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Abstract: In order to develop novel chemotherapeutic agents with potent anticancer activities, a
series of new 2,5-diaryl/heteroaryl-1,3,4-oxadiazoles were designed and synthesized. The structures
of the new compounds were established using elemental analyses, IR and NMR spectral data. The
compounds were evaluated for their anticancer potential on two standardized human cell lines, HT-
29 (colon adenocarcinoma) and MDA-MB-231 (breast adenocarcinoma). Cytotoxicity was measured
by MTS assay, while cell cycle arrest and apoptosis assays were conducted using a flow cytometer, the
results showing that the cell line MDA-MB-231 is more sensitive to the compounds’ action. The results
of the predictive studies using the PASS application and the structural similarity analysis indicated
STAT3 and miR-21 as the most probable pharmacological targets for the new compounds. The
promising effect of compound 3e, 2-[2-(phenylsulfanylmethyl)phenyl]-5-(4-pyridyl)-1,3,4-oxadiazole,
especially on the MDA-MB-231 cell line motivates future studies to improve the anticancer profile
and to reduce the toxicological risks. It is worth noting that 3e produced a low toxic effect in the D.
magna 24 h assay and the predictive studies on rat acute toxicity suggest a low degree of toxic risks.

Keywords: cytotoxic agents; apoptosis induction; HT-29 cells; MDA-MB-231 cells; mechanism
prediction; STAT inhibitors; miR-21; hydrazide derivatives; nitrogen scaffolds

1. Introduction

Cancer, a severe human health issue, is among the leading causes of death on a global
scale, and so far chemotherapy remains a main treatment option adopted worldwide
either alone or in conjunction with surgery and/or radiotherapy [1]. Despite the signifi-
cant advancement in chemotherapy over recent decades, which led to major changes in
the treatment of various cancers, the main obstacles to the success of the therapy have
remained the development of tumor-cell resistance to various chemotherapeutic agents.
Drug resistance, either existing before treatment (intrinsic) or generated after therapy
(acquired), is responsible for most the relapses of cancer, one of the major causes of death
of the disease [2,3].

In the attempt of finding effective anticancer agents, the strategy of using simple
druggable scaffolds proved to be successful in finding many relevant lead compounds [4].
A large number of nitrogen-containing heterocyclic compounds were identified as valuable
anticancer solutions [5]. Among these, oxadiazoles are receiving particular interest. De-
pending on the position of the nitrogen and oxygen atoms, the heterocycle may occur in the
form of one of the following four different isomers: 1,2,3-, 1,2,4-, 1,2,5-, and 1,3,4-oxadiazole
(Figure 1) [6].
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Figure 1. Chemical structures of oxadiazole isomers.

The greatest interest is involved with 1,3,4-oxadiazoles, as in the last years a large
number of compounds with cytotoxicity for several tumor lines have been reported. The
most active derivatives are more potent than the reference drugs, which proves the high
anticancer potential of the 1,3,4-oxadiazole ring [7–11]. The 1,3,4-oxadiazole is an important
scaffold in medicinal chemistry, with high versatility, giving rise to elevated structural
diversity. In some cases, it acts as a bioisostere for carbonyl-containing compounds such
esters, amides, and carbamates or as a flat aromatic linker to provide the appropriate
molecular geometry. The stability of the oxadiazole ring in aqueous medium, and its
capability to easily interact with bio-targets establishing π –π interactions or forming strong
hydrogen bonds, justify the interest in the development of bioactive molecules containing
this scaffold [6].

The versatility and the usefulness of the 1,3,4-oxadiazole scaffold is demonstrated by
its use as a core structure in the inhibitors of methionine aminopeptidase (MetAP2) [12],
telomerase [13,14], focal adhesion kinase (FAK) [15], thymidylate synthase (TS) [16], glyco-
gen synthase kinase-3 (GSK-3) [17], and thymidine phosphorylase (TP) [18,19]. The antitu-
mor potency of 1,3,4-oxadiazoles derivatives is also related to their ability to inhibit grow
factors such as epidermal growth factor receptor (EGFR) [20,21] or vascular endothelial
growth factor (VEGF) [22], to inhibit tubulin polymerization [23], histone deacetylases
(HDAC) [24,25], or to interact with DNA structures [26]. The structures of the repre-
sentative anticancer compounds sharing the 1,3,4-oxadiazole scaffold are presented in
Figure 2.

Figure 2. Structure of some representative bioactive compounds containing 1,3,4-oxadiazole moiety
as anticancer agents.

In view of the above findings, in order to develop novel chemotherapeutic agents with
potent anticancer activities we hereby report the synthesis, characterization and biological
evaluation of some new 2,5-diaryl/heteroaryl-1,3,4-oxadiazoles.
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2. Results
2.1. Synthesis Procedures

The compounds were designed so that the molecular weight is under 500 g/mol, and
the number of hydrogen donors and acceptors comply with the Lipinski rule.

The new 1,3,4-oxadiazole derivatives were prepared by heating under reflux and
magnetic stirring of aromatic carboxylic acids 1a–d with the hydrazide derivatives 2a–b in
the presence of phosphorus oxychloride in 59–70% yields (Scheme 1).

Scheme 1. Synthesis of the target compounds 3a–e. Reagents and conditions: (i) POCl3, reflux, 9 h.

