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Abstract: Terpenoids, also known as isoprenoids, are a broad and diverse class of plant natural prod-
ucts with significant industrial and pharmaceutical importance. Many of these natural products have
antitumor, anti-inflammatory, antibacterial, antiviral, and antimalarial effects, support transdermal
absorption, prevent and treat cardiovascular diseases, and have hypoglycemic activities. Produc-
tion of these compounds are generally carried out through extraction from their natural sources or
chemical synthesis. However, these processes are generally unsustainable, produce low yield, and
result in wasting of substantial resources, most of them limited. Microbial production of terpenoids
provides a sustainable and environment-friendly alternative. In recent years, the yeast Saccharomyces
cerevisiae has become a suitable cell factory for industrial terpenoid biosynthesis due to developments
in omics studies (genomics, transcriptomics, metabolomics, proteomics), and mathematical modeling.
Besides that, fermentation development has a significant importance on achieving high titer, yield,
and productivity (TYP) of these compounds. Up to now, there have been many studies and reviews
reporting metabolic strategies for terpene biosynthesis. However, fermentation strategies have not
been yet comprehensively discussed in the literature. This review summarizes recent studies of
recombinant production of pharmaceutically important terpenoids by engineered yeast, S. cerevisiae,
with special focus on fermentation strategies to increase TYP in order to meet industrial demands to
feed the pharmaceutical market. Factors affecting recombinant terpenoids production are reviewed
(strain design and fermentation parameters) and types of fermentation process (batch, fed-batch, and
continuous) are discussed.
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1. Introduction

Terpenoids, also known as isoprenoids or terpenes, constitute one of the largest chem-
ically and structurally diverse group of natural products with over 80,000 members in
a widespread family (currently stated in the Dictionary of Natural Products database,
http://dnp.chemnetbase.com, accessed on 26 March 2021) [1–4]. Although the majority of
terpenoids are predominantly present in plants, other organisms such as bacteria, fungi,
insects, and animals contain them as well [5]. Their essential biological functions can be
counted as the regulation of cell growth and defense in plants (e.g., tocopherol, gibberellin),
and intracellular electron transport, glycoproteins biosynthesis and cell membranes forma-
tion in animals (e.g., cholesterol) [6]. Owing to their structural variety, there exist diverse
terpenoid activities, such as mediating symbiotic or antagonistic interactions between
organisms to electron transfer, protein prenylation, or contribution to membrane fluidity,
which make these compounds highly useful to be applied in various industries: food,
cosmetics, fine chemistry, pharmacy, agriculture, and biofuel [5].

Terpenoids are formed from several isoprene (2-methylbuta-1,3-diene; IUPAC 1997)
(CH2=C(CH3)–CH=CH2) structural units (or building blocks) synthesized from meval-
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onate (MVA) or 2-C-methyl-d-erythritol 4-phosphate (MEP) (which is also known as the
non-mevalonate) pathway [2,3]. Through the condensation reactions of these units, sev-
eral large and more complex compounds are produced. According to the number of C5
isoprene units, terpenoids are mainly classified in hemiterpenoid (C5), monoterpenoid
(C10), sesquiterpenoid (C15), diterpenoid (C20), triterpenoid (C30), tetraterpenoid (C40),
and polyterpenoid (C > 40) [2,3,6]. Terpenoids are mostly formed through continuous
addition of head to tail manner of building blocks, which are isoprene diphosphate (IPP)
and dimethylallyl diphosphate (DMAPP). For instance, the precursor of monoterpenoids,
geranyl diphosphate (GPP), is produced by head to tail condensation of these two build-
ing blocks. Later, addition of IPP leads to the formation of farnesyl diphosphate (FPP)
and geranylgeranyl diphosphate (GGPP), which are precursors of sesquiterpenoid and
diterpenoid. On the other hand, head to head condensation of two molecules of FPP
and GGPP, respectively, forms squalene and phytoene, the precursors of triterpenoid and
tetraterpenoid [6,7] (Figure 1). Furthermore, these precursors are exposed to oxidation, by
cytochrome P450 oxygenases, and glycosylation, by glycosyltransferases to form various
terpenoids. In addition, prenyltransferases concatenates isoprene-derived precursors to
fatty acid-derived precursor to synthase complex terpenoids or meroterpenoids, which
consist of the medically important compounds, cannabinoids [2].
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From early ancient times up to now, terpenoids have been playing important roles
in many medical treatments as pharmaceuticals with diverse biomedical activities, such
as antimalarial, anticancer, anti-inflammatory, antibacterial, antiviral, hypoglycemic, pre-
venting and treating cardiovascular diseases, and promoting the transdermal absorption.
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Besides that, they can have insecticidal, immunomodulatory, antioxidant, antiaging, and
neuroprotective effects [2,3,8,9]. They are usually produced from natural resources through
extraction or by chemical synthesis, but the obtained yields are generally low due to
inherently low level of target compound and the necessity of complex extraction and
chemical synthesis methods, which are commercially infeasible [10]. In most cases, the
natural production method, extracting terpenoids from original sources (e.g., taxol from
yew tree and artemisinin from the plant Artemisia annua) generally fails in terms of quality
and supply management due to seasonal and geographical alterations [5]. In addition,
plant engineering for terpenoid production is difficult and complex due to tissue specific
expression and loss of volatile products by evaporation, and productivity and yields are
very low [11]. Due to these limitations, microbial production of terpenoids has received
increasing attention, since production of these compounds at large scale fermentation by
engineered microorganisms offers a promising higher yield, batch-to-batch consistence,
lower production cost, and more sustainability.

Among terpenoids, the sesquieterpenoid artemisinin have been often used as an
antimalarial drug and the diterpenoid taxol (paclitaxel) have been developed to be an
important anticancer chemotherapy drug for many years [12]. Semi-synthetic artemisinin
is currently manufactured by the French pharmaceutical company Sanofi, using engineered
Saccharomyces cerevisiae strain developed by Amyris [13], which is a very important example
of microbial industrial production of terpenoids. However, the same success has not been
yet achieved for paclitaxel due to the complexity of its synthesis pathway, which is still
unclear and further studies are required to fully elucidate it [14]. So far, the highest recorded
titer of oxygenated taxanes has reached up to 570 mg/L in engineered Escherichia coli by
optimizing the P450 expression of taxanes and other related enzymes [15].

For centuries, the baker’s yeast, S. cerevisiae, has been mainly used in the industrial
production of alcoholic beverages (wine, beer, and distilled spirits), bakery products, and
bioethanol. However, with the latest developments in synthetic biology, it became one of
the most widely industrially used cell factory in the microbial production of a wide variety
of products, such as alcohols, organic acids, amino acids, enzymes, therapeutic proteins,
chemicals, and metabolites [16]. Among them, for example, biopharmaceutical recombinant
peptide hormone, insulin, has been produced by genetically engineered S. cerevisiae strains
for many years. Many pharmaceutical companies have chosen this yeast as the most suited
host organism to produce a large variety of recombinant products due to its well-known
genetics, physiology, biochemistry, and genetic engineering background, the availability of
genetic tools, and the suitability of dense and large scale fermentation [16–18].

In the same line, S. cerevisiae has emerged as a model organism for the production of
terpenoids since it has many additional advantages other than mentioned above, such as
generally regarded as safe (GRAS) status, high genetic tractability, ease of manipulation,
possessing universal endogenous MVA pathway, ability to express eukaryotic cytochrome
P450 enzymes, robustness, relatively absence of secondary metabolites, high sugar catabolic,
fast growth rate, and high tolerance against harsh industrial conditions [7,19–22].

Besides S. cerevisiae, other microorganisms have been explored for terpenoids pro-
duction. Among them, E. coli has the most restrict chassis, since its produces natively
limited amounts of terpenoids (e.g., quinones) and, therefore, the improvement of MEP
pathway by engineering enzymes for IPP and DMAPP synthesis, or the introduction of
heterologous MVA pathway, is required [23]. In contrast, S. cerevisiae has an endogenous
MVA pathway, producing high amounts of ergosterol and native cytochrome P450 enzymes
for the modification of terpenoids skeleton. Nonconventional yeast Yarrowia lipolytica has
been also considered as a suitable yeast to synthesize terpenoids due to its capacity to
produce large amount of acetyl-CoA, the initial substrate of the MVA pathway [23]. In
addition, carotenogenic yeast Rhodosporidium toruloides can naturally accumulate several
carotenoids (C40 terpenoids), indicating that it might have high carbon flux through MVA
pathway, ensuring pools of intermediates for producing diverse types of terpenes [24]. This
yeast can metabolize efficiently both xylose and glucose, and tolerates high osmotic stress,
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enabling the use of lignocellulosic hydrolysates as feedstock in contrast to S. cerevisiae [24].
Cyanobacteria have also the potential to produce sustainable terpenoids using light and
CO2 instead of sugar feedstocks. However, terpenoids titer and productivity obtained
are still below industrial levels and further studies to overcome the barriers for efficient
conversion of CO2 to terpenoids are needed [25].

