aβ(12–28),
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Aβ(25–35), and Aβ(1–28) form regular α-helices [17,18], while Aβ(1–40) is characterized
by helical-kink-helical structure. This structural motif is conserved in Aβ(16–35) in mixed
dodecyl phosphocholine (DPC)/SDS micelles, where the stability of the structure depends
on the charge of the micelle surface [20]. NMR analysis in an aqueous system revealed
that Aβ(1–40) forms a 310 helix on 13H–D23 residues and is unstructured in the N- and C-
terminal regions [14]. On the other hand, Aβ(1–42) monomer contains 8S–V24 and 28K–V38

α-helices and a β-turn on 25G–K28 residues [21,22].
Mixtures of hexafluoroisopropanol (HFIP) and water in different proportions have

been used to study, by NMR, the conformational properties of Aβ(1–42) in solvent systems
characterized by different polarities. In HFIP/water 80/20 v/v, Aβ(1–42) is arranged in two
helical segments, 8S–G25 and 28K–V38, interrupted by a 25G–S26, β-turn [21]; by decreasing
HFIP proportion, i.e., in HFIP/water 30/70 v/v, Aβ(1–42) assumes prevalent bends struc-
tures preserving a single α-helical segment on 11E–L17 sequence (Figure 7c) [23]. Circular
dichroism (CD) experiments performed on Aβ(1–42) in mixtures composed of systemati-
cally different proportions of HFIP and water show that in HFIP/water containing more
than 90% water, Aβ(1–42) conformation shifts to β-sheet. Moreover, at 50/50 HFIP/water
proportion, the first evident Aβ(1–42) conformational changes are visible [21]. On this basis,
and in the hypothesis that this solvent, characterized by intermediate physicochemical
properties between those previously used, represents the best condition to catch transitional
helical-β-sheet Aβ(1–42) conformations [24,25], we decided to perform an extensive NMR
conformational analysis of Aβ(1–42) in 50/50 HFIP/water. Aβ(1–42) structure solved in
the present study, compared to those previously solved in 80/20 and 30/70 HFIP/water
v/v, indicates that the evolution of Aβ(1–42) peptide from helical to β-sheet may follow
unexpected routes. Molecular dynamics (MD) simulations confirm that the structural
model we calculated represents a starting condition for amyloid fibrils formation.

2. Results
2.1. NMR Structure Determination of Aβ(1–42) Peptide

We expressed and purified a recombinant Aβ(1–42) peptide following the protocol
of Walsh et al. [26]. To check the aggregation state of the Aβ(1–42) peptide before the
Aβ(1–42) structural characterization, we recorded the Diffusion Ordered SpectroscopY
(DOSY) experiment (data not shown) [27]. The molecular weight of Aβ(1–42) calculated
from DOSY spectrum and using 1,4-dioxane as internal reference was compatible with
Aβ(1–42) in the monomeric form. 1D 1H, 2D total correlation spectroscopy (TOCSY) and
Nuclear Overhauser Effect SpectroscopY (NOESY) spectra of Aβ(1–42) in a mixture of
HFIP/water 50/50 v/v were collected on a Bruker 600MHz at 298 K. Then, 1H chemical shift
assignments were carried out by iteratively analyzing TOCSY and NOESY spectra using
SPARKY software [28]. The 1D and 2D 1H spectra (Figure 1) showed 42 well-dispersed
amide chemical shifts and uniform resonance line widths according to the characteristics of
a structured peptide. In addition, the sequential chemical shift assignment was performed
according to the Wüthrich procedure [29].

Figure 2a summarizes the regular sequential and medium-range NOE effects, N,N(i,i+2),
α,N(i,i+2), α,N(i,i+3), and α,β(i,i+3) observed in 2D-NOESY spectrum. NOE patterns
are consistent with regular secondary structures on the N-terminal and central region of
Aβ(1-42), while high dynamic, flexible conformations are present on the C-terminal region
of the peptide. The Ramachandran plot in Figure 2b shows that the peptide assumes a
right-handed α-helix predominantly and, to a lesser extent, a β-sheet conformation.
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Figure 2. (a) Overview of the sequential and medium-range NOEs used to calculate the Aβ(1–42) 
peptide structure ensemble. (b) Ramachandran plot providing an overview of allowed and 
disallowed regions of torsion angle values. 