The aromatic carboxylic acids 1a–c were prepared starting from thiophenol or the corre-
sponding p-substituted thiophenols and phtalide, according to a previously reported proce-
dure [27,28]. A synthetic procedure for the preparation of 2-[(benzenesulfonyl)methyl]benzoic
acid (1d) was reported by Patra group [29], and it consists in the reaction of methyl 2-
(bromomethyl)benzoate with sodium benzenesulfinate in dry dimethylformamide at room
temperature, followed by the hydrolysis of the resulting ester with an aqueous solution of
sodium hydroxide. The benefit of our synthesis method is the use of an alternative greener
approach and the yield advantage.

The new 1,3,4-oxadiazole derivatives 3a–e were prepared by the treatment of aromatic
carboxylic acids 1a–d with the hydrazide derivatives 2a–b in the presence of phosphorus
oxychloride. The method was adapted based on previously described procedures [30,31].

Scheme 2 presents the atoms’ numbering used for assigning the NMR signals of the
new oxadiazole derivatives.

Scheme 2. Structure of the new oxadiazole compounds and the numbering of their atoms.

In the 1H-NMR spectra of the new compounds, the aromatic hydrogens gave signals
in the range of 8.84–6.98 ppm. The methylene group CH2 (H-12) presented a singlet in the
range of 4.64–4.71 ppm for the compounds 3a–c and 3e. In the case of 3d, the S-oxidation
induces a deshielding effect that results in an approximately 1 ppm higher chemical shift
for the protons of the methylenic group. The methyl group presented a singlet at 2.22 ppm.

In the 13C-NMR spectra, the two signals in the range of 164.50–161.87 ppm are pro-
duced by the two carbons in the oxadiazole ring. The carbon atoms of the benzene and the
pyridine rings produce signals in the range of 149.80–120.41 ppm. The methylene group
(C-12) is characterized by a signal at 36.54–38.70 ppm in the compounds 3a–c and 3e, and
59.38 ppm in compound 3d.

The IR spectra of the 3a–e compounds differ significantly from the corresponding
spectra of the hydrazide derivatives 2a–b and those of the acids 1a–d.
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2.2. Anticancer Evaluation

The amplification of the cell division process is responsible for the formation of tumors.
Most tumor cells have disorders in the development of the cell cycle, which are associated
with an exacerbated proliferative process and this is responsible for the evolution of the
tumor process. In addition, the apoptotic process is inhibited in tumor cells [32,33]. In
general, cytostatic treatment aims either to induce the apoptotic process of the tumor cells
or to cause cell cycle blockage.

To determine the role of the studied compounds on tumor processes, studies were
performed on two different types of cancer (colon and breast) using the standardized
cell lines HT-29 and MDA-MB-231. The cells treated with the compounds 3a–e and the
intermediates 2a–b were subjected to flow cytometry techniques in order to examine the
apoptotic process and the cell cycle analysis. The apoptotic cells were determined by flow
cytometry using Annexin V-FITC and PI (propidium iodide) double labeling. The live cell
population, and the cells undergoing early apoptosis (Annexin+/PI−) and late apoptosis
(Annexin+/PI+) were quantified [34,35]. The distribution of the cell cycle phases in the
tumor cells treated for 24 h with the studied compounds was analyzed for their DNA
content by flow cytometry [36,37].

Cisplatin (CisPt) is frequently used for the treatment of colon adenocarcinoma, while
doxorubicin (DOX) is routinely used in the treatment of breast cancers, and was therefore
chosen as a reference (CisPt for HT-29 cells, DOX for MDA-MB-231 cells).

2.2.1. Effects on Cell Viability

The cell viability after treatment with the compounds and reference drugs was de-
termined using the MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium). The HT-29 and MDA-MB-231 tumor cells were preliminarily
treated with the new compounds in concentrations from 6.25 µM up to 200 µM for 24 or
48 h in order to determine the optimal concentration. Two concentrations, 10 µM and
50 µM, were chosen to evaluate the compounds effect on the cells’ viability.

The two cell lines responded differently to treatment with the tested compounds. In
the HT-29 cell line, the tested compounds reduce viability in a similar way regardless of
the concentration used (Figure 3). In contrast, in the MDA-MB231 line, the cell viability
is affected more when the compounds are used in a higher concentration (50 µM) and
the chemical structure has a greater impact, the compound 3e having the strongest effect
(Figure 4). It is noteworthy that all the compounds analyzed have a stronger cytotoxic
effect than the effect induced by CisPt or DOX.

Figure 3. The tested compounds effects on HT-29 tumor cells’ viability. The cells were treated with
the compounds compared with cisplatin (CisPt) using two concentrations 10 µM or 50 µM for 24 h
(a) or 48 h (b). Untreated cells were considered to have 100% viability.

The new oxadiazole derivatives 3a–e reduced the HT-29 cells’ viability with values in
the range of 64.0% (3d) up to 73.2% (3c) when exposed for 24 h at 10 µM, and with values
between 61.5% (3d) and 68.1% (3b) when the concentration was 50 µM. The effect of the
compounds was higher when the exposure was doubled to 48 h. The cells’ viability was
between 50.3% (3d) and 57.7% (3e) for 10 µM, and between 39.0% (3e) and 49.4% (3c) for
the 50 µM concentration.
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Figure 4. The tested compounds effects on MDA-MB-231 tumor cells’ viability. The cells were treated
with the compounds compared with doxorubicin (DOX) using two concentrations 10 µM or 50 µM
for 24 h (a) or 48 h (b). Untreated cells were considered to have 100% viability.