Overall, S. cerevisiae has as main advantage over E. coli and cyanobacteria hosts its
intrinsic MVA pathway, and the disadvantage over Rhodosporidium toruloides host the inca-
pacity of using directly lignocellulosic hydrolysates as feedstock. Nevertheless, S. cerevisiae
is quite superior to the other microorganisms in respect to higher process robustness, fer-
mentation capacity, plenty of available genetic tools in pathway engineering and genome
editing, and proven capacity to attain industrial levels of relevant terpenoids [23].

To date, there has been a strong effort for terpenoid biosynthesis through metabolic
engineering of microbes, however, production levels are at the mg/L scale in scientific liter-
ature, which are generally too low and commercially insufficient. Economically meaningful
metrics of titer (g product per L broth), yield (g product per g substrate), and productivity
(g product per L broth per hour) should be provided for industrial production [11]. Fermen-
tation development at scale has a crucial importance to improve terpenoids production.
For example, Amyris has reached titers of more than 130 g/L of β-farnesene and 25 g/L
of artemisinic acid (precursor of artemisinin, antimalarial drug) from sugar cane feed-
stock in engineered yeast S. cerevisiae through optimized fed-batch fermentation [26–28].
Fermentation strategies can increase productivity and reduce the cost of production via
improving medium composition, optimizing physicochemical conditions, and applying
efficient downstream processing. However, a complete overview of the current approaches
for obtaining terpenes relevant for the field of pharmaceuticals by yeast fermentation
has not yet been reviewed in the literature. Therefore, this review details the production
of pharmaceutical terpenoids by engineered yeast S. cerevisiae and focuses attention on
fermentation strategies to improve their production scale. Different fermentation factors
and processes are discussed.

2. Pharmaceutical Terpenoids

A vast number of terpenoids have been widely used in medicine and medical sciences
to prevent and treat many diseases due to their pharmaceutically bioactive properties. Their
wide pharmaceutic effects and medical functions have already been extensively revised
in the literature (see reviews: [3,7–9,14,29–31]. Some of the pharmaceutical terpenoids
currently used in medicine and produced via biotechnological approaches are presented in
Table 1.

Table 1. Pharmaceutical activities of common terpenoids produced by biotechnological means.

Classification of Terpene Terpene Name Pharmaceutical Function References

Monoterpene

Perillyl alcohol Anticancer

[3]
Geraniol Anticancer

D-limonene Anticancer, transdermal absorption of drugs
Menthol Antimicrobial, transdermal absorption of drugs
Sabinene Antimicrobial

Sesquiterpene Artemisinin and its derivatives Antimalarial, anticancer, antibacterial, antiviral activities and
hypoglycemic effect [3,32]

Patchoulol Antibacterial activity

Diterpene Paclitaxel
Anti-ovarian, breast, colorectal, head and neck cancers,

small-cell and non-small-cell lung cancers (NSCLCs), and
treatment of AIDS

[3,8,14,33]

Meroterpene Cannabinoids Treatment of pain relieving conditions (in cancer
chemotherapy, AIDS, and multiple sclerosis) [8,34]

Triterpene Ginsenosides Anti-oxidation, anti-inflammatory, hepatoprotection,
anti-diabetic (hypoglycemic activity) and anti-tumor [3,35,36]

Betulinic acid and its derivatives Anticancer, anti-inflammatory, anti-diabetic, antimicrobial
and anti-human immunodeficiency virus (HIV) [37,38]
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2.1. Artemisinin and Its Derivatives

The sesquiterpene endoperoxide artemisinin, which is isolated from wormwood
(Artemisia annua), is the most effective traditional antimalarial drug with the property
of high efficiency and low toxicity. It shows to be effective against a broader range of
life cycle stages of the apicomplexan parasite than conventional antimalarials such as
quinine. Antimalarial property of artemisinin arises from its extraordinary endoperoxide
ring, which has an impact on overcoming Plasmodium spp. infections (Figure 2) [3,8,39,40].
The mechanism of action is still unclear, but there are some possible explanations. Right
after the infection by Plasmodium spp., phagocytosis of red blood cells occurs and heme
proteins in high levels are delivered. High concentration of heme stimulates the artemisinin,
which later binds to the parasite proteins in the Plasmodium spp. body to inactivate them
and consequently eradicate the infection of Plasmodium spp. [39,41].
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Besides antimalarial activity, artemisinin and its derivatives have anticancer activity
in vivo and in vitro, with small adverse effects. For instance, it has been reported that
artesunate, which is a semisynthetic derivative of artemisinin, displays antitumor activity
against several cancers, such as breast, lung, prostate, colon, ovarian, melanoma, and
leukemia cancers [42]. Moreover, antibacterial and antiviral activities of these compounds
were also reported in several works. Artemisinin and its derivatives have concentration
dependent antibacterial activities against anaerobic, aerobic, facultative anaerobic and
microaerophilic bacteria [43,44]. They also exhibited significant antiviral activity against
the hepatitis B (HBV) and hepatitis C viruses [45]. Finally, artemisinin has been reported to
have hypoglycemic effect and to be able to improve type 1 diabetes [8].

2.2. Paclitaxel (Taxol)

Paclitaxel, also known as its commercial brand name “Taxol”, is a tricyclic diterpenoid
compound (Figure 3) used as chemotherapy drug. It was first isolated from bark and needle
of the pacific yew tree (Taxus brevifolia) and has effective anticancer activities on several
type of tumors, such as ovarian and breast cancers. Its unique mechanism of action as a
microtubule stabilizer and inhibitor of mitosis on ovarian and breast cancers was approved
by the US Food and Drug Administration (FDA) in 1992 and 1994, respectively. Since
then, Paclitaxel has been also widely used in the treatment of colorectal, head and neck,
small-cell and non-small-cell lung cancers (NSCLCs), and acquired immune deficiency
syndrome (AIDS). It contributes the conjunction of tubulin into microtubules and hinders
the breakage of microtubules, which inhibits cell cycle progression, stops mitosis, and
prevents the generation of tumor cells [3,8,14,33].

Paclitaxel is very expensive due to its small concentration found in original plant
source (yew tree). For instance, 10,000 kg bark of yew trees are required to produce
1 kg paclitaxel. This amount can treat 500 patients but requires the harvest of 300 yew
trees [14,46]. Production is dependent on slow growth and threat of species and there is
the risk of yew trees extinction. Due to these reasons, alternative sources are necessary
to be developed. Until now, several other options, such as microbial production, semi-
synthesis and artificial cultivation of Taxus brevifolia were applied to meet world demand
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of Paclitaxel [8,14]. Moreover, the production and extraction of this compound from
genetically engineered endophytic fungi has been recently announced to be an effective
way as well [46].
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2.3. Cannabinoids

Cannabinoids comprise a group of more than 100 prenylated phenolic compounds
found in Cannabis spp. (Cannabaceae), mainly in the plant Cannabis sativa. Apart from plant
derivatives, Cannabinoids also involve Endocannabinoids, Phytocannabinoids, and Syn-
thetic cannabinoids, which are able to bind to the human cannabinoid receptors [8,34,47].
Cannabinoid rich plants like C. sativa and C. indica have been used for different purposes
for more than 5000 years. The fiber-type of Cannabis (hemp), which contains the major
cannabinoid, cannabidiol (CBD) (Figure 4), has been often used in the treatment of pain
relieving conditions. On the other side, ∆9-tetrahydrocannabinol (THC) (Figure 4), found
in high quantity in Cannabis (marijuana), has been known for psychoactive properties,
and generally used as a recreational drug and in the treatment of several medical con-
ditions [8,48,49]. In addition, many pharmaceutical companies have produced several
synthetic cannabinoid drugs, known by different brand names, such as Cesamet (Valeant
Pharmaceuticals North America, Bridgewater, NJ, USA), Marinol (Unimed Pharmaceu-
ticals Inc., Marietta, GA, USA), and Sativex (GW Pharmaceuticals plc, Cambridge, UK).
These drugs have been used in Canada, USA, UK, and other countries to treat nausea and
vomiting caused by cancer chemotherapy, anorexia associated with weight loss in patients
with AIDS, and symptomatic relief of neuropathic pain in multiple sclerosis [34,50].
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Cannabinoids also called as terpenophenolic in the class of meroterpene, are produced
as secondary metabolite of Cannabis through concatenation of isoprenoid precursor with a
second fatty acid derivative precursor by a prenyltransferase enzyme. This enzyme synthe-
sizes cannabigerolic acid (CBGA), through the prenylation of olivetolic acid and geranyl
diphosphate (GPP). CBGA is then converted into different cyclized compounds, such as
tetrahydrocannabinolic acid (THCA), cannabidiolic acid (CBDA), and cannabichromenic
acid (CBCA). Finally, these compounds undergo decarboxylation to produce biologically ac-
tive compounds THC, CBD, and CBC, which are the main cannabinoids placed in Cannabis
spp. [2,8,34,51].

