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Abstract: eTRANSAFE is a research project funded within the Innovative Medicines Initiative (IMI),
which aims at developing integrated databases and computational tools (the eTRANSAFE ToxHub)
that support the translational safety assessment of new drugs by using legacy data provided by the
pharmaceutical companies that participate in the project. The project objectives include the devel-
opment of databases containing preclinical and clinical data, computational systems for transla-
tional analysis including tools for data query, analysis and visualization, as well as computational
models to explain and predict drug safety events.

Keywords: toxicology; drug safety; translational safety assessment; data sharing; integrative
knowledge management; data mining; read across; predictive modelling
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1. Introduction

Drug discovery and development is a knowledge-intensive process that can benefit
from integrative analysis of data of different types and sources. These integrative ap-
proaches can facilitate decision-making along the drug discovery and development pro-
cess, improving lead optimization and enhancing drug safety. A prerequisite for this is
the availability of relevant, high-quality datasets [1], such as the ones accumulated in the
archives of the pharmaceutical companies. However, to maximally leverage these data,
we face important challenges, such as encouraging information sharing among competing
organizations, or promoting adequate data standardization, annotation and quality con-
trol [2]. The eTOX project on legacy data sharing for predictive toxicology constituted a
cornerstone in the processes of data sharing and integrative analysis for improving drug
toxicity prediction [3]. In addition to collecting and integrating an unprecedented amount
of toxicological data from the pharma industry (nearly nine million preclinical data points
corresponding to 8196 toxicity studies carried out on 1947 compounds), eTOX provided
first-hand experience on the aforementioned challenges [3,4], as well as those related to
the development of predictive models for in vivo toxicological outcomes [5].

Following but extending the objectives of the eTOX project, the ongoing e TRANSAFE
project is focused on the challenging field of translational safety evaluation and aims to
provide in silico solutions for identifying when and how much the preclinical toxicologi-
cal observations can be predictive of clinical adverse drug reactions. The e TRANSAFE
project has an ambitious scope of objectives, which include the development of preclinical
and clinical databases on the basis of legacy information, computational systems for trans-
lational analysis, including tools for data query, analysis and visualization, as well as in
silico models to explain and predict drug safety events (see Table 1). The concept, compo-
nents and tools of the project are depicted in Figure 1.

Table 1. Objectives of the eTRANSAFE project.

Item What Why
Collect and build the largest existing preclini-
cal database/repository (including external
data sources).

Necessary for data mining, modelling and transla-
tional assessment.

Preclinical
database

Clinical  Collect as much human study data as possible ~ Necessary for data mining, modelling and transla-

database(s) (clinical trials, PSURs, etc.). tional assessment.
Looking into details, species by species, organ by or-

Build a computational system to allow the gan, toxicity by toxicity, target by target, where ani-

Translation systematic assessment of animal data for their mals are relevant and where not, to anticipate poten-
validity and value in human safety. tial human safety outcome. Potential to modify the fu-
ture way of running preclinical safety assessment.

Data mining Build query tools for joint data retrieval and Read-across analysis, finding precedents to user
and analysis  mining in several databases/repositories. cases.

Establish efficient data visualization, zooming Speed and ease of analysis. Efficient communication.

Graphic . . . .
in on essential. Toxicology report input.

Improve relevance of models to match the druggable
Toxicological Explanatory and predictive in silico models  chemical space used in pharma. Emergence of Predic-
models build on high quality data. tive Safety in pharma, which needs reliable models
built using collective pharma history.

Formulate principles and rules for data shar-  Facilitate current and future initiatives of data trans-

Policies . — o .
ing and model validation. parency and precompetitive data sharing.
. . Pharmaceutical companies (and other parties) will
. ... Toassure continuity and potentially commer- . .
Sustainability want to continue using the system after end of the

cial viability after end of project. .
project.
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Figure 1. The eTRANSAFE concept, components and processes.

2. Translational Safety Assessment: Concept, Challenges and Semantic Tools

Regulatory preclinical studies are performed to enable safety margin calculations

over expected human exposures and allow a new drug candidate to be first tested in
healthy volunteers and thereafter in a number of patients for safety and efficacy assess-
ments. This legally enforced methodology is commonly accepted as the least risky proce-
dure to test a completely new drug modality in humans. Conceptually, this strategy is
straightforward, with a number of accepted assumptions and empirical data permitting a
relatively informed estimation of what untoward events might be expected in humans.
However, there are several challenges and difficulties in the translation of animal data for
the assessment of human safety, such as:

Rats, rabbits, dogs and all other preclinical species show non-negligible differences
in their biology among them and compared to humans (e.g., receptor affinities, en-
zymatic activities, role of hormones, growth chronology, food regimens). Hence,
the action of a drug on the physiology of animals will not be a true indication of the
possible effects in humans.