The compounds 3a–e reduced the MDA-MB-231 cells’ viability with values in the
range of 39.9% (3e) up to 57.2% (3c) when exposed for 24 h at 10 µM. The viability values
were between 23.8% (3e) and 53.1% (3b) when the concentration was 50 µM. The cells’
viability was between 50.8% (3d) and 56.9% (3e) after exposure for 48 h at 10 µM, and
between 38.7% (3e) and 48.9% (3c) for the 50 µM concentration.

2.2.2. Effects on Cell Apoptosis

The HT-29 and MDA-MB-231 cells were treated for 24 h with the compounds 3a–e
and the intermediates 2a–b, and subjected to a double Annexin/PI staining technique that
allowed the detection of the apoptotic process by flow cytometry. CisPt and DOX were
used as positive controls (Table 1).

Table 1. Apoptosis of HT-29 cells and MDA-MB-231 cells induced by 24 h treatment with the tested
compounds 3a–e and 2a–b.

HT-29 Cells MDA-MB-231 Cells

Early
Apoptosis

(%)

Late
Apoptosis

(%)

Total
Apoptosis

(%)

Early
Apoptosis

(%)

Late
Apoptosis

(%)

Total
Apoptosis

(%)

Control 4.8 1.1 5.9 4.2 0.5 4.7
CisPt 1 16.5 4.2 20.7 - - -
DOX 1 - - - 11.4 2.3 13.7

3a 23.5 2.2 25.7 41.7 8.0 49.7
3b 21.7 4.8 26.5 40.5 4.7 45.2
3c 6.4 3 9.4 40.8 5.0 45.8
3d 16.5 2.7 19.2 44.3 6.6 50.9
3e 43.9 7.3 51.2 51.8 10.9 62.7
2a 53.0 12.7 65.7 45.9 12.9 58.8
2b 44.8 6.8 51.6 55.5 17.3 72.8

1 positive controls cisplatin (CisPt) for HT-29 cells and doxorubicin (DOX) for MDA-MB-231 cells.

The treatment of the HT-29 cells for 24 h with 10 µM of the compounds 3a–e increased
the total apoptosis in the range of 9.4% up to 51.2% compared to the untreated cells
(control, 5.9 %). Considering the compound 3a, the introduction of a 4-chloro substituent is
detrimental for the apoptotic effect (compound 3c), while the transformation of the sulfur
atom into a sulfone (compound 3d) slightly reduced the effect. The exchange of the benzene
ring with a pyridine (compound 3e) almost doubled the proportion of apoptotic cells.

The new oxadiazole compounds had greater effects on the MDA-MB-231 cells com-
pared to those observed on the HT-29 cells, with the total apoptosis percent’s in the range
of 45.2% up to 62.7%. All the compounds had close to three-fold stronger effects than
those of the positive control. The observed structure activity relationships are similar,
but the impact of the structural transformation is smaller. The compound 3e determined
the greatest effect in the oxadiazoles series, but it was smaller when compared with its
precursor hydrazide 2b (Figure 5).
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Figure 5. The tested compounds effects on cells’ apoptosis. The cells were treated with the test
compounds at 10 µM for 24 h. The effects on HT-29 cells can be observed compared to cisplatin
(CisPt) (a) and the effects on MDA-MB-231 cells are reported to doxorubicin (DOX) (b).

2.2.3. Cell Cycle Analysis

A flow cytometry method was used to analyze the effect induced by the studied
compounds on the cell cycle of the HT-29 tumor cells compared to the effect induced by
CisPt, and on the cell cycle of the MDA-MB-231 tumor cells using DOX as a positive control
(Figure 6).

Figure 6. The tested compounds’ effects on cell cycle phases. The cells were treated with the test
compounds at 10 µM for 24 h. The effects on HT-29 cells can be observed compared to cisplatin
(CisPt) (a) and the effects on MDA-MB-231 cells are reported to doxorubicin (DOX) (b).

The treatment of the HT-29 cells for 24 h with CisPt 10 µM induced a decrease in the
G0/G1 phase from 54% to 21%, accompanied by an increase in the S phase of the cell cycle
to 43.5% compared to the untreated cells (21.2%). The oxadiazoles 3a–d did not significantly
alter the proportion of G0/G1 phase cells compared to untreated cells, while increasing
the number of S phase cells. The compound 3e caused a different effect, augmenting the
G0/G1 phase accompanied by a decrease in the S phase.

The flow cytometry analysis on the cell cycle of the MDA-MB-231 tumor cells showed
a high percentage of G0/G1 phase (68.9%). The treatment with DOX 10 µM induced a
synchronization of the S and G2+M phases, registering an increase in the S phase (42.4%)
versus the untreated cells (5.1%), accompanied by an increase in the G2+M phases (43.9%)
versus 26% in the untreated cells. The analyzed compounds determined the arrest of the
cells in the G0/G1 phase, accompanied by a decrease in the S and G2+M phases. The
compound 3e had the greatest impact of the oxadiazoles series, increasing the number of
cells in G0/G1 and significantly reducing those in the S phase.