In recent years, Cannabis spp. has been legally used for the medical treatments in
many countries, such as USA, Canada, Israel, and several European countries including
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the Netherlands, Germany, and the Czech Republic. However, Cannabis spp. cannot
be cultivated in several countries due to the legal issues. Agricultural production of
cannabinoids via Cannabis cultivation has several disadvantages, such as low yield due to
climate changes and plant diseases, low concentrations of cannabinoids in plant, necessity
of extraction processes, and sociopolitical factors for the use of Cannabis, which has
been mostly seen as a source of narcotics. On the other hand, chemical synthesis of
cannabinoids does not offer an alternative production way because of synthesis complexity,
which generally causes low yields and high production cost. For these reasons, microbial
production of these compounds by engineered yeast would serve a sustainable, reliable,
eco-friendly, and cost-effective alternative approach [2,34].

2.4. Other Medically Important Terpenoids

Apart from artemisinin, taxol, and cannabinoids, there are also other medically impor-
tant terpenoids with several pharmaceutical activities and functions. It was reported that
the monoterpenes perillyl alcohol, D-limonene, and geraniol are effective in the preven-
tion and treatment of various types of cancers (Figure 5) [3,52,53]. They have therapeutic
or prophylactic effects on breast, lung, colon, prostate, pancreatic, and liver cancers [3].
Their main mechanism to prevent cancer activity consists in the inhibition of posttransla-
tional isoprenylation of proteins, which are responsible for the growth of tumor cells [52].
Besides antitumor activity, some monoterpenes (e.g., menthol, limonene, and sabinene)
have antimicrobial effects on diverse type of microorganisms, such as Bacillus subtilis,
Staphylococcus aureus, Streptococcus spp., E. coli, and Candida albicans [3,54]. In addition,
menthol and limonene promote the transdermal absorption of drugs through the human
skin [3,54]. These terpenoids show little skin irritation, low toxicity, and high activity. The
sesquiterpene patchouli alcohol also presented antibacterial activity on Helicobacter py-
lori [32]. In addition, triterpene ginsenosides have various pharmacological effects, such as
anti-oxidation, anti-inflammatory, hepatoprotection, anti-diabetic (hypoglycemic activity),
and antitumor [36]. They also exhibit therapeutic effects on the prevention and treatment
of various cardiovascular diseases, such as regulation of vascular function, inhibition of
cardiomyocyte hypertrophy and thrombosis [3]. In addition, betulinic acid (Figure 5) and
its semisynthetic derivatives, such as PA-457, have also shown remarkable pharmacological
properties, including inhibitory effects against human immunodeficiency virus (HIV) and
cytotoxicity activity on several type of cancer cells (Table 1) [37,38]. Very interestingly, bio-
transformation of betulinic acid has been continuously investigated aiming at discovering
novel derivatives for pharmacological studies [55].
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3. Biosynthesis of Medically Important Terpenoids

Terpenoid biosynthesis can be divided into four main stages. In the first stage, univer-
sal building blocks isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP)
are synthesized via the mevalonate pathway (MVA pathway) and the methyl-erythritol
phosphate pathway (MEP pathway). MVA pathway, which exists in S. cerevisiae, starts
from acetyl-CoA and ends up with the production of DMAPP. In the second stage, geranyl
pyrophosphate (GPP), farnesyl pyrophosphate (FPP), or geranylgeranyl pyrophosphate
(GGPP), which are the precursors of monoterpenoids, sesquiterpenoids, or diterpenoids,
respectively, are created by condensation reactions of one molecule DMAPP with one, two,
or three molecules of IPP under the action of isopentenyl transferase. On the other hand,
triterpenoids are similarly generated via polymerization of two molecules of FPP. In the
third stage, these linear isopentenyl pyrophosphate precursors are cyclized or rearranged
by terpene synthases to form primary terpene carbon skeleton. Finally, this carbon skeleton
undergoes several post-modifications and tailoring reactions (oxidations, acetylation, ester-
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ification, alkylation, etc.) under the action of cytochrome P450s (CYPs) to form biologically
active terpenoids (for recent reviews see: [5,12,56]).

4. Metabolic Engineering Strategies for Pharmaceutic Terpenoids Production in Yeast

A brief overview of metabolic engineering applications in S. cerevisiae for terpenoid
biosynthesis is herein given. The common metabolic engineering strategies for terpenoids
synthesis in yeast, as described in recent reviews [5,7,56–58] can be summarized as such:

1. Modifying endogenous pathways for synthesis of desired terpenoids.
2. Finding and introducing new heterologous enzymes and pathways into yeast.
3. Determination of rate limiting steps in selected pathways by application of omics

studies.
4. Elimination of rate limiting steps in target pathways via overexpression of genes, and

cofactor and transporter engineering.
5. Developing enzyme activity and/or specificity by protein engineering.
6. Improving expression level of target key enzymes.
7. Blocking or down regulating competing pathways.
8. Increasing precursor and cofactor supply.
9. Balancing cell growth and terpenoid synthesis for fermentation process.

As above mentioned, the direct precursors in sterol pathway, FPP, GPP, GGPP, and
squalene epoxide, can be converted into specific terpenes through a series of enzymes
designated as terpene synthases, which do not exist in S. cerevisiae. For this reason, heterol-
ogous genes for the functional expression of terpene synthases from plant resources (e.g.,
taxadiene synthases from Taxus brevifolia) or synthetic sources (from NCBI gene accession
number) should be introduced into S. cerevisiae [57]. On the other hand, Cytochrome P450
(CYPs), which are essential enzymes to modify the hydrocarbon products from terpene syn-
thases, catalyze a wide variety of metabolic reactions, such as oxygenations, deamination,
decarboxylation, dealkylation, and C–C cleavage [59]. S. cerevisiae has only three CYPs,
which are Erg5 and Erg11 in the ergosterol pathway and Dit2 (putative cytochrome P450
involved in the synthesis of N,N-bisformyl dityrosine). For specific or non-native terpenoid
production, heterologous expression of CYPs is required. As a successful example, ref. [27]
have expressed CYP71AV1, NADPH dependent cytochrome P450 oxidoreductases (CPR1)
and cytochrome b5 (CYB5) from A. annua in S. cerevisiae, obtaining 25 g/L of artemisinic
acid in optimized fed-batch fermentation.

Another strategy is to identify the rate limiting reactions and overexpress the gene,
or genes, responsible for these reactions to promote flux into the MVA pathway of S.
cerevisiae. HMG-CoA reduction to MVA, catalyzed by Hmg1p or Hmg2p, products of
HMG1 and HMG2, respectively, was reported as the rate limiting step in the sterol pathway
of S. cerevisiae. Overexpression of N-terminal truncated HMG1 (tHMG1) and Hmg2p in
anaerobic conditions increased squalene titer in this yeast [7,57]. Moreover, overexpression
of the transcriptional factor Upc2-1, constitutively active mutant of Upc2, improved sterols
uptake [7]. As a similar strategy, overexpression of all structural genes in MVA path-
way (ERG10, ERG13, tHMG1, ERG12, ERG8, IDI1, and ERG20) has enhanced terpenoid
production [26,60]. In addition, down-regulation of downstream genes of competitive
pathways can increase the precursor pool. For instance, down regulation of ERG9 in low
glucose concentrations through HTX1 promoter, could increase FPP pool in fed-batch
fermentations [61].

Acetyl-CoA and NADPH are the essential precursor and cofactor for the biosynthesis
of several products (sterols, fatty acids, and polyketides) as well as terpenoids. Overexpres-
sion of structural genes in MVA pathway in S. cerevisiae to improve terpenoid synthesis
results in draining the acetyl-CoA and NADPH pools, which may negatively affect the
cell growth, causing in parallel the decrease in the terpenoid production. Therefore, the
increase of cytosolic acetyl-CoA and NADPH pools is required. The most effective way
for achieving this was to establish a synthetic pathway. Ref. [26] combined acetaldehyde
dehydrogenase (which converts acetaldehyde to acetyl-CoA) with xylulose-5-phosphate-
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specific phosphoketolase and phosphotransacetylase (which convert xylulose-5-phosphate
to acetyl-CoA) to increase acetyl-CoA pool. Moreover, the same authors have used an
NADH-consuming HMG-CoA reductase to increase NADPH pool. This new pathway lead
to improved β-farnesene production along with 75% less oxygen requirement in fed-batch
fermentation [26].

