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Abstract: The research focused on the investigation of curcumin encapsulated in hydrogenated soy
phosphatidylcholine liposomes and its increased photoactive properties in photodynamic therapy
(PDT). The goal of this study was two-fold: to emphasize the role of a natural photoactive plant-based
derivative in the liposomal formulation as an easily bioavailable, alternative photosensitizer (PS) for
the use in PDT of skin malignancies. Furthermore, the goal includes to prove the decreased cytotoxic-
ity of phototoxic agents loaded in liposomes toward normal skin cells. Research was conducted on
melanoma (MugMel2), squamous cell carcinoma (SCC-25), and normal human keratinocytes (HaCaT)
cell lines. The assessment of viability with MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium
bromide) evaluated cell death after exposure to blue light irradiation after 4 h of pre-incubation
with free and encapsulated curcumin. Additionally, the wound healing assay, flow cytometry, and
immunocytochemistry to detect apoptosis were performed. The malignant cells revealed increased
phototoxicity after the therapy in comparison to normal cells. Moreover, liposome curcumin-based
photodynamic therapy showed an increased ratio of apoptotic and necrotic cells. The study also
demonstrated that nanocurcumin significantly decreased malignant cell motility following PDT
treatment. Acquired results suggest that liposomal formulation of a poor soluble natural compound
may improve photosensitizing properties of curcumin-mediated PDT treatment in skin cancers and
reduce toxicity in normal keratinocytes.

Keywords: curcumin; natural photosensitizer; photodynamic therapy; skin cancer treatment; squa-
mous cell carcinoma; melanoma; normal keratinocytes; liposomes

1. Introduction

Skin cancers are among the most widespread types of neoplasm, affecting people from
less pigmented, Caucasian populations, usually more than 50 years of age [1]. Those malig-
nancies are divided into two main subgroups composed of more lethal melanoma and more
prevalent non-melanoma skin cancers (NMSC). Currently, non-melanoma skin cancers are
generally represented by tumours from transformed keratinocytes: cutaneous squamous
cell carcinoma (cSCC) and basal cell carcinoma (BCC). There are also other skin-related
neoplasms, including Kaposi’s sarcoma, Merkel cell and adnexal carcinoma, cutaneous
lymphoma, or dermatofibrosarcoma protuberans. Nevertheless, those conditions are not as
common as NMSCs [2,3]. Like most tumours, skin cancer treatment involves widely used
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methods, such as surgical intervention, radiotherapy, chemotherapy, and immunotherapy.
However, despite the effectiveness of the former, it cannot be applied in all cases due to
adverse malignancy’s localization and potential patient’s co-morbidities [2]. Moreover,
radiotherapy and chemotherapy can not only be toxic and lead to side effects but also might
be ineffective in cells with developed resistance [4], whereas immunotherapy currently
seems too complex for general use [5]. Therefore, further development of more efficient
therapeutic strategies is still required.

One of the novel approaches that could potentially overcome those obstacles is the
usage of photodynamic therapy (PDT). The main principle of this method is to apply and
accumulate the chosen substance with photosensitive properties (called further photosensi-
tizer (PS)) within tumour tissue. Later, after local irradiation with a specific wavelength
laser, excited PS can transform surrounding molecules into highly active reactive oxygen
forms (ROS). Depending on the mechanisms, excited PS may transfer electrons on organic
compounds (via type I reaction), creating radicals such as hydrogen peroxide, or transmits
its energy on molecular oxygen by developing a singlet oxygen (1O2) (via type II reac-
tion) [6]. Accumulated ROS can damage plenty of biomolecules, including lipids, proteins,
DNA, and carbohydrates. However, due to the limited diffusing capabilities of radicals,
their damaging properties rely on PS. Whether PS exhibits a higher affinity to concentrate
closely to mitochondria’s membrane or enzymes, radicals’ activities may have a different
impact on cells. ROS and singlet oxygen from an activated photosensitizer can induce
cell death, mainly by damaging lipids of plasma and organelles membranes, triggering
caspases cascade, and inactivating anti-apoptotic proteins. Depending on the efficiency of
PS, photokilling can occur by rough conditions of necrosis or (preferably) in milder cases
apoptosis or/and autophagy [7–9].