2.3. Daphnia Magna Toxicity Assay

The Daphnia magna (D. magna) bioassay results are summarized in Table 2. After 24 h
of exposure, the compounds 3b–e induced at all the tested concentrations a lethality rate
(L%) lower than 50%, whereas 3a induced an L% of 55% at the highest concentration. Due
to the obtained results, the median lethal concentration (LC50) was calculated only for the
compounds 3a, 2a and 2b. Although the LC50 for 2b was slightly lower than 2a, the 95%CI
of both compounds suggest a similar biological response.
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Table 2. Daphnia magna bioassay: 24 h and 48 h values, 95% confidence intervals for newly
synthetized compounds and their starting materials.

Compound 24 h 48 h
LC50 (µM) 95%CI of LC50 (µM) LC50 (µM) 95%CI of LC50 (µM)

3a 115.8 43.6 to 307.4 ND* ND*
3b ND* ND* ND* ND*
3c ND* ND* 11.5 ND*
3d ND* ND* 2.34 ND*
3e ND* ND* 3.5 2.0–7.3
2a 332.5 201.1–549.8 35.9 23.0–56.1
2b 296.0 205.3–426.7 21.8 11.5–41.1

ND*—not determined due the results obtained.

After 48 h of exposure, all the newly tested compounds exhibited a significantly
higher toxicity on D. magna. The LC50 value was not calculated for 3a and 3b because they
induced an L% between 55 and 85% at all the concentrations. In the case of the compounds
3c–e, the calculated LC50 values are between 2.34 and 11.5 µM.

2.4. Prediction of the Molecular Mechanism of Action and Toxicity
2.4.1. PASS Prediction

The prediction of an activity spectra for substances (PASS) is an algorithm that predicts
a large panel of biological activities of a given molecule using its structure as input data, and
yields a probability to be active (Pa) and a probability to be inactive (Pi) for each target [38].
Each compound’s target profile was manually analyzed, the relevant oncotargets were
selected, and the corresponding Pa values are presented in Table 3.

Table 3. The probability of compounds 3a–e to be active (Pa) as predicted by PASS analysis.

Target 3a 3b 3c 3d 3e

Transcription factor inhibitor 0.58 0.62 0.55 0.32 0.58
Transcription factor STAT inhibitor 0.61 0.64 0.61 0.42 0.65

Transcription factor STAT3 inhibitor 0.55 0.58 0.56 0.26 0.54
JAK2 expression inhibitor 0.40 0.33 0.40 0.33 0.22

Focal adhesion kinase inhibitor 0.23 0.22 0.22 0.24 0.27
Focal adhesion kinase 2 inhibitor 0.35 0.34 0.34 0.36 0.38

MAP3K5 inhibitor 0.28 0.26 - - 0.29
Vascular endothelial growth factor 1

antagonist 0.27 0.22 0.22 0.30 0.30

The Pa values are an indication of the possibility that a compound interacts with
a certain biological target, but not for the potency of the compound. The Pa values
indicate the inhibition of STAT transcription factors, especially STAT3, as the most probable
mechanism for the anti-proliferative effects of the compounds 3a–e. The results for the
compounds 3d and 3a indicate that the (phenylsulfonyl)methyl substitution reduces the
probability to inhibit STAT3 compared to the phenylthiomethyl substitution.

2.4.2. Structural Similarity Analysis

The similarity search on ChEMBL database returned 27 analog compounds, all sharing
a 1,3,4-oxadiazole central scaffold. The highest degree of structural similarity (65.00%) was
observed for the compound CHEMBL485773. The results highlight the originality of the
new synthesized compounds. Depending on their structure, the ChEMBL compounds are
registered to interact with various human targets. The most frequent targets are represented
by microRNA 21 (77.78%), Ras-related protein Rab-9A (62.96%), Niemann–Pick C1 protein
(59.26%), survival motor neuron protein (48.15%), and 15-hydroxyprostaglandin dehydro-
genase (40.74%). In Figure 7 the corresponding pIC50 or pEC50 values are represented for
the most relevant oncological target registered for the similar compounds.
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Figure 7. Structures and negative log of potency measurement for compounds structurally similar
with the target structures 3a–e. The compounds were extracted from the ChEMBL database and share
a similarity over 50% with the new synthesized compounds. The red lines represent the average
value for each target.

The target profile of the chemically similar compounds indicates the interaction with
microRNA 21 (miR-21), Ras-related protein Rab-9A, glycogen synthase kinase-3 beta, and
cellular tumor antigen p53, as the most probable interaction targets for the new synthesized
compounds 3a–e.

2.4.3. Predicted Acute Rat Toxicity

For all the compounds, the predicted results fall in the applicability domain of the
application. The predicted median lethal dose (LD50) of the new compounds after oral
and intravenous (IV) administration on rats are presented in Table 4, and they indicate a
relatively low degree of toxicity. All the new oxadiazole derivatives are predicted to be less
toxic than their corresponding hydrazides synthesis precursors.

Table 4. The predicted toxicity of the compounds 3a–e and 2a–b expressed as median lethal doses
(LD50) on rats using the GUSAR application.