For the same reasons, the processes of pharmacokinetics, metabolism and elimina-
tion of drugs will also differ between species.

Beyond physiology, the morphology of the mammalian species also differs, with
rats, for example, being devoid of gallbladder but having a forestomach and an ex-
tra periorbital organ, the harderian gland. Moreover, preclinical animals, with the
exception of the mini pig, are furry and the translation to humans of preclinical skin
toxicity assessment is known to be one of the poorest.

Preclinical animals are also young, in controlled good health, thoroughly moni-
tored and tested before the study starts, and they are mostly inbred, i.e., of high
genetic homogeneity. These are striking differences with the diverse human popu-
lation in need of drug treatments.

The procedures for preclinical toxicity assessment widely differ from clinical prac-
tices. Animal studies are usually carried out at high doses, ending in full body nec-
ropsy with organ gross pathology, organ weight determination, thorough histo-
pathological assessment with several types of staining, full haematology and com-
prehensive clinical chemistry, along with clinical observations, body weight, food
intake, cardiovascular investigations and more specialized endpoints during the in-
live phase of the studies. Non-invasive imaging technologies may also come to use.
The organ and tissue histopathology assessment hereby represents the core of the
toxicology study reports. On the human side, autopsies or biopsies to access tissues
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of interest are rarely performed, restricting the assessment in clinical trials to clini-
cal observation and interpretation of symptoms. Additional imaging techniques
may sometimes supplement this diagnostic approach, with blood analyses for hae-
matology and clinical chemistry completing the clinical toolbox. Hence, clinical
chemistry, cardiovascular parameters and haematology would be the most straight-
forward translational aspect between animals and humans; the human symptom
descriptions would find their rough equivalents in animal clinical observations;
while the almost exhaustive list of organs and tissues observed by histopathology
in animals would find only a scarce set of selected human biopsy counterparts.

e  Last and perhaps one of the most challenging aspects is the difference in vocabu-
lary used on each side of the equation. This is coming from the aforementioned dif-
ferences, but also because the preclinical and clinical worlds use their own technical
and professional terminologies.

For the consideration of progressing one new compound into humans, all these dif-
ficulties are addressed by the expertise and practices of professionals on both the preclin-
ical and clinical sides. However, if one wants to cope with the global paradigm and extract
unearthed knowledge out of the wealth of accumulated data on both sides, and analyse
the true predictive power of animal studies, a general correspondence, or translation, of
these two universes has to be made. This is the core aim of the eTRANSAFE project. Pre-
vious attempts at assessing how animal data can be predictive of human safety have been
published and set a good foundation [6]. Until recently [7], most of these analyses were
limited to only a few preclinical studies, usually considering sensitive proprietary data
only available to the authors. Here, using the previous eTOX preclinical database, and the
eTRANSAFE preclinical and clinical databases, a systematic and thorough analysis can be
made on a global scale.

A key activity of the eTRANSAFE project in this respect has been the development
of a mapping between preclinical (e.g., SEND) and clinical (e.g., MedDRA) ontologies us-
ing a common intermediate (SNOMED CT) by applying the Rosetta Stone strategy (Figure
2). This mapping has been implemented in a computational tool that provides semantic
services to the eTRANSAFE system.

Animals Rosetta Stone Human

Intermediate

Preclinical | Clinical
/—-"’;(\*
7N\ 7\ |

/7 \ 7\ 7 I\

-t — >
78\

Histopathology,

Clinical pathology, SNOMED CT
Anatomy, SEND

MedDRA

Figure 2. Translation between animal and human ontologies using a common intermediate, the
Rosetta Stone, for safety assessment.

3. Preclinical Legacy Data Available in eTRANSAFE

Preclinical data are shared in eTRANSAFE through the cloud-hosted Preclinical Da-
tabase Platform, designed and developed by Lhasa Limited, the preclinical data honest
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broker. These data comprise in vivo animal toxicology study data, compound information
including off-target pharmacology data and the novel Study Report (SR) Domain data
(Figure 3).

4
efpia Lhasa 2, CTRAN
Donate
[ —
Preclinical ToxHub
LIMS LIMS Database

Convert
Map in
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———
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Unigue study?
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terminology
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Compound Compound
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— —

SR-Domain SR-Domain

Import data to the cloud

Figure 3. The preclinical data pipeline in eTRANSAFE.

3.1. In Vivo Animal Toxicology Study Data

The eTRANSAFE in vivo animal toxicology data sharing is centred on the CDISC
Standard for Exchange of Non-Clinical Data (SEND) format, which was mandated by the
FDA as the standard to be used for new drug submissions from December 2016. Where
available, the pharmaceutical partners of eTRANSAFE donate these toxicological data in
SEND format for importation into the Preclinical Database Platform. Where these data
reside in Laboratory Information Management Systems (LIMS) in a non-SEND format,
these data require their mapping to the standardized SEND-like schema of the Preclinical
Database Platform using mapping rules developed using KNIME [8].