Photodynamic therapy is gaining growing interest due to its low invasiveness, high
selectivity, and comparable lower costs to other treatments. Nonetheless, presently, PDT is
not applicable in the treatment of metastatic cells [10]. The most common PS evoke a low
therapeutic effect against highly pigmented melanoma cells [5], and the method itself can be
burdened with pain, especially in combination with commonly used 5-aminolevulinic acid
(5-ALA) [4]. For all those reasons, PDT enhancement is currently extensively investigated,
especially with novel, high-efficient, and less toxic photosensitizers.

Curcumin is a natural polyphenol extracted from turmeric (Curcuma longa), with
well-documented anti-tumour, anti-inflammatory, and photoactive properties [11–13]. This
golden polyphenol has already been used for its anti-inflammatory effects, as a treatment
in various dermatological conditions [14].

Due to its exceptional attributes, this plant-derived substance could potentially play a
dualistic role in PDT functioning simultaneously as PS and a direct therapeutic molecule.
Experiments conducted on animal models and in vitro suggest that curcumin can downreg-
ulate various molecular responses in boosting up inflammatory and pro-survival pathways,
such as those related to transcription factors like Nf-κB or AP-1 [15,16]. Thus, curcumin
could potentially not only increase the chances of apoptosis in defective cells but also
stimulate the production of cell killing radicals, making it a promising compound to use in
PDT therapies.

Among all the previously mentioned benefits, the extremely poor water solubility and
low bioavailability of this natural plant derivative limit its clinical use in cancer treatment.
Moreover, basic skin properties made it an excellent barrier decreasing percutaneous
penetration of curcumin. For this reason, the development of stable formulations of drug
carriers that improve skin penetration and therapeutic effectiveness with reduced side
effects is an essential challenge for many researchers [17]. Nowadays, various nanocarriers,
which could greatly enhance the bioavailability of drugs, are under intensive development
and some of them had already been functionalized for active targeting of skin cancers,
including those based on gels or liposomes that are modified with aptamers [18,19].

According to several studies, nano-formulations of photosensitizers improve the
pharmacokinetic effects and therapeutic advantage of free compounds [20–22]. Besides
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that, lipid formulations are proposed as an alternative strategy to potentiate the effect of
PDT against resistant melanoma cells [23]. Liposomes are a versatile drug delivery system.
They are not toxic and (when pegylated) exhibit longer circulation time among all drug
carriers. Liposomes can encapsulate hydrophilic, hydrophobic, and amphiphilic molecules.
Liposomes have many advantages, such as controlled release properties, cell affinity, tissue
compatibility, reducing drug toxicity, and improving drug stability. As most drug carriers,
liposomes can accumulate in inflammatory tissues by using the enhanced permeability and
retention (EPR) effect. This accumulation can be further increased by decreasing particle
size as well as pretreatment by some drugs and substances [24–27].

In general, at least in the animal model, an essential increase of drug concentration
is observed in the tumour tissue when liposomal drugs are applied. In the case of cur-
cumin, which is a hydrophobic, the use of liposomes may diminish issues with its low
solubility and bioavailability, enhancing pharmacokinetics and accumulation in cancer
tissues [16,20,21].

In this study, a relatively novel curcumin formulation has been used, in which cur-
cumin is encapsulated in liposomes composed from hydrogenated soy phosphatidylcholine
(HSPC), which exhibited high stability, due to a relatively rigid liposomes’ bilayer and,
therefore, low curcumin diffusion properties. This formulation proved its superiority in
comparison to a free substance on pancreatic cancer cell lines and can be regarded as an
essential improvement of the traditional route of curcumin supply [28–31].