Rat Acute Toxicity 3a 3b 3c 3d 3e 2a 2b

Oral LD50 (mg/kg) 1970 1977 1317 1417 1924 967 900
Oral LD50 Class 4 4 4 4 4 4 4

IV LD50 (mg/kg) 321.1 289.6 253.3 383.0 298.8 135.7 256.1
IV LD50 Class 5 4 4 5 4 4 4

3. Discussion

A series of new 2,5-diaryl/heteroaryl-1,3,4-oxadiazoles were synthesized and evalu-
ated for their anticancer potential on two standardized cell lines, HT-29 and MDA-MB-231.
At 10 µM, all the compounds reduced the cell viability after 24 h of exposure, inducing
apoptosis and perturbation of the cell cycle. The cell line MDA-MB-231 proved to be more
sensitive to the compounds’ action than HT-29.

The predictive studies using the PASS application indicated the inhibition of the STAT3
transcription factor as the most probable anticancer mechanism. Recent evidence shows
that the 1,3,4-oxadiazole scaffold is frequently used in the structure of STAT3 inhibitors
active against various cancer cells [39–41]. STAT3 is closely related to the occurrence of
cancers and is an attractive therapeutic target for oncology and drug development. It
acts in the regulation of many cellular events involving cell proliferation, differentiation,
apoptosis and angiogenesis [42]. N-[2-(1,3,4-oxadiazolyl)]-4-quinolinecarboxamide, also
known as STX-0119, is structurally similar to the 3a–e compounds and functions as a STAT3
dimerization inhibitor [43]. HJC0123 was developed based on the structure of STX-0119,
but it does not contain the oxadiazole scaffold. When administered in the MDA-MB-231
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cells, the compound blocked the phosphorylation of STAT3, reduced the cells’ viability,
promoted apoptosis, and increased the proportion of S-phase cells while reducing the
number of cells in G0/G1 [44]. The effects of HJC0123 in the MDA-MB-231 cells are similar
with those observed for compound 3e. In contrast to MDA-MB-231 tumor cell lines, STAT3
plays no major role in the colon carcinoma cell line HT-29 [45] and it could explain the
lower effects of the new compounds on this cell line.

The structural similarity analysis indicated miR-21 as a highly probable target for the
new compounds. MiR-21 is considered an oncomir because it is one of the most frequently
up-regulated miRNA in a wide type of cancers. MiR-21 is overexpressed in the MDA-MB-
231 cell line close to four-fold compared with the non-tumorigenic MCF-10A cell line. The
knockdown of miR-21 suppressed the cell growth and proliferation of the MDA-MB-231
cells [46]. The levels of miR-21 are also significantly higher in the HT-29 cells and promote
cell proliferation and migration [47].

The results of the predictive studies using the PASS application and the structural
similarity analysis indicated STAT3 and miR-21 as the most probable pharmacological
targets for the new compounds 3a–e, but also that these compounds may have multitarget
activities. This is suggested also by the significant toxic effects registered in the D. magna
48 h assay.

The chemical diversity of the 3a–e structures, and the limited number of tested com-
pounds, limits the development of structure activity relationships. The compound 3e
presented the best anticancer profile of the series, probably due to the presence of the
pyridine ring next to the oxadiazole structure. The promising effect of the compound 3e,
especially on the MDA-MB-231 cell line, a triple-negative breast cancer line, motivates
future studies to improve the anticancer profile and to reduce the toxicological risks. It
is worth noting that 3e produced a low toxic effect in the D. magna 24 h assay and the
predictive studies on rat acute toxicity suggest a low degree of toxic risks.

4. Materials and Methods
4.1. Analytical Procedures

The melting points (m.p.) were measured in open capillary tubes on an Electrothermal
9100 apparatus and are uncorrected. The 1H-NMR and 13C-NMR spectra were recorded on
a Gemini 300 BB instrument (Varian, Palo Alto, CA, USA) at room temperature, operating
at 300 MHz for 1H and 75.075 MHz for 13C. The chemical shifts were recorded as δ values
in ppm units downfield to tetrametylsilane (TMS) used as internal standard, and CDCl3
and DMSO-d6 as solvents. The coupling constants values (J) are reported in hertz (Hz) and
the splitting patterns are abbreviated as follows: s, singlet; d, doublet; t, triplet; q, quartet;
and b, broad. The carbons not attached to any protons are presented as Cq, while those
attached to a hydrogen atom are designated as CH.

The IR spectra were recorded on a FT/IR-4200 spectrometer (JASCO, Tokyo, Japan)
with an ATR PRO450-S accessory at a resolution of 4 cm−1. The elemental analyses
were performed on a Perkin–Elmer 2400 Series II CHNS/O Elemental Analyzer (Shelton,
CT, USA).

4.2. Synthesis Procedures

All the chemicals and reagents were purchased from commercial suppliers and used
without purification, unless otherwise noted.

