

Supplementary Materials

Identification of Anti-inflammatory and Anti-proliferative Neolignanamides from *Warburgia ugandensis* Employing Multi-target Affinity Ultrafiltration and LC-MS

Xiao-Cui Zhuang ^{1,2,3,4,5}, Yong-Li Zhang ^{1,3,4}, Gui-Lin Chen ^{1,3,4}, Ye Liu ^{1,3,4}, Xiao-Lan Hu ⁶, Na Li ⁶, Jian-Lin Wu ⁶, and Ming-Quan Guo ^{1,3,4*}

- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; zhuangxiaocui@yxnu.edu.cn (X. C. Z.); zhangyongli@wbgcas.cn (Y. L. Z.); liuye@wbgcas.cn (Y. L)
- ² University of Chinese Academy of Sciences, Beijing 100049, China;
- ³ Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China;
- ⁴ Innovation Academy for Drug Discovery and Development, Chinese Academy of Sciences, Shanghai 201203, China;
- ⁵ School of Chemical Biology and Environment, Yuxi Normal University, Yuxi 653100, China;
- ⁶ State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Avenida Wai Long, Taipa, Macau SAR, China; 18098538ct30001@student.must.edu.mo (X. L. H.); nli@must.edu.mo (L. N.); jlwu@must.edu.mo (J. L. W.)
- * Correspondence: glchen@wbgcas.cn; guomq@wbgcas.cn; Tel.: +86-027-87700850

Contents of Supporting Information

Figure S1. ¹ H NMR (600 MHz) spectrum of compound 3 in Methanol- <i>d</i> ₄
Figure S2. ¹³ C NMR and DEPT (150 MHz) spectrum of compound 3 in Methanol- <i>d</i> ₄ 2
Figure S3. ¹ H- ¹ H COSY (600 MHz) spectrum of compound 3 in Methanol- <i>d</i> ₄
Figure S4. HSQC (600 MHz) spectrum of compound 3 in Methanol- <i>d</i> ₄
Figure S5. HMBC (600 MHz) spectrum of compound 3 in Methanol- <i>d</i> ₄
Figure S6. ¹ H NMR (600 MHz) spectrum of compound 1 in Methanol- <i>d</i> ₄
Figure S7. ¹³ C NMR (150 MHz) spectrum of compound 1 in Methanol- <i>d</i> ₄
Figure S8. ¹ H NMR (600 MHz) spectrum of compound 2 in Methanol- <i>d</i> ₄
Figure S9. ¹³ C NMR (150 MHz) spectrum of compound 2 in Methanol- <i>d</i> ₄
Figure S10. ¹ H NMR (600 MHz) spectrum of compound 4 in Methanol- <i>d</i> ₄ 7
Figure S11. ¹³ C NMR (150 MHz) spectrum of compound 4 in Methanol-d ₄
Figure S12. ¹ H NMR (600 MHz) spectrum of compound 5 in Methanol- <i>d</i> ₄
Figure S13. ¹³ C NMR (150 MHz) spectrum of compound 5 in Methanol-d ₄
Figure S14. ¹ H NMR (600 MHz) spectrum of compound 6 in Methanol- <i>d</i> ₄
Figure S15. ¹³ C NMR (150 MHz) spectrum of compound 6 in Methanol- <i>d</i> ₄

Figure S1. ¹H NMR (600 MHz) spectrum of compound 3 in Methanol-d₄

Figure S2. ¹³C NMR and DEPT (150 MHz) spectrum of compound 3 in Methanol-d4

Figure S3. ¹H-¹H COSY (600 MHz) spectrum of compound 3 in Methanol-d₄

0

Figure S5. HMBC (600 MHz) spectrum of compound 3 in Methanol-d4

5.0 4.8 4.6

4.4 4.2 4.0 3.8 3.6 3.4 3.2 3.0 2.8 2.6 2.4 2.2 2.0 1.8 1.6 1.4 1.2 1.0 0.8 f2 (ppm)

-150 -160 -170

Figure S6. 1H NMR (600 MHz) spectrum of compound 1 in Methanol-d4

Figure S7. ¹³C NMR (150 MHz) spectrum of compound 1 in Methanol-d₄

Figure S8. 1H NMR (600 MHz) spectrum of compound 2 in Methanol-d4

Figure S9. ¹³C NMR (150 MHz) spectrum of compound 2 in Methanol-d₄

Figure S10. ¹H NMR (600 MHz) spectrum of compound 4 in Methanol-d4

Figure S11. ¹³C NMR (150 MHz) spectrum of compound 4 in Methanol-d₄

Figure S12. ¹H NMR (600 MHz) spectrum of compound 5 in Methanol-d₄

Figure S13. ¹³C NMR (150 MHz) spectrum of compound 5 in Methanol-d₄

Figure S14. ¹H NMR (600 MHz) spectrum of compound 6 in Methanol-d₄

Figure S15. ¹³C NMR (150 MHz) spectrum of compound 6 in Methanol-d₄