Herein, a comparison of the phototoxic and anti-cancerous effects of curcumin and its
stable HSPC liposomal formulation on skin cancer cell lines was conducted, including SCC-
25 representing cutaneous squamous cell carcinoma, MUG-Mel2 representing a melanoma
cell line, and normal human keratinocytes HaCaT representing control normal skin cells
(Figure 1). To evaluate the effects of encapsulated curcumin as a photosensitizer in PDT on
different skin cell lines, MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide)
dark cytotoxicity, phototoxicity assay, immunocytochemical staining against markers of
apoptosis, Bcl-2, and Bax, measuring apoptosis with flow cytometry and a wound-healing
assay, were performed.
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2. Results
2.1. The Effect of Curcumin and Liposomal Curcumin Based PDT on MUG-Mel2, SCC-25, and
HaCaT Cells Viability Measured by an MTT Assay

The effect of curcumin and liposome-curcumin-based PDT was performed on skin
cancer cell MUG-Mel2 (melanoma cells), SCC-25 (squamous cell carcinoma), and normal
keratinocyte cells HaCaT. Effectiveness of free and encapsulated curcumin was compared
in doses of 5 and 10 µM after blue light low irradiation (2.5 J/cm2). Results indicated
that liposome curcumin-mediated PDT caused a significantly higher reduction of viability
in both cancer cell lines than a free natural compound. Curcumin mediated-PDT in
10 µM concentration caused decreased viability in SCC-25 (34%) and MUG-Mel2 (27%).
Liposomes with curcumin mediated-PDT inhibited cancer cells’ growth more than a free
compound after irradiation reaching IC50. Liposomal-curcumin-PDT exhibit cytotoxicity
of 53% in MUG-Mel2 and 58% in SCC-25 at the same dose—10 µM and low irradiation
dose (2.5 J/cm2) while the viability of HaCaT was decreased only by 11%. Interestingly,
HaCaT cells maintained viability of around 90% after different treatments. Liposomal
curcumin in the concentration of 10 µM was chosen in all subsequent biological studies
(Figure 2).

2.2. The Effect of Liposomal Curcumin Based PDT on MUG-Mel2, SCC-25, and HaCaT Cells in
the Wound-Healing Process

To check whether liposomal curcumin-based PDT decreases HaCaT, SCC-25, and
MUG-Mel2 cells’ motility, the wound healing test was performed. The assay shows the
migration of cells by evaluating a primaeval scratch’s closure in a 24 h observation. The
results show that PDT with liposomal curcumin caused the strongest effect of migration
properties in MUG-Mel2 cancer cells. After 24 h from the treatment (liposomal curcumin
and the light), there was no migration observed. In SCC-25 cells, the wound was minimally
closed, whereas, in normal HaCaT cells, the wound closed almost entirely within 24 h of
incubation after therapy. The results are presented in Figure 3.

2.3. The Effect of Liposomal Curcumin-Based PDT on MUG-Mel2, SCC-25, and HaCaT Cells on
Bax and Bcl-2 Expression

Immunocytochemical staining allows examining whether the proposed therapy with
liposomal curcumin and irradiation has a cytotoxic effect on cancer cells. To assess whether
the treatment causes apoptosis in cancer cells, apoptosis-related proteins bax and bcl-2
were used for the immunocytochemical analysis and then evaluation of immunoreactivity
was performed. An increase in the expression of bax and decreased expression of bcl-2 in
cancer cells, MUG-Mel2 and SCC-25, was observed (Figure 4). In both cancer cell lines,
pro-apoptotic bax protein showed strong expression after treatment of cells with liposomal
curcumin and irradiation. The expression of bcl-2 was weak or moderate. Nonetheless,
HaCat cells did not significantly change the expression of the previously described proteins
after irradiation only, liposomal curcumin only, and PDT treatment.