4.2.1. Synthesis of 2-[(benzenesulfonyl)methyl]benzoic acid (1d)

To a solution of 2-(phenylthiomethyl)benzoic acid (1a) (0.02 mol) in glacial acetic acid
(100 mL), 20 mL 30% aqueous hydrogen peroxide was added dropwise. The mixture was
heated for 2 h and then left overnight at room temperature. The reaction mixture was
diluted with water and extracted with chloroform. The separated organic phase was dried
over sodium sulfate and then concentrated under reduced pressure. The crude product
was recrystallized from ethanol.
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White solid. Yield 93%, m.p. 154–155 ◦C. IR (cm−1). 1H-NMR (300 MHz, CDCl3,
δ ppm, J Hz): 8.86 (bs, 1H); 8.05 (dd, 1H, 1.4, 7.5); 7.64 (dd, 2H, 1.4, 7.5); 7.59 (tt, 1H, 1.4,
7.2); 7.55 (td, 1H, 1.4, 7.5); 7.49 (m, 1H); 7.46 (m, 2H); 7.35 (dd, 1H, 1.4, 7.5); 5.10 (s, 2H).
13C-NMR (75.075 MHz, CDCl3, δ ppm): 171.88 (C-7); 137.90 (C-9); 129.97 (C-2); 129.45
(C-1); 129.04 (C-3); 128.98 (C-11, C-13); 128.62(C-10, C-14); 133.88(C-4 or C-5); 133.74 (C-12);
133.02 (C-5 or C-4); 131.86 (C-6); 59.46 (C-8). Elemental analysis calculated for C14H12O4S
(276.31 g/mol): C 60.86%, H 4.38%, S 11.60% and found: C 60.94%, H 4.28%, S 11.69%.

4.2.2. General Procedure for the Synthesis of the 1,3,4-oxadiazoles Derivatives (3a-e)

An equimolar mixture of benzoyl hydrazine (2a, 0.01 mol) or isonicotinic hydrazide
(2b, 0.01 mol) and the appropriate aromatic acid (1a–d) (0.01 mol) in phosphorus oxychlo-
ride (45 mL) was refluxed for 9 h. The reaction mixture was slowly poured onto crushed
ice and kept overnight. The solid thus separated out was filtered and washed with water,
dried under vacuum and recrystallized from an appropriate solvent.

4.2.3. 2-Phenyl-5-[2-(phenylsulfanylmethyl)phenyl]-1,3,4-oxadiazole (3a)

White solid. Yield 69%, m.p. 111–112 ◦C. 1H-NMR (300 MHz, CDCl3, δ ppm, J Hz):
8.03 (dd, 7.7, 1.6, 2H, H-20, H-24); 7.95 (ddd, 1H, H-7); 7.42–7.49 m (3H, H-21, H-22, H-23);
7.27–7.35 m (3H; H-8, H-9, H-10); 7.22 td (2H, H-14, H-18); 7.07–7.15 m (3H, H-15, H-16,
H-17): 4.64 (s, 2H, H-12). 13C-NMR (75.075 MHz, CDCl3, δ ppm): 164.39 (C-2 or C-5);
164.26 (C-2 or C-5); 138.07 (Cq); 135.60 (Cq); 131.90 (CH); 131.61 (2CH); 131.44 (CH); 131.39
(CH); 129.51 (CH); 129.23 (2CH); 128.90 (2CH); 127.75 (CH); 127.13 (2CH); 127.02 (CH);
123.97 (CH); 122.84 (CH); 38.30 (C-12). Elemental analysis calculated for C21H16N2OS
(344.44 g/mol): C 73.23%, H 4.68%, N 8.13%, S 9.31% and found: C 73.31%, H 4.60%, N
8.20%, S 9.24%.

4.2.4. 2-Phenyl-5-[2-(p-tolylsulfanylmethyl)phenyl]-1,3,4-oxadiazole (3b)

White solid. Yield 68%, m.p. 116–117 ◦C. 1H-NMR (300 MHz, CDCl3, δ ppm, J Hz):
8.11 (dd, 7.4, 1.5, 2H, H-20, H-24); 8.01 (dd, 7.0, 2.2, 1H, H-7); 7.48–7.58 (m, 3H, H-8, H-9,
H-10); 7.40 (t, 6.5, 2H, H-21, H-23); 7.31 (t, 6.5, 1H, H-22); 7.17 (d, 8.1, 2H, H-15, H-17);
6.98 (d, 8.1, 2H, H-14, H-18); 4.66 (s, 2H, H-12); 2.22 (s, 3H, CH3). 13C-NMR (75.075 MHz,
CDCl3, δ ppm): 164.21 (C-2 or C-5); 164.16 (C-2 or C-5); 138.32 (Cq); 137.20 (Cq); 137.19
(Cq); 132.38 (CH); 132.28 (CH); 131.73 (CH); 131.34 (CH); 131.21 (CH); 129.51 (2CH); 129.32
(CH); 129.07 (2CH); 127.49 (CH); 126.96 (2CH); 123.83 (Cq); 122.64 (Cq); 38.70 (C-12); 21.01
(CH3). Elemental analysis calculated for C22H18N2OS (358.47 g/mol): C 73.72%, H 5.06%,
N 7.81%, S 8.94% and found: C 73.81%, H 4.98%, N 7.72%, S 9.01%.

4.2.5. 2-[2-[(4-Chlorophenyl)sulfanylmethyl]phenyl]-5-phenyl-1,3,4-oxadiazole (3c)

White solid. Yield 60%, m.p. 126–128 ◦C. 1H-NMR (CDCl3, δ ppm J Hz): 8.06 (dd,
1.6, 7.5, 2H, H-20, H-24); 7.97 ddd (1H, H-7); 7.47–7.50 m (3H, H-21, H-22, H-23); 7.38–7.35
m (2H; H-9, H-10); 7.26 (dd, 1H, H-8); 7.16 (d, 8.8, 2H, H-14, H-18); 7.10 (d, 8.8, 2H, H-15,
H-17); 4.65 (s, 2H, H-12); 13C-NMR (CDCl3, δ ppm): 164.42 (C-2(5)); 164.16 (C-5(2)); 137.85
(C-13); 134.03 (Cq); 133.73 (Cq); 133.21 (2CH); 131.98 (CH); 131.43 (2CH); 129.53 (CH);
129.26 (2CH); 129.04 (2CH); 127.91 (CH); 127.16 (2CH); 123.92 (Cq); 122.87 (Cq); 38.56 (C-12).
Elemental analysis calculated for C21H15ClN2OS (378.88 g/mol): C 66.57%, H 3.99%, N
7.39%, S 8.46% and found: C 66.68%, H 3.82%, N 7.48%, S 8.32%.