NOE data were translated into interprotonic distances using the CALIBA routine of 
CYANA 2.1 software [30] and then used as restraints for the NMR structure calculations. 
Table 1 summarizes the statistics for the final NMR ensemble [31].  
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Figure 2. (a) Overview of the sequential and medium-range NOEs used to calculate the Aβ(1–42) pep-
tide structure ensemble. (b) Ramachandran plot providing an overview of allowed and disallowed
regions of torsion angle values.

NOE data were translated into interprotonic distances using the CALIBA routine of
CYANA 2.1 software [30] and then used as restraints for the NMR structure calculations.
Table 1 summarizes the statistics for the final NMR ensemble [31].

HFIP/water mixtures have been used previously to solve the solution structure
of Aβ(1–42), taking advantage of the physical–chemical properties of the fluorinated
solvents [46]. In particular, these mixtures represented an excellent system to monitor
the conformational perturbations induced by increasing amounts of water in the stable
helical Aβ(1–42) solution structure. Aβ(1–42) studied by NMR in 80/20 HFIP/water
v/v mixture [21] presented regular helical-kink-helical structure (Figure 7a), while in a
mixture containing higher water content—30/70 HFIP/water v/v—it assumed bends
conformations with regular α-helix on 11E–L17 segment (Figure 7c).
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Table 1. Statistics for the structural calculation of the NMR ensemble of Aβ(1–42) peptide.

Number of Experimental Restraints after CYANA
Total NOEs 585

Intra-residual 348
Sequential 143

Long-range 94

RMSD
bb/heavy Å 2.92/3.11

Ramachandran Analysis
Favorable regions 50.60%

Additional allowed regions 37.90%
Generously allowed regions 9.10%

Disallowed regions 2.4%

Figure 3 shows the bundle of the best 10 Aβ(1–42) NMR structures derived from
simulated annealing calculation using CYANA software [30]. The structures, deposited
in the Protein Data Bank with the accession code PDB ID: 6SZF, are superimposed on
the backbone heavy atoms of 1D–H14 N-terminal residues and 15Q–S26 central residues,
showing a root mean square deviation (RMSD) of backbone atom position of 1.19 Å
and 0.94 Å, respectively; on the contrary, as predicted from analysis of NOE data, the
C-terminus is much more disordered and dynamic.
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Figure 3. Bundles of the best 10 NMR structures of Aβ(1–42) derived from CYANA 2.1 [30] based on
NMR data acquired in HFIP/water 50/50 v/v. The structures are superimposed on the backbone
heavy atoms of N-terminal region 1D–H14 (left), and central region 15Q–S26 (right).

Figure 4 shows a ribbon representation of the most representative NMR structure of
Aβ(1–42) acquired in HFIP/water 50/50 v/v. The Define Secondary Structure of Proteins
(DSSP) plot calculated by GROMACS [32] confirms the prevalence of regular α-helix con-
formations on 18V–V24 residues. In addition, alternation of turn and bend conformations
are observable at the N-terminal region.
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2.2. Molecular Dynamics

The computer simulation of the Aβ(1–42) α-helix—β-sheet transition is challeng-
ing. The development of innovative techniques such as discrete molecular dynamics
(DMD) from NMR chemical shifts—metadynamics [33] or enhanced sampling techniques
(REMD) [34]—represents a significant improvement, allowing to build reliable models of
conformational transition.

To integrate the NMR experimental data and to evaluate the stability of the Aβ(1–42)
conformation solved in HFIP/water 50/50 v/v when exposed to a complete aqueous
system, we performed 50 ns molecular dynamics (MD) calculation starting from the 3D
coordinates obtained from NMR spectra assignment. Although aware of the limitations of
the traditional computational methods we used, the results are in agreement with those
obtained with REMD protocols [33–37].