2.4. The Impact of Liposomal Curcumin on Cells Lines’ Apoptosis

Flow cytometry analysis was applied to evaluate cell death caused by liposomal
curcumin in SCC-25, MUG-Mel2, and HaCaT cells (Figure 5). As shown in Figure 4A,B
after 24 h of treatment, early and late apoptosis and necrosis in SCC-25 and MUG-Mel2
cells were observed. The combination of liposomal curcumin and PDT increased apoptosis
to 40% and 30% in SCC-25 and MUG-Mel2 cells, respectively. Interestingly, after 24 h from
irradiation, in SCC-25, cell death is mainly caused by early and late apoptosis, whereas, in
MUG-Mel2, cell death is caused by late apoptosis and necrosis. In control cells, HaCaT, a
slight increase in the apoptosis ratio in cells after treatment (10%) was observed.
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ages of MUG-Mel-2, SCC-25, HaCaT cells morphology detected by phase-contrast microscopy. Results represent the mean 
from three different experiments. p < 0.05. 
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Figure 2. Results of cell viability after 4 h of incubation with 5, 10 µM curcumin and liposomal curcumin with and without
the irradiation (2.5 J/cm2) evaluated by the MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assay.
(A) Viability-dependent bars for MUG-Mel2 cells after incubation with curcumin and liposomal curcumin without/with
light. (B) Viability-dependent bars for SCC-25 cells after incubation with curcumin and liposomal curcumin without/with
the light. (C) Viability-dependent bars for HaCaT cells after incubation with curcumin and liposomal curcumin without/with
light. Encapsulated curcumin is significantly more cytotoxic than free curcumin in cancer cells. (D–F) Representative images
of MUG-Mel-2, SCC-25, HaCaT cells morphology detected by phase-contrast microscopy. Results represent the mean from
three different experiments. * p < 0.05.
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Figure 3. Wound-healing assay in time point 0 h and 24 h of (A) HaCaT, (B) SCC-25, and (C) MUG-Mel2 cell line.
Representative images show that, after 24 h, the scrap in control cells is minimal compared to cancer cells treated with
liposomal curcumin in dose 10 µM with blue light (2.5 J/cm2). In treated cells, in the HaCaT control cell line, the scrap is
smaller than in the other two cancer cells (D–F). (D) Quantification of cell migration for HaCaT, SCC-25, and MUG-Mel2
cells. Results are presented as the percentage of the wound surface. The initial wound area is expressed as 100% at 0 h.
Results represent the mean from three different experiments. Scale bar = 50 µm. * p < 0.05.
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Figure 4. Presenting immunocytochemical staining of the chosen apoptosis-related proteins Bax and Bcl-2 in HaCaT (A),
MUG-Mel2 (B), and SCC-25 (C) cells lines in four conditions: control, control with blue light only, liposomal curcumin in dose
10 µM, and liposomal curcumin in dose 10 µM with a low dose of blue light (2.5 J/cm2). (D) Results of immunocytochemical
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by the immunoreactivity score. Abbreviations: 0-no staining, 1-weak staining, 2-moderate staining, and 3-strong staining.
Scale bar = 50µm.
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Figure 5. Effect of photodynamic therapy (PDT) with liposomal curcumin in dose 10 µM with blue light (2.5 J/cm2) on
SCC-25 (A), MUG-Mel2 (B), and HaCaT (C) cells. Dot plots present alive-Q1, early apoptotic-Q2, late apoptotic-Q3, and
dead-Q4 cells. After therapy, the cells were stained using Annexin-FICT /7-AAD Kit and were measured by flow cytometry.
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MUG-Mel2, and HaCaT cells. Results represent the mean from three different experiments. * p < 0.05.



Pharmaceuticals 2021, 14, 374 9 of 15

3. Discussion

In the past, various approaches were undertaken in order to increase the efficacy
of photodynamic therapy [32,33]. The studies included the application of chemically
functionalized PS [34–36] as well as liposomal derivatives of photosensitizers for both
in vitro and in vivo studies. Several studies showed an advantage of the latter modality
over the routine way of photosensitizer delivery to targeted cells [37,38]. Curcumin, which
revealed promising effects in PDT, can act as a direct photosensitizer exhibiting cytotoxic
properties in various types of tumours, including skin cancers [12,39,40].