4.2.6. 2-[2-(Benzenesulfonylmethyl)phenyl]-5-phenyl-1,3,4-oxadiazole (3d)

White solid. Yield 59%, m.p. 195–196 ◦C. 1H-NMR (300 MHz, CDCl3, δ ppm, J Hz):
7.97 (dd, 8.0, 2.4, 2H, H-14, H-18); 7.77 (dd, 7.1, 1.8, 1H, H-7); 7.00–7.60 (m, 11H, H-arom);
5.26 (s, 2H, H-12). 13C-NMR (75.075 MHz, CDCl3, δ ppm): 164.05 (C-2 or C-5); 163.46 (C-2
or C-5); 138.07 (Cq); 134.03 (CH); 133.48 (CH); 132.09 (CH); 131.60 (CH); 129.46 (CH); 129.27
(2CH); 129.09 (CH); 128.87 (CH); 128.72 (2CH); 128.69 (CH); 127.99 (Cq); 127.02 (2CH);
124.37 (Cq); 123.53 (Cq); 59.38 (C-12). Elemental analysis calculated for C21H16N2O3S
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(376.44 g/mol): C 67.01%, H 4.28%, N 7.44%, S 8.52% and found: C 67.09%, H 4.19%,
N 7.38%, S 8.60%.

4.2.7. 2-[2-(Phenylsulfanylmethyl)phenyl]-5-(4-pyridyl)-1,3,4-oxadiazole (3e)

White solid. Yield 70%, m.p. 130–132 ◦C. 1H-NMR (300 MHz, DMSO-d6 + CDCl3
3:1, δ ppm, J Hz): 8.84 (d, 5.8, 2H, H-21, H-23); 8.07 (td, 4.0, 2.0, 1H, H-7); 8.03 (d, 5.8, 2H,
H-20, H-24); 7.39–7.49 (m, 3H, H-8, H-9, H-10); 7.13–7.26 (m, 5H, H-14, H-15, H-16, H-17,
H-18); 4.71 (s, 2H, H-12). 13C-NMR (75.075 MHz, DMSO-d6 + CDCl3 3:1, δ ppm): 164.50
(C-2 or C-5); 161.87 (C-2 or C-5); 149.90 (C-21, C-23); 137.56 (Cq); 135.07 (Cq); 131.63 (CH);
131.14 (CH); 131.03 (CH); 129.97 (2CH); 129.50 (CH); 128.64 (2CH); 127.73 (CH); 126.37 (CH);
121.70 (CH); 120.41 (2CH); 36.54 (C-12). Elemental analysis calculated for C20H15N3OS
(345.43 g/mol): C 69.54%, H 4.38%, N 12.16%, S 9.28% and found: C 69.48%, H 4.46%,
N 12.26%, S 9.19%.

4.3. Anticancer Evaluation
4.3.1. Reagents

Cisplatin (CisPt), doxorubicin (DOX), and dimethyl sulfoxide (DMSO) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). The stock solutions were prepared by dissolving
the compounds in a minimum amount of DMSO and kept at −20 ◦C. The working solutions
were prepared before each experiment from the stocks and the culture medium. Annexin
V-FITC/PI Apoptosis Detection Kit for flow cytometry was purchased from BioVision
Inc., Milpitas, CA, USA. Cycletest Plus DNA Reagent Kit was provided by BD Biosciences
(Becton Dickinson, USA).

4.3.2. Cell Culture and Treatments

Human cancer cell lines HT-29 (colon adenocarcinoma) and MDA-MB-231 (breast ade-
nocarcinoma) were purchased from American Type Culture Collection (ATCC). Adherent
cells were routinely maintained in culture in Dulbecco’s modified Eagle medium/nutrient
mixture F-12 (DMEM:F12) medium added by 2 mM of L-glutamine, 10% fetal bovine serum,
100 units/mL penicillin, 100 µg/mL streptomycin (Sigma-Aldrich, St. Louis, Mo, USA)
and incubated at 37 ◦C in 5% CO2 humidified atmosphere. After 24 h, adherent cells were
treated with different concentrations of the compounds for different periods of time. Cell
treatments of compounds, CisPt and DOX were carried out using concentrations of 200,
100, 50, 25, 12.5 and 6.25 µM of the drug. Then cells were detached with a nonenzymatic
solution of phosphate-buffered saline (PBS)/1 mM EDTA, washed twice in PBS.