Interestingly, to expand the diversity of terpenoid structures, C11 terpene scaffolds
were produced in S. cerevisiae by engineering dedicated synthases upon identification of
a single residue switch that converts C10 plant monoterpene synthases to C11 specific
enzymes [62]. More recently, a synthetic orthogonal monoterpenoid pathway based on an
alternative precursor, neryl diphosphate, was established in yeast, in which five engineered
enzymes were combined with dynamic regulation of metabolic flux to take advantage of
the orthogonal substrate potential and improve monoterpenes production [63].

5. Factors Affecting Fermentation Process of Pharmaceutical Terpenoids

The main factors affecting the production of terpenoids in S. cerevisiae include strain
engineering, inoculum size, pH value, temperature, oxygen rate, and fermentation medium
composition such as carbon and nitrogen sources. In addition, secondary products like
ethanol, and some organic acids can affect the productivity of terpenoids. Below, the
general factors affecting terpenoid biosynthesis are discussed.

5.1. Strain Engineering

Wild type S. cerevisiae strains (most known laboratory strains used for system biol-
ogy: CENPK, S288C, BY4741 and W303, www.yeastgenome.org, accessed on 26 March
2021) have endogenous sterol biosynthesis process, including MVA pathway. Ergosterol
is synthesized through this process. By using molecular biology methods, namely gene
deletion and high-through screening methods, all enzymes and genes upstream the MVA
pathway, and downstream ergosterol synthesis in S. cerevisiae, have been clarified [64].
Terpenoids cannot be directly produced by wild type strains of S. cerevisiae without genetic
modifications because it requires the availability of precursors for transfer of intermediates
between compartments (the cytoplasm and endoplasmic reticulum) and diverse class of
Cytochrome P450 (CYP-CPR) enzymes for the oxygenation reactions to produce struc-
turally diverse terpenes [57]. In order to produce terpenoids efficiently in yeast, several
genetic modifications such as promoter alterations, gene mutations, genes knockout and
expression of heterologous genes were required (see recent reviews: [2,6,12,65]. Highly
engineered strains of S. cerevisiae, with the capability to produce different type of ter-
penoids, including industrial products, such as farnesene, artemisinin, patchouli alcohol,
squalene, geraniol, and β-carotene, have been constructed [5]. However, different gene
regulation is necessary for different type of end-products. For instance, in sesquiterpenes
production, ERG9 enzyme is required to be downregulated to lower the metabolic flow
from farnesyl pyrophosphate to squalene, while in triterpenoids production, the same
enzyme is upregulated to increase precursors pull for triterpenoids [64]. In addition, dis-
tinctive plant derived cytochrome P450 enzymes for specific target products should be
cloned and expressed as well [12]. Because of these reasons, tailor-made engineered strains
need to be constructed for specify target terpenoids [7,56]. Some of the important genetic
modifications for different terpenoid biosynthesis are presented in Table 2.

Table 2. Relevant engineering strategies performed in Saccharomyces cerevisiae for terpenoid production (adapted from [7]).

Compound Titer Strategy References

Amorpha-4,11-diene >40 g/L

Overexpression of ADS, upc2-1
Integration of genes copies using control of galactose-inducible promoters: 3 copies of

tHMG1, and ERG10, 13, 12, 8, and IDI1
Deletion of gal80∆

Downregulation of ERG9

[60]

www.yeastgenome.org
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Table 2. Cont.

Compound Titer Strategy References

Artemisinic acid 25 g/L

Overexpression of ADS, CYP71AV1, CPR1, CYB5, ALDH1 and ADH1 from A.
annua, HEM1, and CTT1 under control of

galactose-inducible promoters
Deletion of gal80∆

Downregulation of ERG9

[27]

Farnesene 130 g/L

Overexpression of ADA, xPK, PTA,
NADH-HMGr, Farnesene synthase

Deletion of adh1 ∆, ald4 ∆, ald6∆, gpp1∆, gal2∆, bdh1∆
Overexpression of enzymes of the MVA pathway to Erg20

Downregulation of ERG9

[26]

Bisabolone >900 mg/L Overexpression of tHMG1, ERG20, upc2-1 and bisabolene synthase
Downregulation of ERG9 [66]

Alpha-Santalene 92 mg/L
Overexpression of tHMG1
Deletion of Ipp1∆, dpp1∆
Downregulation of ERG9

[61]

Patchoulol 42.1 mg/L Overexpression of ERG20 and PatTps177
Downregulation of ERG9 [67]

(S)-Linalool 0.26 mg/L Overexpression of Erg20 and (S)-linalool synthase
Diploid [68]

Geraniol 1.69 g/L
2µ plasmid of PTEF1-tVoGES-(GGGS)-ERG20WW fusion protein

2µ plasmid of PTEF1-tHMG1, PPGK1-IDI1, PTEF1- upc2.1
PHXT1-ERG20, oye2∆

[69]

Sabinene 1.75 mg/L

2µ plasmid of PTDH3-ERG20 (F96W-N127W)- sabinene synthase (Salvia
pomifera) fusion protein

Diploid ERG9/erg9, ERG20/erg20,
PGal1-HMG2 (K6R), PTDH3-HMG2 (K6R) × 2

[70]

5.2. Carbon Source

The selection of fermentation carbon source depends on the precursor pool designed to
be used [60]. Ethanol was often fed to fermentation broth as substrate since it can be readily
directed to acetyl-CoA formation [69]. It was preferred instead of glucose as carbon source
during the production phase due to increased higher titer and yield in the accumulation of
many terpenoids in S. cerevisiae, such as amorpha-4,11-diene (precursor of artemisinin) [60],
artemisinic acid [27], β-amyrin [71], limonene [72], geraniol [73], protopanoxadiol [74],
and patchoulol [22] (Table 3). In these studies, diauxic yeast fermentation process was
performed, in which glucose is consumed in the first stage of cell growth with the simul-
taneous production of ethanol that is then used in the second stage of cell growth and
biosynthesis of the product of interest [72]. However, high ethanol concentration results
in cell stress in S. cerevisiae. As a response to this situation, ergosterol synthesis is usually
stimulated. This metabolic mechanism had improved the availability of the main precursor
2,3-oxidosqualene, resulting in two times higher total triterpenoid productivities and 2.4-
fold increase in carbon yield in ethanol pulse fed fermentations, compared to glucose fed
fermentations [75]. However, the use of ethanol as main carbon source is not feasible for
industrial terpenoid production, due to its high cost as compared to other carbon sources
like glucose. To date, glucose, which is the most widely used carbon source in bioprocesses,
has been also selected as feedstock to reach high titer and yield during fermentation of sev-
eral terpenoids, such as bisabolone [76], zerumbone [77], α-humulene [4], α-santalene [61],
miltiradiene [78], protopanaxadiol and dammarenediol-II [79], and ginsenoside Rh2 [35]
(Table 3). In addition, the promoters chosen to drive expression of heterologous genes
also affect the choice of the substrate. For instance, when gal-promoters were used in the
construction of engineered yeast, galactose was required to be included in the medium
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in order to induce the expression of cloned genes, while being used as carbon source at
the same time [57]. Some terpenoids were produced using galactose as sole carbon source,
such as limonene [80], (-)-limonene [81], sabinene [70], bisabolene [66], valerenic acid [82],
and polpulonic acid [20] (Table 3). However, using galactose as sole carbon source makes
the process expensive and regulation by galactose can be only repressed in the presence
of glucose. Because of this, the Gal1 gene was deleted to produce artemisinic acid from
glucose as a primary carbon source instead of galactose, where galactose was supplemented
in low amount as a gratuitous inducer [60]. Apart from these carbon sources, molasses,
which consists mainly of sucrose, disaccharide composed of glucose, and fructose, is com-
monly used as carbon source in many industrial fermentations [17,83]. Ref. [84] produced
nerolidol from sucrose as sole carbon source in carbon-overflow fed-batch fermentation by
employing the diauxic-induction system, including the four characterized GAL promoters.
Moreover, besides these carbon sources, raffinose and dextrose were also used in a mixture
with galactose or glucose in the production of polpulonic acid [20] and β-amyrin [85],
respectively. However, from all employed carbon sources, the highest specific production
rates were achieved when using ethanol in the diauxic yeast fermentation process [27,60,69].
Rather than these hexoses, disaccharide sucrose, as well as ethanol, agricultural byproducts
like sugar cane bagasse or straw, which comprise mostly of xylose and glucose, as well
as other sugars like galactose, can be considered as alternative feedstock for terpenoid
bioprocess [7]. In addition, as a byproduct of biodiesel production, crude glycerol also
has potential to be used as economic alternative source [86]. However, S. cerevisiae strains
are unable to metabolize xylose and, thus, metabolic engineering must be performed,
by introducing appropriate heterologous genes of xylose pathway in this yeast, to allow
fermentation of this pentose. Significant advances have been made in recent years in regard
of xylose use by yeast to obtain value-added bioproducts [87]. Overall, non-fermentable
carbon sources (e.g., ethanol and glycerol) are more effective for attaining high terpenoid
yields than fermentable ones (e.g., glucose, fructose, sucrose, and galactose) [86]. This is
because the metabolic pathways of the non-fermentable carbon sources are highly flexible
and involve the glyoxylate cycle and an increased number of mitochondrial shuttles in
yeast [86].
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Table 3. Terpene titers obtained in S. cerevisiae and respective fermentation strategies.