Calculations were run with GROMACS [32,38]. The best NMR structure based on
the lowest value of the target function (CYANA 2.1 [30]) was positioned in a box filled
with explicit water for 50 ns at 298 K. As shown by the RMSD plot, the system reaches
equilibrium after 1 ns and is stable during the whole simulation (Figure 5) [39].
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The snapshots of the 50 ns MD trajectory of Aβ(1–42) in water are shown in Figure 6,
overlapped to the solvent-accessible surface area (sasa) plot. As reported, the 18V–V24

α-helical structure slides to the 12V–V18 portion during the first steps of the dynamics,
experimenting unfolding after 40 ns. Remarkable is the β-sheet architecture formed
at C-terminus 27N–I41, which turns out to be extended to three strands within the 18
to 28 ns time range. Confirming data previously published [40], this is a crucial step
for amyloid seeding, which is known to originate in the neighborhood of the 25G–M35

residues. From 28.1 ns to the end of MD simulation, this strand gets confined in residues
35M–V40, indicating that the fibrillation is occurring, and the β-strand is transforming into
a more complex intermolecular structure. Solvent-accessible surface data (GROMACS
sasa, Figure 6) support this interpretation and show that N-terminal and central regions
are equally exposed to the solvent until 40 ns, when the central part has low solvent
accessibility because it is shielded by the N-terminal segment.
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3. Discussion

Based on the amyloid-β (Aβ) cascade hypothesis, abnormal accumulation of the Aβ
peptides into toxic extracellular plaques is critical for inducing neurodegeneration and
dementia in AD patients [9,41–43]. The main components of the amyloid plaques are
Aβ(1–40) and Aβ(1–42), soluble helical peptides that, in overcoming toxic environmental
conditions, undergo a conformational transition to form β-sheet oligomers, protofibrils,
fibrils, and plaques [42]. How this transition occurs is still questioned. Experimental data
on this process are derived from NMR studies of the peptide before and after the α-helix-
β-sheet conformational transition, i.e., in solution [21,23] and the solid state [44,45]. Little
data are available on the prevalent Aβ(1–42) conformations occurring in the intermediate
steps of helical-to-sheet transition.

In the present work, we analyzed by NMR, Aβ(1–42) peptide in 50/50 HFIP/water
v/v, a solvent mixture characterized by intermediate polarity compared to those previously
used. NMR data show that the prevalent conformation of Aβ(1–42) in these conditions
includes helical structure on 18V–V24 residues, turns on 4F–H14 and 32I–G38 segments, short
random coils, and bend structures on the remaining portions of the sequence (Figure 7b).
The conformation of Aβ(1–42) peptide in 50/50 HFIP/water v/v is moderately flexible and
characterized by intermediate regularity, as compared to the prevalent α-helix calculated
in HFIP/water 80/20 v/v [21] and the prevalent bend structure calculated in HFIP/water
30/70 v/v [23].
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However, comparing the localization of the helical segments, it is evident that the
transition to a more extended structure, moving from 80/20 to 30/70 HFIP/water v/v
condition, is not a simple unfolding process of the helical structure. Yet, it occurs through
sliding the single α-helical pieces to the different segments of the sequence. Interestingly,
by looking at the Ramachandran plot, a clusterized set of points is observable at psi = 70
and phi = −90 between the helical and sheet region. These points, characterized by average
G-factor ranging from −2.40 to −1.62, correspond to the backbone dihedral angles of the
residues flanking the helical region, thus evidencing the metastable condition of this region
and its tendency to change conformation, favoring a further sliding of the helix.

To investigate the evolution of the NMR calculated structures in an aqueous medium,
we performed 50 ns MD simulations. Snapshots of Aβ(1–42) trajectory throughout MD
simulation and solvent accessible surface plot indicate that the 18V–V24 α-helix slides to
residues 12V–V18 within the first steps, to be unfolded in the last steps of the MD. As
soon as the system stabilizes (Figures 5 and 6), a β-sheet architecture is formed in 25G–M35

segment, then shifts in the 27N–I41 region. These moieties are involved in forming a
complex intermolecular structure, as shown by the low solvent accessibility of the 35M–V40

strand, which could indicate the rearrangement in a fibril aggregate structure.