Although curcumin can be applied in a pure form and then sensitized with light
at the proper wavelength, its liposomal formulation was proposed as the more effective
strategy in killing the malignant cells [41,42]. Free curcumin is characterized by low water
solubility and poor bioavailability. It is rapidly metabolized or degraded in the cell culture
media or after oral administration. In contrast, nano-capsules in which the compound
is confined into phospholipid bilayers dismiss the significant drawbacks and promote
increased absorption of curcumin into the cells [43].

In the present study, the effectiveness of curcumin loaded in PEGylated, cholesterol-
free formulation based upon hydrogenated soya PC liposomes has been investigated
on three skin cell lines: melanoma MUG-Mel2, squamous cell carcinoma SCC-25, and
immortalized keratinocytes HaCaT cells. In previous studies, the previously described for-
mulation of liposomes was evaluated on the pancreatic cell line and in human plasma [31].
The results indicated that this formulation presented the best parameters of the hydropho-
bic drug incorporation by improved bioavailability, increased stability, and cytotoxicity. In
this article, the MTT results revealed statistically significant phototoxicity of this liposomal
formulation of 10 µM curcumin compared to the free substance before and after photody-
namic therapy. In the case of a free substance, it interacts with the cellular outer membrane,
while liposomes are quickly internalized and enter the cell through the endosomal route,
which increases its bioavailability and, thus, results in more potent cytotoxic effects [43,44].
Acquired results are in accordance with the observations and conclusions of Vetha et al.
and Ambreen et al. on different cancer cell lines [41,45]. Although the effect was evident for
both malignant cell lines, normal HaCaT keratinocytes were slightly resistant to the therapy.
These spontaneously immortalized human keratinocytes from adult skin have been used
as a model cell line to study normal keratinocyte functions in different studies [46]. Addi-
tionally, HaCaT cells maintained in a culture medium without the calcium display normal
morphogenesis and expression of the cellular membrane markers as keratinocytes isolated
from adult skin [47]. Based on gleaned, different experimental results, conclusions emerge
that immortalized HaCaT keratinocytes are less susceptible to photosensitization with
curcumin than MUG-Mel2 and SCC-25 malignant cells in terms of phototoxicity. These
observations are following the results of Popovic et al. [48]. The authors found that 3 µM
hypercin-mediated-PDT is completely refractory to keratinocytes. Moreover, they indicated
a different response toward a natural plant derivative compound-PDT in each skin cell
type. On the other hand, Szlasa et al. [12] presented the increased cytotoxic impact of the
free curcumin-mediated photodynamic therapy on the keratinocytes. However, according
to the cell line and light dose used in their studies described in the methods paragraph, the
authors used normal human epidermal keratinocytes (HEK) and 6 J/cm2 to irradiate cells
in their experiments. These differences in the cells’ response to curcumin irradiated with
blue light may be considered due to the distinct vulnerability of cell lines to the cell-stress
induction and different PDT protocols.

The present study results showed that liposomal formulation of a compound consid-
ered a potent photosensitizer can also enhance the effectiveness of liposomal curcumin-
mediated-PDT by increasing the apoptosis ratio validated by flow cytometry and the
production of pro-apoptotic factors, e.g., Bax protein. At the same time, the proposed
therapy decreases the production of anti-apoptotic proteins, which is, in this case, Bcl-2.
The significantly increased strong Bax expression was observed in both cancer cell lines,
whereas, in HaCaT cells, Bax expression was lower in the sample treated with liposomal
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curcumin irradiated with the light. A flow cytometry assay confirmed this effect. Cells
were stained with Annexin V-FITC and propidium iodide to detect early and late apoptosis
and dead cells after treatment. It has been noticed that the late apoptosis in SCC-25 and
MUG-Mel2 cells was increased after 24 h from the proposed therapy. Interestingly, SCC-25
cells revealed apoptosis as a leading cause of cell death, while MUG-Mel2 cells showed
both types of cell death as a possible mechanism. The above finding remains in concor-
dance with the results of other authors and shows that, in hydrophobic photosensitizers, an
increase of photodynamic efficacy could be achieved by trapping them in liposomes [41,45].