Group Product Titer
(mg/L) Carbon Source Nitrogen

Source pH ◦C Aeration
/Agitation

Dissolved
Oxygen

Inoculum
Size

Feeding
Strategy

Operation
Mode References

M
on

ot
er

pe
ne

s

Limonene 1.48 2 g/L glucose and
18 g/L galactose (NH4)2SO4 - 30 200 rpm - 1 OD = 0.05 - Shake-flask [80]

(-)-
Limonene 0.49 20 g/L glucose and

20 g/L galactose (NH4)2SO4 - 30 300 rpm - OD = 0.05 - Shake-flask [81]

Limonene 918
20 g/L initial

glucose and 10 g/L
pure ethanol

Tryptone,
Yeast

extract
- 30 250 rpm - OD = 0.2 Pure ethanol Fed-Batch in

shake flask [72]

Geraniol 5 10 g/L glucose (NH4)2SO4 - 28 - - 2.5% - Shake-flask [88]

Geraniol 293

20 g/L initial
glucose and then

fed solution
(glucose and other

nutrients)

(NH4)2SO4 6.0 30 600 rpm/
1 vvm >30% OD = 0.15

Fed solution (glucose
and other nutrients)

feeding by
controlling the

specific feed rate to
0.1 h−1

Fed-Batch [69]

Geraniol 1680

Initial YPD
medium, then
glucose and

ethanol

Yeast
extract,

Peptone
5.7 30

300–
500 rpm/

2 vvm
>30% 10%

Glucose feeding
under 1 g/L and
ethanol feeding

under 5 g/L

Fed-Batch
(Carbon

restricted)
[73]

Geraniol 1690
Initial 20 g/L

glucose then pure
ethanol feeding

(NH4)2SO4 5.0 30 600 rpm/
1 vvm >30% OD = 0.2 400 g/L pure ethanol

at 0.1 L/h feed rate Fed-Batch [69]

Sabinene 17.5

20 g/L glucose
20 g/L galactose

and
10 g/L raffinose

(NH4)2SO4 - - - - - - - [70]

(S)-linalool 0.26 20 g/L glucose Yeast
extract 5.5 30 400 rpm/

2 vvm - OD = 0.05 - Batch
Bioreactor [68]
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Table 3. Cont.

Group Product Titer
(mg/L) Carbon Source Nitrogen

Source pH ◦C Aeration
/Agitation

Dissolved
Oxygen

Inoculum
Size

Feeding
Strategy

Operation
Mode References

Se
sq

ui
te

rp
en

es

Bisabolone 900 2 g/L glucose and
18 g/L galactose

Yeast
extract,

peptone
- 30 180 rpm - OD = 0.05 - Shake-flask [66]

Bisabolone 5200 Initial 15 g/L
glucose (NH4)2SO4 5.0 30 0.7 L/min

air - OD = 0.1 Constant feed rate
with pH rise trigger Fed-batch [76]

Nerolidol 336.5 20 g/L sucrose (NH4)2SO4 - 30 180 rpm - OD = 0.2 -
Two-phase

flask
cultivation

[19]

Nerolidol 5500
Initial 20 g/L

glucose, and then
sucrose feeding

(NH4)2SO4 5.0 -

300–
600 rpm/1.58–

3.16 L/h
air

30% OD = 0.2

Exponential feeding
(3 mM sucrose/g
biomass/h) with

specific increasing
rate (0.05 h−1 then

20 g/L sucrose pulse
feeding by DO spikes

Fed-Batch [84]

Valerenic
acid 4 20 g/L galactose

and 2 g/L dextrose

Yeast
extract,

Peptone
- 30 200 rpm - - - Milliliter

plates [82]

Polpunonic
acid 1.4

20 g/L galactose
and 10 g/L

raffinose
- - 30 150 rpm - - - Shake-flask [20]

Amorpha-
4,11-diene >4000

Initial 20 g/L
glucose then pure

ethanol pulse
feeding, 0.25 g/L

methionine as
inducer

(NH4)2SO4 5.0 30 1 L/min air 40% -

Ethanol pulse feed
(10 g/L), Off-gas

CO2 evaluation rate
control

Fed-Batch [60]
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Table 3. Cont.

Group Product Titer
(mg/L) Carbon Source Nitrogen

Source pH ◦C Aeration
/Agitation

Dissolved
Oxygen

Inoculum
Size

Feeding
Strategy

Operation
Mode References

Artemisinic
acid 25,000

Initial 20 g/L
glucose then pure

ethanol pulse
feeding, 0.25 g/L

methionine as
inducer

(NH4)2SO4 5.0 30 1 L/min air 40% - Etanol pulse (10 g/L)
feed, stir rate control Fed-Batch [27]

Patchoulol 467

Initial glucose
(25 g/L) feeding,

Feeds: (1) Sole
glucose feeding (2)
glucose/glycerol
feeding, (3) Sole
ethanol feeding

(NH4)2SO4,
Peptone.

Yeast
extract

5.5 30
200–

500 rpm/
1–2 vvm

- 14%

carbon-source
(glucose) controlled

three-stage
fermentation

Fed-Batch [22]

Zerumbone 40

Initial 20 g/L
glucose, then feed
solution (glucose,

other nutrients and
ingredients)

Peptone.
Yeast

extract
5.5 30

300–
600 rpm/

2 vvm
>30% 5%

Fed rate solution
(glucose and other

nutrients,
ingredients) of 2

mL/min control by
DO and pH rise

trigger

Fed-Batch [77]

α-
humulene 1700

Initial 20 g/L
glucose, then feed
solution (glucose,

other nutrients and
ingredients)

Peptone.
Yeast

extract
5.5 30

300–
600 rpm/

2 vvm
>30% 10%

Fed rate solution
(glucose and other

nutrients,
ingredients) of 2

mL/min control by
DO and pH rise

trigger

Fed-Batch [4]

α-santalene
0.036

Cmmol (g/
biomass/h)

Initial 10 g/L
glucose and

continuous glucose
and dodecane

feeding

(NH4)2SO4 5.0 30 600 rpm/
1 vvm >30% 2 Xi = 1 g/L

Two phase feeding
(organic phase and

10 g/L glucose),
dilution rates of

0.05/h and 0.1/h

Continuous [61]
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Table 3. Cont.

Group Product Titer
(mg/L) Carbon Source Nitrogen

Source pH ◦C Aeration
/Agitation

Dissolved
Oxygen

Inoculum
Size

Feeding
Strategy

Operation
Mode References

D
it

er
pe

ne
s

Geranylgeraniol 3310

Initial 1 g/L
glucose, then sole

glucose and
glucose/ethanol

mix. feeding

(NH4)2SO4
corn

steep liquor
5.5 33 900 rpm/

1 vvm - -

Glucose (50%
wt/v) and then
glucose/ethanol
(25% wt/v/50%

v/v) feeding (rate
of 5.8 g/h)

Fed-Batch [89]

Miltiradiene 488

Initial 20 g/L
glucose, then feed
solution(glucose,

other nutrients and
ingredients)

Peptone.
Yeast

extract
5.5 30 600 rpm/

5 L/h air - OD = 0.05

Feed solution
(glucose and other
nutrients) addition

by 5 mL/h feed
rate.

Fed-Batch [78]

Oxygenated
taxanes 33

Initial 40 g/L
glucose or 20 g/L

xylose

(NH4)2HPO4
Yeast

extract
7.0

30
and
22

280–
800 rpm/
0.5 L/min

30%

1% for E.
coli and 2%

for S.
cerevisiae

Pulse feeding by
carbon source

control (20 g/L of
glucose feed when

glucose below
20 g/L and 50 g/L
xylose feed when

xylose conc. below
10 g/L)

Fed-Batch
(co-culture) [90]

Tr
it

er
pe

ne
s

Protopanaxadiol
and

dammarenediol-
II

1189
and
1548

Initial 25 g/L
glucose and then
glucose feeding

(NH4)2SO4 5.5 30 1000 rpm/5
L/min air - OD = 0.5

Fed solution
(glucose and other
nutrients) addition

when ethanol
below 0.5 g/L

Fed-Batch [79]

β-amyrin 139

Initial 20 g/L
glucose and then

pulse ethanol
feeding

(NH4)2SO4 - 30 1 vvm - OD = 0.2
Pulse ethanol

(5 g/L) feeding at
every 12 h

Fed-Batch [71]

β-amyrin 108

Initial 20 g/L
dextrose, and then

pulse glucose
feeding

Yeast
extract

Peptone
6.0 30 - - -

Pulse glucose
(5 mg/L) feeding

at every 12 h
Fed-Batch [85]
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Table 3. Cont.