Further in vivo animal toxicology study data have been made available through the
integration of 6500 preclinical studies from the eTOX project [3] into the eTRANSAFE
ToxHub System. This enables eTRANSAFE to capitalize on and sustain the data sharing
efforts resulting from the eTOX project.

3.2. Compound Information

Compound information comprises compound specific data, such as the chemical
structure (which is not part of SEND), chemical name(s) and CAS registry number. In
addition, data originating from in vitro off-target screening assays are considered within
this data category. To include these data within the Preclinical Database Platform, a data-
base table was designed based on representative EFPIA off-target screening assay da-
tasets. To date, off-target screening assay data for 539 compounds have been donated by
eTRANSAFE pharmaceutical partners. Recently, EMBL-EBI has investigated the potential
to apply the standardization methodologies applied to the ChEMBL database [9] to the
shared EFPIA off-target data to better facilitate model development. These standardized
off-target screening assay data will be integrated into the ToxHub platform.

3.3. Study Report (SR) Domain

To enhance the usefulness of the EFPIA preclinical data shared in eTRANSAFE, it is
essential to capture the expert conclusions of animal toxicology studies in a consistent,
structured, machine-readable format. Such expert conclusions contain observations for
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risk, severity and statistical significance qualified by the group, sex, day, specimen and
test to which they relate. These expert conclusions are not captured in SEND. To achieve
this goal, PDS Consultants have developed the concept of the Study Report (SR) Domain
as a proposed additional domain for SEND. The proposed SR Domain has been integrated
into the eTRANSAFE preclinical database schema to enable such data to be captured and
utilized. Currently, the eTRANSAFE consortium is investigating methods to populate the
SR Domain. These methods include the manual extraction of study report data using a
computer interface specifically developed to facilitate this task, in addition to text mining
expert findings from study reports (see the corresponding section of this article). The SR
Domain application may also enable Study Directors to record significant study findings
directly within an SR Domain upon the conclusion of a study.

3.4. The eTRANSAFE Preclinical Database Platform

The eTRANSAFE Preclinical Database Platform has been developed by Lhasa Lim-
ited as a cloud-hosted platform designed to securely store and share EFPIA SEND,
mapped LIMS (non-SEND), compound and SR Domain preclinical data (Figure 3). The
schema of this database is centred on the standard SEND domain tables, with additional
tables for the SR Domain and compound data. Data are stored in the original (raw) form
and are also standardized to the SEND controlled terminology (SEND-CT). Due to the
limited scope of the SEND-CT, standardization of terms using other ontologies, such as
the eTOX ontology [10], is envisaged. The imported, standardised data are made available
to the eTRANSAFE ToxHub platform via a primitive adaptor component which has been
designed to provide data from several database resources in a uniform format for query-

mg.

3.5. Preclinical Data Sharing Statistics

A summary of the preclinical data donated by eTRANSAFE EFPIA at the mid-point
of the eTRANSAFE project is shown in Figure 4. This illustrates that relative to the data
donated in the eTOX project, the pace of data donation to this point in eTRANSAFE is
significantly accelerated. However, there remain challenges for pharma companies when
sharing preclinical data in projects such as eTRANSAFE, the most significant of which
relates to overcoming the legal barriers for fully sharing these data with the other project
partners. Of the data donated to this point, 91% are classified as data which cannot be
shared within the project consortium. To overcome this barrier, the partners of the
eTRANSAEFE project are exploring opportunities to enable “partial data sharing” of pre-
clinical study data which would otherwise not be sharable. Such “partially sharable data”
categorization enables the sharing of all data contained within an in vivo toxicological
study but excludes the sharing of compound information such as the chemical structure,
internal code, name or reference, the pharmacological target, the indication(s), data from
the off-target in vitro assay screening panel and the company name or identifier. It is an-
ticipated that by enabling “partial data sharing” in eTRANSAFE, the legal barriers for
data sharing are reduced, enabling an increased volume of preclinical data to be made
available for contributing to the translational objectives of eTRANSAFE.

The value of the study data for which the compound information is not shared is
four-fold: first, the control group data from such studies can be used for calculating refer-
ence or control value ranges for various parameters, which can also be used for construct-
ing virtual control groups (see the specific section in this article). Second, if, during a query
for specific toxicological findings data, they are found in a partially shared study, there
remains always the possibility to contact the study provider, enquiring as to whether ad-
ditional information can be shared on a 1:1 confidential basis. This might be of particular
interest if the query is related to rare findings. Third, meta-analyses on the occurrence of
findings and their respective species sensitivities do not require chemical structures.
Fourth, the partially shared data should gradually move to fully shared data as their sen-
sitivity for the data owner diminishes with time. In this regard, we believe that it is better
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to already bank the non-shareable data and with time simply modify their status, rather
than acquiring them only after status change.