The presented observations also point toward a possible mechanism of action of
curcumin in PDT via an apoptotic pathway. Cells in all three examined groups showed
necrosis, which is routinely observed after the PDT [7,49].

As a result of the different proliferative and migration capabilities of examined skin
cell lines, a designed treatment on migration potency by a wound healing assay has
been evaluated. A further examination confirms a decreased motility of melanoma and
squamous cell carcinoma cell lines compared to normal keratinocytes after liposomal
curcumin only and liposomal curcumin following irradiation, which is consistent with
Szlasa et al. examination of the wound [12]. Normal cells nearly filled the wound (15%
remaining) by 24 h, whereas the wound in malignant cells remained unfilled after 24 h.
According to Ambreen et al., it is evident that liposomal curcumin-PDT reduces cancer cell
migration and contributes to malignant cell metastasis inhibition.

Conducted investigations indicate the promising role of curcumin encapsulated in
hydrogenated soy phosphatidylcholine liposomes in enhancing the photokilling effect
on melanoma and squamous skin cancer cells following blue light PDT. Additionally, a
minimal phototoxic reaction was observed in normal, human, immortalized keratinocytes
with the same curcumin dose after irradiation. In conclusion, further experiments on the
specific, cellular functional differences between the skin cells and in vivo testing will help
confirm the effectiveness of nanocurcumin as a photosensitizer in PDT.

4. Materials and Methods
4.1. Cell Culture

Melanoma MUG-Mel2 (DSMZ, Germany) cells were cultured in RPMI 1640 cell culture
medium, SCC-25-tongue squamous carcinoma (DSMZ, Braunschweig, Germany) cells in
DMEM-F12, and HaCaT human epidermal keratinocytes (CLS, Eppelheim, Germany) were
cultured in DMEM (Dulbecco’s Modified Eagle Medium) without calcium to maintain
normal morphogenesis and expression of the cellular membrane markers. To prepare
a full cell culture media, 10% FBS, 1% glutamine, and 1% antibiotics were added to the
bottle. Culture reagents were bought from Gibco (Thermo Fisher Scientific Inc., Waltham,
MA, USA). Cells were maintained at 37 ◦C and 5% CO2 in a humidified atmosphere. For
experiments, cells from the 3rd to the 10th passages were used.

4.2. Preparation of Curcumin-Loaded Liposomes and Curcumin in DMSO

Curcumin-loaded liposomes of the composition HSPC/DSPE-PEG2000 9.5:0.5 mol/mol
were formulated using the extrusion technique. Hydrogenated soy phosphatidylcholine
(Phospholipon 90H, HSPC), 1,2-distearol-sn-glycero-phosphoethanolamin-N-(poly[ethylene
glycol]2000) (DSPE-PEG2000) were purchased from Lipoid GmbH (Ludwigshafen, Ger-
many). In brief, lipids and curcumin were dissolved in chloroform or methanol to obtain
stock solutions at 10 and 5 mg/mL, respectively. Curcumin (2 mg) was mixed together
with 40 mg of lipid in a borosilicate glass tube. Solvents were removed from the sample via
evaporation under a stream of nitrogen gas and the resultant lipid film was dissolved in a
mixture of cyclohexane and methanol (99:1, v/v). The sample was frozen in liquid nitrogen
and freeze-dried for 8 h at a low pressure using a Savant Modulyo apparatus (Thermo
Fisher Scientific, Waltham, CA, USA). The lipid film was hydrated by the addition of 1.5 mL
of 150 mM NaCl at 64 ◦C, in a water bath, with gentle mixing. The liposomal suspension
was finally sonicated in a water bath sonicator for 8 min at 64 ◦C. The newly-formed
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multilamellar vesicles (MLVs) were extruded 10 times through Nucleopore polycarbonate
filters (Whatman, Maidstone, UK) with pore sizes of 400 and 100 nm, respectively, us-
ing a Thermobarrel Extruder (10 mL Lipex extruder, Northern Lipids, Canada) to obtain
large uni-lamellar vesicles (LUVs). The extruder was maintained at 64 ◦C throughout the
liposome extrusion procedure.