Group Product Titer
(mg/L) Carbon Source Nitrogen

Source pH ◦C Aeration
/Agitation

Dissolved
Oxygen

Inoculum
Size

Feeding
Strategy

Operation
Mode References

Betulinic
acid 182

Initial 50 g/L
glucose and then

pulse ethanol
feeding

NH4Cl 6.0 30 1 vvm >30% Xi2 = 0.08
g/L

Pulse ethanol
(25 g/L) feeding
control with DO

spikes

Fed-Batch [75]

Ginsenoside
Rh2 2250

Initial 25 g/L
glucose and then
glucose feeding

Yeast
extract

Peptone
5.0 30 - >30% 11%

Fed solution (glucose
and other nutrients)

addition when
ethanol below

0.5 g/L

Fed-Batch [35]

1 Initial optical density (OD); 2 Initial biomass (Xi); “-” Not described.
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5.3. Nitrogen Source

S. cerevisiae is able to utilize different kinds of nitrogen containing compounds in their
natural habitat, such as amino acids, ammonium ions (NH4

+), peptides, and urea. When
these compounds are present in the growth medium, they are transported into the cells
by permeases and used as building blocks in biochemical pathways or catabolized into
glutamate and ammonium for nitrogen metabolism [91]. The type and concentration of
nitrogen sources affect the growth and gene expression in this yeast. S. cerevisiae uses
preferentially good nitrogen sources, such as ammonia, glutamine, and asparagine, over
poor ones, such as proline and urea. Growth rate of this yeast is relatively high in good
nitrogen sources rather than in poor nitrogen sources [92]. The accumulation of yeast
biomass strongly depends on the nitrogen content in the growth medium, since it was
reported that the proportion of nitrogenous compounds in yeast cells is about 50% (by
weight) [93]. The most used nitrogen sources for terpenoid production are ammonium sul-
fate ((NH4)2SO4), ammonium dihydrogen phosphate ((NH4)H2PO4), ammonium chloride
(NH4Cl), yeast extract, peptone, tryptone, and sometimes combination of those (Table 3).
Higher terpene concentrations were achieved when (NH4)2SO4 was used as nitrogen
source (Table 3). On the other hand, nitrogen limited resting cell fermentation enhanced
the titer of betulunic acid (from 57 to 182 mg/L) and total triterpenoid concentration (from
319 to 854 mg/L) [75]. In this study, the NH4Cl concentration was decreased from 2.8 g/L
to 0.939 g/L to allow nitrogen starvation. It was considered that restriction of biomass
synthesis by nitrogen limitation might support the flux into terpenoid accumulation, since
terpenoid synthesis has to compete for carbon, energy, and redox cofactors throughout
yeast growth [94]. However, under this condition, cessation of growth and product forma-
tion, and lower specific productivity were observed in extended fermentations [75]. This
indicates decrease in cell viability due to accumulation of toxic intermediates, or reactive
oxygen species, which was also reported in the production of farnesene and artemisinic
acid [27,95]. Deficiency of nitrogen content in prolonged fermentations can also result in
sluggish or stuck fermentation. However, high nitrogen concentrations also carry risks to
the process, once it may overstimulate yeast reproduction and increase biomass levels too
fast, resulting in shortage of other yeast nutrients, increased fermentation temperatures
and, eventually, causing stuck fermentations and productivity losses. Thus, prolonging
the release of nitrogen sources under tight control during the fermentation process can be
a good strategy to extend the fermentation period, without heat peaks and productivity
breaks [96,97].

5.4. pH

In general, as an acidophilic organism, S. cerevisiae grows better under acidic condi-
tions, in the pH range from 4 to 6, depending on the temperature, the presence of oxygen,
and the strain [98]. The pH range between 5 and 6 has been mainly employed for terpenoid
production (Table 3). In the study by [75], it was shown that fermentation time was reduced
in batch cultivation at pH 6, while total terpenoid productivity decreased. Moreover, pre-
cipitation of solid particles, containing insoluble crystals and good quantity of triterpenoids
on the inner wall of bioreactor was observed. The solubility of many terpenoids, especially
hydrophobic triterpenoids, is pH-dependent, being higher at alkaline pH values, decreas-
ing at lower pH values [99]. In another study, alkaline medium with pH ranging from 7
to 8 enhanced farnesol accumulation by S. cerevisiae [100]. It was also reported that the
optimum pH for the wild type S. cerevisiae, and mutant strain in isopentenyl diphosphate
isomerase activity (one of the important rate-limiting enzymes in terpenoid production),
was 7.5 [101]. Alkaline pH might enhance the synthesis and solubility of terpenoids in the
cultivation medium, but growth and biomass accumulation might be low, not allowing
high cell density cultivation as desirable in industrial terpenoids production.
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5.5. Temperature

The most used incubation temperature in terpenoid production is 30 ◦C. Rarely, 28 ◦C
and 33 ◦C had also been employed, such as in the synthesis of geraniol and geranylgeraniol
by S. cerevisiae, respectively (Table 3). In a study of the effects of fermentation temperature
on S. cerevisiae, the highest population was achieved at 30 ◦C, while at lower temperatures,
it was reached later [102]. In contrast, at high temperatures, especially at 35 ◦C, cell viability
decreased [102]. High temperatures cause yeast stress, and, thus, such a condition is not
favorable for its growth. As a response to the high temperature, heat-shock proteins are
synthesized, and ribosome is inactivated. Different enzymes responsible for many micro-
bial activities are also sensitive to high temperatures and are usually inactivated in this
harsh condition [103]. Moreover, the role of temperature in (+)-valencene accumulation
was investigated and found that remarkable enhancement in (+)-valencene concentration at
25 ◦C (87.2 mg/L) was observed compared to at 30 ◦C (20.6 mg/L) [21]. The benefit of low-
ering the temperature in the production of other relevant pharmaceuticals in yeast has also
been previously reported in the case of plant lectins expression in Pichia pastoris [104,105].

5.6. Dissolved Oxygen

Under aerobic conditions, yeast converts glucose to carbon dioxide and water to
produce energy. However, at high glucose concentrations, it also produces ethanol from
glucose, which is known as the “Crabtree effect”. In yeast cultivation, the biomass increases
very fast in the exponential phase, accompanying with high amount of oxygen consump-
tion, so dissolved oxygen (DO) decreases quickly. Simultaneously, ethanol is produced
because of the Crabtree effect. When glucose concentration decreases to a relatively low
level, growth of yeast cells slows down due to inadequate carbon source in the medium;
therefore, the DO increases promptly. If the glucose is added to culture medium, DO will
again slowly decrease with the consumption of glucose. Thus, this approach of controlling
DO plays an important role on cell growth and product formation, especially in fed-batch
fermentations. The optimum glucose consumption rate and the yeast growth rate can
be tightly controlled by the DO [106]. In a study for ergosterol production by fed-batch
fermentation of S. cerevisiae, DO was a significant factor in its production and highest yield
was obtained when DO was kept at 12%, explaining that the accumulation of this sterol
was oxygen dependent [106]. Although oxygen is a vital component for aerobic organisms,
it can also be a toxic agent that can damage cells by the action of reactive oxygen species
(ROS). ROS can be generated through many different stress conditions, including high
oxygen content in the culture medium [107]. Because of this, selection of the optimum DO
level during terpenoid fermentation has significant effect on health and growth of cells
as well as product formation. In many studies of terpenoid production, DO levels were
kept above 30%, or 40%, by controlling agitation and aeration (cascade mode) in fed-batch
processes (Table 3). During stationary phase of cultivation, DO levels reached up to 1.5%,
which maintain micro aerobic fermentation in order to drive metabolic flux towards the
production of fermentative products, like terpenoids [108].