4. Materials and Methods
4.1. Aβ(1–42) Peptide Production

Aβ(1–42) peptide was obtained after transformation of E. coli BL21(DE3)-pLysS cells
with PetSac plasmid, provided by the research group of Walsh [26]. To optimize expression
levels, were used E. coli, Ca2+-competent (BL21(DE3)-pLysS) cells obtained by thermal
shock and allowed to grow in agar plates containing the LB culture medium with ampicillin
(50 mg/L). The individual colonies were taken from a stock solution, stored at a tempera-
ture of −80 ◦C, and added to 50 mL of preinoculum, where 50 µL of ampicillin (50 mg/L)
was previously added. The preparation was left in a thermostatic incubator, under constant
stirring, at a temperature of 37 ◦C overnight. The following day, 5 mL of the culture was
transferred to 500 mL of LB medium added to 500 µL of ampicillin (50 mg/L). When bacte-
rial clones reached a final OD600 of 0.6 at 37 ◦C, 50 mg/L of isopropyl-thio-β-D-galactoside
(IPTG) was added. The cells were collected after 4 h of induction and centrifuged to
remove the fraction constituted by the supernatant. Subsequently, the resulting pellet was
thawed and sonicated three times in a solution containing Tris/HCl pH 8.0 and EDTA, at
a concentration of 10 mM and 1 mM respectively, for 5 min on ice (1/2 horn, 50% duty
cycle). The sonicate was centrifuged for 10 min at 8000 rcf. The supernatant was removed,
and the pellet was resuspended in a solution containing 8 M urea, Tris/HCl pH 8.0 10 mM,
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EDTA 1 mM, and sonicate as before. The resulting solution, containing Aβ(1–42) in the
urea-soluble inclusion bodies, was diluted with a 10 mM Tris/HCl solution pH 8.0 and
1 mM EDTA. Subsequently, the solution was purified with a HiTrap™ DEAE FF column, at
a flow rate of 1 mL/min, using an AKTA purification system. The protein was eluted with
an elution buffer (8 M urea, Tris/HCl pH 8.0 10 mM, 1 mM EDTA, 1 M NaCl). The eluted
fraction was subsequently dialyzed against Tris/HCl pH 8.0 10 mM and freeze dried. The
purity of the peptide was verified using the SDS-PAGE electrophoretic technique, elec-
trophoresis on polyacrylamide gel (PAGE) in the presence of SDS, using Coomassie blue
staining. The SDS-PAGE electrophoresis of the previously sonicated cell pellet revealed
that the majority of Aβ(1–42) was present in the band between 4 and 5 kDa. In order to
support the peptide expression, the matrix-assisted laser desorption/ionization (MALDI)
mass spectrometry technique was used. The sample was previously dried and placed
in a MALDI sample support consisting of a solution matrix (4-hydroxy acid, α-cyanic
cinnamic, 25 mM citric acid), which favors the crystallization of the compounds and allows
an optimal analysis.

4.2. NMR Sample Preparation

Aβ(1–42) peptide has a very high tendency to form fibrils. To preserve the peptide
in the monomeric form and avoid the formation of oligomeric and polymeric forms,
before and during the experiments, Aβ(1–42) was subjected to a defibrillating treatment
following the procedure described by Jao et al. [47]. The Aβ(1–42) peptide was dissolved
in trifluoroacetic acid (TFA) until complete solubilization of the powder sample and left
in TFA for 3 h. Subsequently, the TFA was removed under nitrogen flow and was diluted
10-fold with milliQ water and lyophilized. This procedure was adopted for NMR analysis
immediately before dissolution in the appropriate solvent.