4.3.3. Cytotoxicity Assay

All assays were performed in triplicate in 96-well microtiter plates with flat bottom
(Falcon), using CellTiter 96 Aqueous One Solution Cell Proliferation Assay (Promega),
an MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-
tetrazolium)-based colorimetric assay. Briefly, 1 × 104 cells/wells were cultured in 100 µL
for 24 h, culture supernatants were discarded, and then cells were treated for 24 h and 48 h
with increasing concentrations of drugs. After the end of the incubation time, 20 µL reagent
containing a) MTS, and b) phenazine ethosulfate (PES) were added in each well. PES has
a high chemical stability that allows it to bind to MTS and form a stable solution. After
adding the coloring solution, plates were incubated for 4 h at 37 ◦C, with mild agitation
every 15 min. The method relies on the ability of metabolically active cells to reduce MTS, a
yellow tetrazolium salt to the colored formazan that is soluble in the culture medium. The
reduction in the tetrazolium compound to formazan was spectrophotometrically measured
at λ = 492 nm, using a Dynex plate reader (DYNEX Technologies-MRS). The percentage of
viability compared to untreated cells (considered 100% viable) was calculated based on the
absorbance (Abs) values as follows:

Cell viability (%) = (Abs treated cells − Abs culture medium)/(Abs untreated
cells − Abs culture medium) × 100,

(1)
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Cell viability data were expressed as the mean values ± standard deviations (SD)
of the experiments. Data were obtained in triplicates (n = 3), averaged and expressed as
mean ± SD.

4.3.4. Apoptosis Analysis

The apoptosis assay was carried out using the Annexin V-FITC Kit and the manufac-
turer’s protocol from BD Biosciences. The 5 × 105 cells/mL treated and untreated were
suspended in cold binding buffer and stained simultaneously with 5 µL FITC-Annexin V
(green fluorescence) and 5 µL PI in a dark at room temperature for 15 min. The percentages
of apoptotic cells were determined by double staining with Annexin V-FITC/ PI. In each
tube was added 400 µL of Annexin V binding buffer and the 5000 cells/sample were
collected using FACSCantoII flow cytometer (Becton Dickinson—BD) and the analysis was
performed using DIVA 6.2 software in order to identify early apoptosis (Annexin+/PI−),
late apoptosis (Annexin+/PI+) and necrosis (Annexin−/PI+) [48].

4.3.5. Cell Cycle Analysis

The assay was carried out using Cycletest Plus DNA Reagent Kit and the manufac-
turer’s protocol from BD Biosciences. Previously fixed cells (5 × 105) were washed twice
in PBS and cell pellets were resuspended in PBS. The probes were kept in the dark and at
4 ◦C until data acquisition by flow cytometry using a FACSCantoII flow cytometer (Becton
Dickinson—BD). The analysis was performed using ModFIT software in order to estimate
the DNA index (DI) and progression through cell cycle phases [49].

4.4. Daphnia Magna Toxicity Assay

D. magna Straus was maintained parthenogenetically at ‘Carol Davila’ University
(Department of Pharmaceutical Botany and Cell Biology). The culture was maintained
at 25 ◦C, a photoperiod of 16 h/8 h light/dark cycle. Prior to the determination, young
daphnids were selected according to their size and maintained for 24 h in artificial medium.
The bioassay was performed on 10 daphnids/replicates in tissue culture plates with 12 wells
(Greiner Bio-One) according to the protocol described in our previous studies [50,51]. For
each compound, six concentrations were tested, ranging from 5 to 128 µM. The hydrazides
2a (20–411 µM) and 2b (20–394 µM) were used as positive controls, and a 1% DMSO
solution as a negative control. The concentrations were selected based on the solubility
and a pre-screening assay. The final volume/well was 4 mL, and the lethality was recorded
at 24 and 48 h of exposure. All determinations were performed in duplicate. The 95%
confidence intervals (95%CI) for LC50 values were also calculated using the least square fit
method. All calculations were performed using GraphPad Prism v 5.1 software.

4.5. Prediction of the Molecular Mechanism of Action and Toxicity
4.5.1. PASS Prediction

A virtual screening was performed using the computer program PASS (prediction
of activity spectra for substances), a software product designed to evaluate the general
biological potential drug-like molecules. The compounds were inputted in PASS as mol
files and the results were analyzed if the Pa values were above the corresponding Pi
values. The resulted biological targets were manually selected based on their anticancer
treatment potential.

4.5.2. Structural Similarity Analysis

A similarity search was performed on the ChEMBL database for each compound
3a–e using a 50% threshold. The resulting structures were extracted together with their
assayed activities on human targets [52]. The entries were filtered using DataWarrior v5.2.1
software [53] to remove compounds with inexact potency values and to merge duplicate
structures into single entries with calculated average pIC50 or pEC50 values expressed as
mol/L (M).
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4.5.3. Prediction of the Compounds’ Toxicity

The freely available program GUSAR was used to predict the LD50 values of the new
compounds after oral and intravenous administration on rats [54].

5. Patents

Patent application a202000446: Camelia Elena Stecoza, George Mihai Nitulescu,
Mirela Antonela Mihaila, Marinela Bostan, Constantin Draghici, Miron Teodor Caproiu,
2-Aryl(heteroaryl)-5-[2-(phenylthiomethyl)phenyl]-1,3,4-oxadiazole derivatives, a phar-
maceutical composition containing them and their use as antitumor agent, published in
RO-BOPI, 11/2020 from 27 November 2020.
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C.D., M.T.C., O.T.O., M.B., M.M.; writing—original draft preparation, C.E.S., G.M.N., C.D., M.T.C.,
O.T.O., M.B., M.M.; writing—review and editing, C.E.S., G.M.N., M.M. All authors have read and
agreed to the published version of the manuscript.
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