5.7. Inoculum Size

The size of inoculum used for terpenoid production is generally applied between
2.5 % and 14% of medium volume or initial optical density (OD600) of 0.05 to 0.5 is used
instead (Table 3). For instance, in a study for optimization of β-amyrin formation by
engineered yeast in fed-batch fermentation, the most favorable inoculum size was reported
as initial OD600 of 0.3 [109]. Moreover, in another study, inoculum size of 5.0 and 5.2% (v/v)
with S. cerevisiae strain BY4741 and 8.1 and 2.6% (v/v) for strain EGY48 were favorable
for squalene production in semi-anaerobic shake flask fermentations [110]. According
to these results, optimum inoculum size was strain dependent. The difference between
the productivity of these two strains at high inoculum size might be related with the
synthesis of higher ergosterol by strain EGY48, which enhances tolerance to ethanol, which
is produced during the early stages of fermentation, and which could be used as a substrate



Pharmaceuticals 2021, 14, 295 20 of 29

for squalene production under glucose depletion at the late stage of fermentation [110].
A reasonable high volume of inoculum is required to minimize the length of lag phase,
increase specific growth rate, and accumulate the maximum biomass in the production
fermenter in a shorter time as possible, which helps to achieve highest productivity. A
study for inoculum size effect on metabolic regulation and stress response of S. cerevisiae
in high cell density fermentation showed that as inoculum size (40 g/L initial biomass)
increased, stress protectants (glycerol and proline) in glycerol biosynthesis and amino acid
metabolism improved. However, citric acid cycle (TCA) intermediates are depressed and
metabolites (myo-inositol and ethanolamine) associated with membrane structure and
function decreased [111]. In the same study, growth rate, glucose consumption rate and
ethanol productivity increased in high inoculum size, which is convenient for industrial
ethanol fermentation. However, very high inoculum size will cause the rapid depletion
of nutrients and oxygen, which results in microaerobic condition and increased oxygen
demand. High ethanol production in anaerobic condition might have toxic effects on yeast
cells and be the reason for the decrease in terpenoid yield. Low inoculum size causes
longer fermentation phases, lower productivity parameters, and high risk of contamination.
However, optimum inoculum size can help the culture to grow at extreme conditions, such
as high salt concentrations and pH ranges [112,113].

6. Modes of Fermentation Process

Batch, fed-batch, and continuous fermentation process have all been used in terpenoids
production. In the batch type of operation, required nutrients, feedstock, other ingredients,
and microorganism are added to fermentation tank at the beginning of fermentation, while
in the fed-batch type, some nutrients and ingredients are added to tank at certain intervals
of time. In the continuous type of operation, input materials (nutrients and ingredients)
are continuously fed and output materials (culture broth) are simultaneously removed
from fermentation tank [83,103]. The choice of the most effective operation mode for
terpenoids production depends on the fermentative properties of microorganism (e.g.,
kinetics, toxicity tolerance, lifespan), as well as the feedstock nature (e.g., sterilization,
preparation, concentrations).

Although metabolic engineering strategies, and pathways improvement, are em-
ployed to enhance terpenoids expression, high cell density cultivation is needed to obtain
high product titers, yield, and productivity for industrial processes. For high cell density
cultivation, it is also important to choose an optimum method of reactor operation, since
environmental conditions affect the growth and product formation. Among these condi-
tions, nutrient and substrate concentrations are important to be kept in specific ranges to
avoid overfeeding or underfeeding [114].

6.1. Batch Mode

Batch operation mode is the simplest and easiest process since it requires low cost,
low labor work, less control, as well as easy sterilization and preparation of feedstock [103].
Thus, it is usually preferred due to the practicability of recovery, which needs no remaining
substrate in the fermentation broth [115]. Many works on terpenoid biosynthesis by
engineered S. cerevisiae strains were performed in batch fermentation, mainly in flask assays.
For instance, monoterpenes, such as limonene [80,81], geraniol [88], and sabinene [70] were
produced in shake flask fermentations by engineered S. cerevisiae strains in the range
between 0.49 and 17.5 mg/L (Table 3). Moreover, a biosynthetic alternative to D2 diesel
(gasoil), sesquiterpene bisabolone, was accumulated by more than 900 mg/L in shake flask
fermentation [66]. More recently, other sesquiterpenes, nerolidol [19] and the sedative
valerenic acid [82], and polpunonic acid [20], the precursor of the anti-obesity agent
diterpene celastrol, have been produced in the range between 1.4 and 336.5 mg/L by
highly engineered strains in shake flask fermentations. Concerning batch fermentations in
a bioreactor, one example was the production of (S)-linalool, which was accumulated in a
tank at 0.26 mg/L [68].
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Interestingly, immobilized cell method (ICM) was employed for improving production
of some terpenes in flask assays. Immobilized cells prepared by agarose entrapment and
free cells (FCM) of S. cerevisiae were compared in shake flask fermentations for citronellol
production [116]. It was observed that ICM yielded the main product, citronellol (48.5%),
whereas FCM accumulated more products along with citronellol, which just yielded 24.2%
and 27.2% at incubation time of 6 and 15 days, respectively [116]. Higher citronellol produc-
tion by ICM was explained by possible improvement of specific metabolic activities [117].

Although batch fermentation has several advantages, as explained above, some limi-
tations also exist. The main disadvantage is the growth inhibition of microorganism due
to product toxicity, especially in the production of monoterpenes. This problem can only
be overcome by continuous removal of the inhibitor product (e.g., limonene) from culture
during fermentation, for example, by a two-phase system or by headspace removal [54].
Alternatively, fed-batch fermentation with daily broth draw can be employed.

6.2. Fed-Batch Mode

Fed-batch mode is the mostly used operation in the industrial production of diverse
type of products as it combines the advantages of both batch and continuous fermenta-
tions [103,118]. It has some advantages over batch mode, such as less inhibitory effect
of higher accumulated product and feedstock concentration, higher product formation,
extended lifespan of cells, maximum cell viability, and easy control of several important
physiochemical factors such as temperature, pH, and oxygen saturation [103,119]. Other
relevant advantages are the possibility of attaining of high cell density, leading to high prod-
uct formation, and daily product availability. It is generally considered that fed-batch mode
with intermittent removal of product and feeding of feedstock when leftover nutrients are
exhausted, is the most effective operation mode for terpenoids since these products become
less toxic within this approach. In addition, this process can achieve the highest volumetric
productivity. The most critical parameter in the fed-batch mode is the optimization of
feeding since it plays an important role for increasing product yield and productivity [83].

Many pharmaceutical terpenoids have been produced by fed-batch fermentation
(Table 3). The monoterpenes, geraniol [69,73] and limonene [72], produced by engineered
S. cerevisiae strains, have achieved the titer of 1.69 g/L and 0.918 g/L, respectively, with
glucose/ethanol mixture or pure ethanol feeding in fed-batch fermentations. These val-
ues were quite low (3 to 6-fold lower) when batch fermentations were employed in the
same studies. In these works, two strategies were applied to improve productivity of
monoterpenes during fed-batch fermentation. Firstly, a two-phase fermentation system
was employed using the nontoxic extractive solvents dodecane and isopropyl myristate
to alleviate the toxicity of geraniol and limonene. Then, the dynamic control of ERG20
was attempted by replacing ERG20 promoter with the glucose sensing HXT1 promoter,
which is stronger in the presence of glucose and weaker in the absence of glucose. Thus,
replacement of HXT1 promoter provided the diauxic fermentation process, where glucose
was consumed during cell growth with ethanol production, which was then used for
monoterpenes biosynthesis. This approach improved the productivity of geraniol and
limonene when glucose/ethanol (1/7), or pure ethanol, were fed instead of glucose as sole
carbon source during fed-batch fermentations [69,72], indicating that the dynamic control
of ERG20 by HXT1 promoter could provide flux distribution between cell growth and
monoterpene synthesis in the absence or presence of low glucose. Moreover, pure ethanol
feeding enhanced monoterpene production, since it supplies direct Acetyl-CoA precursors.