4.3. NMR Spectroscopy
4.3.1. Spectra Acquisition

NMR spectra were recorded on a Bruker DRX-600 spectrometer. Aβ(1–42) peptide
(500 µM) was dissolved in HFIP/water-D2O 50/50 v/v. The 1D 1H homonuclear spectrum
was recorded in the Fourier mode, with quadrature detection. The 2D 1H homonuclear
TOCSY and NOESY experiments were acquired in the phase-sensitive mode using quadra-
ture detection inω1 by time-proportional phase incrementation of the initial pulse [48–50].
The water signal was suppressed by excitation sculpting experiments [51]. Before Fourier
transformation, the time domain data matrices were multiplied by shifted sin2 functions in
both dimensions. A mixing time of 80 ms was used for the TOCSY experiments. NOESY
experiments were run at 298 K with mixing times of 200 ms.

4.3.2. Assignment of NMR Resonances

The assignment of chemical shifts was obtained by the usual approach described by
Wuthrich [29] examining 2D TOCSY and NOESY spectra using SPARKY software [28].
Intramolecular distance restraints derived from Nuclear Overhauser Enhancements (NOEs)
were obtained from the 2D NOESY spectrum recorded on a 600 MHz spectrometer.

4.3.3. Structure Calculation

Peak volumes were translated into upper distance bounds with the CALIBA routine
from the CYANA 2.1 software package [30]. After discarding redundant and duplicated
constraints, the final list of constraints was used to generate an ensemble of 50 structures
by the standard CYANA protocol of simulated annealing in torsion angle space (using
6000 steps). The entries that presented the lowest target function value (0.83–1.19) and
small residual violations (maximum violation = 0.38 Å) were analyzed using the PyMOL
program [52].
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4.4. Molecular Dynamics

Molecular dynamics (MD) simulations on Aβ(1–42) structure obtained from CYANA
calculations were performed with GROMACS [32,38], by using Gromos96 53a6 force
field [53]. The simulations were run for 50 ns at 298 K. The structure was immersed
in explicit water using the SPC model [54]. The protein was solvated, and the system
was neutralized by adding three Na+ ions. After these steps, the energy minimization
of the system was performed, and then the system was equilibrated using NVT and
NPT runs. The temperature and pressure of the system were kept constant at 298 K and
1.01325 bar using the Berendsen weak coupling method [54,55]. The linear constraint
solver (LINCS) method was used to constrain bond lengths [56]. The leap-frog algorithm
was used to integrate the motion equations with a time step of 2 fs. The results were
used for a 50 ns MD simulation using particle mesh Ewald for long range electrostatics
under NPT conditions [57]. Coordinates were saved every 50,000 steps. The trajectory
file was fitted in the box and converted into PDB coordinates by using the trjconv tool of
the GROMACS package. The structure was visualized with Maestro by Schrödinger [58].
Root-mean-square deviation (RMSD) of peptide backbone was calculated using the rms tool
of GROMACS, and plotted using R (version 3.6.0) [59]. Ramachandran plot was calculated
using the rama tool of GROMACS. Solvent accessible surface plot was calculated using
the sasa tool of GROMACS. The solvent surface accessible area graph was calculated by
dividing the Aβ(1–42) peptide into three sections: N-terminus (residues 1D–Q15), central
region (residues 16K–G29), and C-terminus (residues 30A–A42). Define secondary structure
of proteins (DSSP) plot was calculated using the do_dssp tool of GROMACS.

5. Conclusions

We have studied the conformation of Aβ(1–42) in 50/50 HFIP/water v/v solvent.
This mixture represents an intermediate condition between the previously explored apolar
80/20 HFIP/water v/v and polar 30/70 HFIP/water v/v. The structure we solved provides
a snapshot of the conformation occurring during Aβ(1–42) helical-to-sheet transition: the
apolar condition’s Aβ(1–42) loses its regular helix, which slides mostly to the central
region, which is known to be critical for amyloid seeding. The C-terminus shows high
flexibility and dynamic properties, revealing a primary role in the transition to the β-sheet
conformation. Indeed, MD simulations in water confirm that these flexible regions evolve
to regular β-strand structures, giving rise to a complex architecture typical of the β-sheet
fibril aggregates.
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