The curcumin: (1E, 6E)-1,7-bis-(4-hydroxy-3-methoxyphenyl)-1,6- heptadiene-3,5-
dione (LKT Laboratories, Inc., St. Paul, MN, USA) was diffused in dimethyl sulfoxide
(DMSO, suitable for hybridoma, Sigma Aldrich, Germany) to make 25 mM stock of the
drug. Afterward, a decent amount of stock was compounded with a cell culture medium to
achieve the composite’s appropriate concentration. The DMSO amount in the final solute
used to perform incubation did not surpass 0.01% and it was affirmed that the peak amount
did not statistically influence the cells.

4.3. Determination of Incorporation Efficiency and Characterization of Curcumin-Loaded
Liposomes

Non-incorporated drug-crystals were separated from the curcumin-loaded liposomes
during the liposome extrusion procedure (only curcumin-loaded liposomes can pass
through Nucleopore polycarbonate filters). Additionally, the samples were centrifuged
and then collected to ensure the absence of any free curcumin liposome samples. In total,
50 µL were taken before extrusion (initial) and after centrifugation. The lipid concentration
was determined by the ammonium ferrothicyanate assay on a Varian Cary1 50 UV-Vis
Spectrophotometer (Varian, Ltd., Victoria, Australia). The concentration of curcumin in the
liposomes was determined photometrically at λ = 425 nm on the same spectrophotometer
after the curcumin-loaded liposomes were dissolved in methanol. Curcumin encapsulation
efficiency was 95% ± 1.6. The size of the liposomes was 102 nm ± 2.3 and the polydispersity
index was very low (0.051).

4.4. Curcumin-Mediated PDT Experimental Protocol

Cells were incubated with free or encapsulated curcumin (5, 10 µM) for 4 h according
to Szlasa et al. [12] and Ambreen et al. [45] observations in FBS-free culture medium.
Then the wells were washed twice with DPBS, fresh medium was added, and irradiation
was performed using a halogen lamp (Penta Lamps, Teclas, Lugano, Switzerland) with
the radiation power consistency set to 20 mW/cm2. The cells were irradiated for 2 min
(2.5 J/cm2). The blue light (380−500 nm) was chosen to achieve the photodynamic effect
(the light absorption peak of curcumin of 410 nm). Cells involved in curcumin and PDT
treatment were protected from light at all times. After 24 h from irradiation, experiments
were conducted according to the protocols.

4.5. Cell Viability Assay

The MTT assay is a colorimetric assay used to measure cellular metabolic activity
to indicate cell viability, proliferation, and cytotoxicity. In the MTT assay, living cells
transform yellow tetrazolium salt MTT into purple formazan crystals. This process is
possible because living cells have an enzyme-mitochondrial dehydrogenase, which causes
this change.

Cells were seeded at 8 × 104 in 96-well culture plates and cultured as mentioned in
the experiment description with curcumin and liposomal curcumin for 4 h in the dark.
Different doses of curcumin and liposomal curcumin were experimentally established for
the next experiments on MUG-Mel2, SCC-25, and HaCaT to obtain IC50. The MTT assay
was performed after 24 h from irradiation. The MTT solution was added to the wells
in a final concentration of 1 mg/mL for 3 h. Next, formazan dye was solubilized with
50 µL DMSO for 15 min. Absorbance was measured at 490 nm in BioTek Well-plate Reader
(Winooski, VT, USA). The control group absorbance was 100%, whereas treated samples’
cell viability was counted using the formula: % = (A of experimental wells/A of the control
wells) × 100%. After preliminary studies with different curcumin and liposomal-derivative
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doses (1, 2, 5, 10 µM) for the MTT assay, curcumin and liposomal curcumin was chosen in
doses of 5 and 10 µM.