Apart from monoterpenes, great improvement in the production of sesquiterpenes
has been achieved using fed-batch processes. For instance, titers of artesiminin precur-
sors amorpha-4,11-diene [60] and artemisinic acid [27] have reached >40 g/L and 25 g/L,
respectively, in fed-batch fermentations using highly engineered S. cerevisiae. In these
studies, the exponential feeding rate for glucose/ethanol mixture substrate feeding and
pulse feeding for ethanol substrate (10 g/L) were applied and feeding algorithms were
automatically triggered through responses of stir rate, DO percentage as well as evaluation
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of CO2 rate [27,60]. As extracting solvents, isopropyl myristate and methyl oleate were
used for artemisinic acid and amorpha-4,11-diene extractions from fermentation broth,
respectively [27,60]. Ref. [60] deleted the GAL1, GAL10, and GAL7 gene cluster, as well
as GAL80, to prevent galactose use, which is an expensive inducer, in the production
of amorpha-4,11-diene. In this attempt, low level of galactose was required to induce
production at the end of batch phase of glucose limited fed-batch fermentation. In addition,
same authors applied phosphate limited fed-batch fermentation, which could limit growth
of cells and channel carbon flux to product formation, ending up with more than 2 times
of amorpha-4,11-diene production. Finally, ethanol-restricted fed-batch fermentation was
improved, resulting in 37 g/L of amorpha-4,11-diene, which was lower than ethanol unre-
stricted fed-batch fermentation but this process required lower levels of oxygen uptake
rate (OUR), what is desired and feasible for industrial scale fermentation. On the other
hand, ref. [27] used isopropyl myristate solvent to extract artemisinic acid from fermen-
tation and improved its productivity in fed-batch fermentations. With this method, a
significant enhancement on titer and yield was observed by eliminating successfully the
acid from the aqueous phase, since artemisinic acid precipitated in fermentation broth,
complicating sampling and negatively affecting viability of cells. Other pharmaceutical
sesquiterpenes, such as bisabolene [76], nerolidol [84], patchoulol [22], zerumbone [77],
and α-humulene [4] were accumulated by engineered S. cerevisiae strains with titers of
5.2 g/L, 5.5 g/L, 0.467 g/L, 0.040 g/L and 1.7 g/L, respectively, in fed-batch fermentations.
Constant feeding rate triggered by pH rises was used in bisabolene production of glucose
fed-batch fermentation [76] while pulse feeding, which was programmed using script
controller feeding and triggered by DO spikes, was performed in nerolidol production [84].
Moreover, carbon-source controlled three-stage fed-batch fermentation was employed for
patchoulol production [22], whereas in zerumbone and α-humulene production, constant
feed rate triggered by DO and pH rises was applied [4,77]. In these studies, combination of
constitutive copper-inducible and diauxic-induced transcription regulation patterns was
employed to improve nerolidol production in the fed-batch fermentation through enhanc-
ing the growth rates in each phase (exponential, ethanol growth, and diauxic phases) and
productivities after the diauxic shift. Thus, combined system yielded better nerolidol titer in
the carbon-overflow fed-batches than substrate restricted-fed batches. The improvement in
nerolidol productivity might be due to MVA pathway response to “overflow” metabolism,
as is seen in ethanol/acetate/glycerol production through glycolysis [84]. Moreover, a
carbon source controlled three stages fermentation (first stage: high glucose concentration
feeding; second stage: lower concentration of glucose and glycerol feeding; third stage:
ethanol feeding) was used to balance the trade-off between the competitive squalene and
patchoulol pathways in the production of patchoulol by engineered S. cerevisiae [22].

The pharmaceutical diterpenes, geranylgeraniol [89], miltiradiene [78], and oxy-
genated taxanes (precursors of paclitaxel) [90] were also accumulated (3.31 g/L, 0.488 g/L
and 0.033 g/L, respectively) by genetically modified S. cerevisiae strains (co-culture with E.
coli in oxygenated taxanes accumulation) in fed-batch fermentations. In these studies, after
depletion or decrease of substrate in the medium, feed rates of 5.6 g/h of glucose/ethanol
mixture for geranylgeraniol, 5 mL/h of glucose and other ingredients for miltiradiene,
and feed pulses of 20 g/L glucose and 50 g/L xylose for oxygenated taxanes productions
were applied.

In addition, several triterpenes and their precursors, such as protopanaxadiol (1.189 g/L)
and dammarenediol-II (1.548 g/L) [79], β-amyrin (0.139 g/L and 0.108 g/L) ([71,85],
respectively), betulinic acid (0.182 g/L) [75] and ginsenoside Rh2 (2.25 g/L) [35] were
attempted to accumulate and successfully produced in fed-batch fermentations. In these
studies, distinct feeding strategies were applied. For protopanaxadiol, dammarenediol-II,
and ginsenoside Rh2, glucose was fed when ethanol concentration was less than 0.5 g/L,
for β-amyrin, glucose at 5 mg/L was fed every 12 h, and for betulinic acid, pulsed glucose
and continuous ethanol feeding, controlled by DO signal with ethanol response, was
adopted. Highest betulinic acid titer was achieved by excess ethanol feeding, following
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with nitrogen-limited resting cell fed-batch fermentation [75]. The improvement in this
fermentation was possibly due to the increased supply of the precursor acetyl-CoA, or the
redox cofactor NADPH, of which 18 and 17 mol were needed for production of 1 mol of
betulinic acid [75]. In the same study, solid liquid extraction using polar solvents such as,
acetone or ethyle acetate, and subsequent precipitation with strong acid, was applied to
recover lupane-type triterpenoids with high selectivity and yield.

It can be deduced from these works that different feeding strategies in fed-batch
fermentation depend on the response of engineering strains used and their genetic design,
such as the choice of promoters. This is because each strain can have different kind of
promoters regulating heterologous gene expression in terpenoids pathway, which may
influence the substrate type and the concentrations to be employed in the culture medium.
Namely, modifications in inducible gal-promoters and constitutive promoters such as
PGPD (glyceraldehyde-3-phosphate), PTEF1 (translational elongation factor), PADH1
(alcohol dehydrogenase), PPGK1 (phosphoglycerate kinase), and uptake control mutations,
were reported to affect the feeding strategies in fed-batch terpenoids production [57].

6.3. Continuous Mode

Continuous processes (or chemostat cultivations) have been employed in industrial
bioprocesses (e.g., insulin production) and have several advantages over batch and fed-
batch, such as decreased costs of bioreactor constructions, minimized plant maintenance
and operation costs, convenient bioprocess control, requirement of less downtime for
tank cleaning and maintenance, and higher productivities [83,103]. One important ad-
vantage of this process is to provide a precise comparison of productivities of selected
engineered strains under constant conditions and to investigate the effect of the growth
rate independently of the other parameters [61]. However, only some studies have applied
chemostat cultivation for terpenoid production. Ref. [61] employed continuous cultivation
and achieved α-santalene productivity of 0.036 Cmmol/(g biomass)/h at the dilution
rate of 0.05 h−1. In another study, squalene accumulation of 30 mg/g (product/dry cell
weight) was obtained at low dilution rates between 0.05 h−1 and 0.20 h−1 in glucose limited
chemostat cultivation [120]. Despite demonstrated applicability in terpenoids production,
continuous fermentation has been poorly explored, mainly because fed-batch fermentation
has been shown to be the most effective way for obtaining meaningful terpene titers for
industry, combining the advantages of batch and continuous mode at once.

7. Conclusions and Future Perspective

Pharmaceutical terpenoid production has attracted increasing attention in recent
years because these compounds play significant roles in the prevention and treatment
of different types of diseases. As the world’s mortality rate rises, due to the incidence
of severe diseases, such as cancer and malaria, the demand for these products increases,
and, thus, fast development of alternative and sustainable sources rather than natural and
chemical ones is required. Microbial fermentation of these special compounds promises
a sustainable, cost effective, and high yield method in contrast to traditional methods. S.
cerevisiae has been proven to be an efficient cell factory for large-scale terpenoid production.
Industrial production of artemisinic acid and β-farnesene are examples of success.

Process optimization by screening different fermentation strategies is essential to
improve TYP of pharmaceutical terpenoids, along with fine-tuning metabolic engineering
in S. cerevisiae, as this yeast cannot produce target terpenoids naturally. Commercial
terpenoid application is only possible with successful combination of these two fields,
metabolic engineering and fermentation process development. Process optimization can
increase productivity and reduce the cost of production by improving medium composition,
physicochemical conditions, and applying efficient downstream processing. Most of the
terpenoid titers obtained are in mg/L levels, mainly in batch fermentations, which do not
have commercial meaning. On the other hand, bioreactor fermentation with fed-batch
operation mode can provide titers at g/L scale, and high productivities, while alleviating
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the toxicity of final product, which constitutes the most promising approach for industrial
production of pharmaceutical terpenoids. Among factors affecting terpenoids fermentation,
the pH and DO are relevant factors for certain production cases. Although pH range
between 4 and 6 is optimal for yeast growth, and achieve high cell density, some terpenes
can be insoluble under this condition, which might complicate the downstream processing.
However, this can be solved, for instance, by harvesting tanks at high pH by addition of
base solution. The use of extraction agents during cultivation is an option to reduce the toxic
effects of terpenes, but it brings extra costs to the process. This problem can be overcome
by optimizing the feed strategy together with product removal in fed-batch fermentation.
The DO is often used as a trigger in fed-batch process for the control of yeast growth and
product formation. Optimum oxygen concentrations are required to balance yeast health
and productivity, since low levels can minimize yeast capacity, while high levels can lead
to oxidative stress, which can be toxic to cells. Similarly, high temperatures can decrease
cell viability, while at low temperatures, high cell density is achieved later. Optimization of
media ingredients is also of huge importance as they can account for a significant part of
the process costs. One way to decrease feedstock cost could be to find and adapt cheap
carbon sources, like agricultural by-products, in S. cerevisiae metabolism, as extensively
investigated in case of other biomolecules production, which also contributes to process
sustainability. Indeed, the trend is for the increase of pharmaceutical terpenoids obtained
through optimized fermentation. The power of synthetic biology tools and advances in
metabolic engineering strategies for the introducing novel terpenoid biosynthesis pathways
in S. cerevisiae will bring new opportunities to produce complex terpenes such as the current
trend product “cannabinoids”. The microbial fermentation of these highly promising and
rare compounds at an affordable cost and high purity, independently from Cannabis
plant cultivation, could absolutely support the pharmaceutical market, when the growing
industrial demand for these products is foreseen.
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