4.6. Wound-Healing Assay

A wound-healing assay was used to inquire cells’ interactions and cell migration.
According to the manufacturer’s instructions, a wound-healing assay was made with the
Culture-Insert 2 Well in µ-Dish 35 mm (Ibidi, Germany). The cells were seeded to achieve
the monolayer in both parts of the insert. Following liposomal curcumin mediated PDT,
the inserts were removed, the culture medium was exchanged, and the cells were cultured
until about 100% confluency was reached in control cells. Control samples were without
treatment at all. The photographs were taken after removal of the inserts at a time point 0 h
and after 24 h of incubation by using a light microscope with a 10× magnifying objective
(Olympus IX73 with a camera and CellSens Programme, Hamburg, Germany).

4.7. Flow Cytometry-Apoptosis Assay

Cells were drawn from each of the wells and transferred to Eppendorf tubes. After-
ward, cells were centrifuged with PBS washing (7 min, 20 ◦C, 1000× g). The supernatant
was gently removed and 1 mL of the Binding Buffer per 1 × 106 cells was added. For
the next step, 4 µL AAD-7 and 8 µL FITC was added to each sample, according to the
manufacturer’s instruction. Eppendorf tubes were vortexed and incubated without the
light for 15 min at room temperature. After incubation time, samples were analyzed with
a flow cytometer using the FICT channel for Annexin 5 and PC5.5 channel for AAD-7
(Cytoflex, Beckman Coulter Life Sciences, Indianapolis, IN, USA). Negative samples were
prepared without the staining and samples stained with one fluorochrome were used
for compensation.

4.8. Immunocytochemistry (ICC) Staining for Apoptosis Detection

Cells were fixed with 4% paraformaldehyde for 10 min at room temperature, and
then rinsed 2 × 5 min with PBS. Next, cells were blocked with endogenous peroxidase for
10 min using Peroxidase Blocking Reagent and rinsed with PBS 2 × 4 min. Non-specific
proteins were blocked by Protein Block Serum-Free Ready to Use for 1 h. Following serum
excess removal, anti-Bax and anti-Bcl-2 primary antibodies (Sigma-Aldrich) in dilution
1:200 were added on the slides for overnight incubation. Afterward, primary antibodies
were rinsed with PBS for 2 × 4 min. A secondary rabbit antibody (Abcam, UK) in dilution
1:500 was added for 1 h at room temperature. After incubation time, cells were rinsed with
PBS for 2 × 4 min and DAB Substrate in Chromogen Solution was added for 2–5 min until
the light brown color was achieved. Cells were rinsed with distilled water for 2 × 4 min,
and then hematoxylin was used for 1–2 min to stain cell nuclei. Next, cells were rinsed with
tap water 2 × 5 min. The Fluoromount™ Aqueous Mounting Medium (Sigma Aldrich)
was added onto the slides, and, the following day, the photographs were taken under
the microscope (Olympus BX34 with camera DP74 and CellSens Programme, Hamburg,
Germany). All ICC reagents were purchased from DAKO, Agilent (Glostrup, Denmark).

4.9. Statistical Analysis

All experiments were performed in triplicates and the values are presented as a
mean ± standard deviation. Analysis between the groups was conducted using the non-
parametric test Kruskal-Wallis for abnormal distributed data. a p-value below 0.05 was
considered significant. PQStat Programme, version 1.8.2 (PQStat Software, Poland) was
used for the calculations.

5. Conclusions

In conclusion, natural plant derivative-curcumin encapsulated in liposomes has been
confirmed as a viable photosensitizer in PDT of skin cancer cell lines.
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Improved bioavailability and increased stability revealed potent anti-cancer activity
in squamous cell carcinoma and melanoma cell lines. The encapsulated compound prefer-
entially accumulated in malignant skin cells. Contrarily, it showed decreased phototoxicity
in normal skin keratinocytes HaCaT cells after PDT treatment. These results collectively
support liposomal curcumin as a potential photosensitizer in developing natural-based
photosensitizers that improve photodynamic therapy safety and efficacy. Thus, additional
in vitro and in vivo studies on different normal and cancer cells are essential to confirm
this less toxic natural plant derivative PS in the PDT approach.
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