10000
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7000 TRAN

w eTex

5000

Number of studies

4000

3000

2000

1000

0
o 0.5 1 15 2 2.5 3 35 4 45 B 5.5 6 6.5 7

Year of Project

=——eTOX Total Studies ~ =——eTS Total Studies

Figure 4. The number of study donations made to the eTOX and eTRANSAFE projects over time.

4. Clinical Data

The clinical data in eTRANSAFE comprise data from publicly available resources and
from eTRANSAFE EFPIA partners.

4.1. Clinical Data Sharing Statistics

For data in the public domain, adverse drug reactions were collected from three dif-
ferent types of resources: clinical trial registries, spontaneous reporting systems and the
scientific literature.

For clinical trials, a broad range of clinical trial data registries exist. In eTRANSAFE,
data were gathered from ClinicalTrials.gov, one of the largest and oldest registries con-
taining information about publicly and privately funded clinical studies conducted
around the world. The data from ClinicalTrials.gov were downloaded and post-processed
to make the data fit for inclusion in the ToxHub database. For this postprocessing, the
Sherlock system was used [11]. Sherlock converts the XML files that can be downloaded
from ClinicalTrials.gov into a relational database and normalizes adverse reactions and
drugs to concepts from the Medical Dictionary for Regulatory Activities (MedDRA) and
the RxNorm terminology, respectively.

Spontaneous reporting systems are a cornerstone for drug safety surveillance during
the post-marketing phase of drugs. In eTRANSAFE, spontaneous reports were taken from
the publicly available Federal Drug Administration (FDA) Adverse Event Reporting Sys-
tem (FAERS). The data from FAERS need standardization before they can be used in the
Toxhub system. For this, we used the AEOLUS system [12]. AEOLUS removes duplicate
case records, standardizes drug names and outcomes to RxNorm and MedDRA concepts
and computes summary statistics about drug-outcome relationships, such as the propor-
tional reporting ratio.

The published biomedical literature also contains a host of information about adverse
drug reactions. Several researchers have proposed methods to mine MEDLINE, the larg-
est biomedical literature repository, for adverse events using the indexing of MEDLINE
publications with Medical Subject Headings (MeSH). In eTRANSAFE, we use the method
proposed by Winnenburg et al. [13], which was shown to yield a significant improvement
over a baseline approach [14]. We use the Unified Medical Language System (UMLS) to
map the MeSH terms to MedDRA concepts before inclusion in the eTRANSAFE data re-
pository.
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4.2. The Periodic Safety Update Reports Database

The objective of the Periodic Safety Update Reports (PSURs) generated by the phar-
maceutical companies is to provide an extensive and critical analysis of the risk-benefit
balance of medicinal products (MP) for the regulatory authorities. The PSUR constitutes
a tool for the post-authorization evaluation at different moments in the lifecycle of an MP
and provides summarized quantitative information on the adverse health events ob-
served during clinical trials and pharmacovigilance. In order to exploit the drug safety
information included in the PSURs, we have created a database based on the PSURs pro-
vided by the eTRANSAFE pharma partners. The eTRANSAFE PSUR database consists of
three sets of tables. The first one includes the description of the MP, the period of validity
of the report, the type of data stored and the pharmaceutical company. In the second set,
data on the number of times that specific adverse effects have been observed after using a
MP are stored. The third set of tables contains the MedDRA vocabulary for the proper
definition of the adverse effects observed. To facilitate the access to this database and the
search of information, a user-friendly web-based graphical interface has been developed,
providing diverse capabilities for exploring, filtering and ranking the information. The
interface also includes a functionality for downloading the information resulting from the
queries. In the framework of the integration of the PSUR database into the eTRANSAFE
ToxHub, additional functionalities will be incorporated, such as more sophisticated que-
rying capabilities and the connection to the other databases.

5. Text Mining for Key Data Gathering

Over the last few decades, the pharmaceutical industry has generated a vast corpus
of knowledge on the safety and efficacy of investigational drugs based on preclinical
model systems. Despite the potential value of this knowledge to support decision-making
in the drug development process, the fact that most of these data are only available as
unstructured textual documents with variable degrees of digitization has hampered their
systematic access, use and exploitation. This limitation can be avoided, or at least miti-
gated, by relying on text mining techniques for automatically extracting relevant, struc-
tured data from textual documents of interest, thus supporting drug research and devel-
opment activities.

Toxicology reports describing the results of preclinical toxicology studies carried out
by pharmaceutical companies have been identified as a valuable source of information on
safety findings for investigational drugs in the context of the eTRANSAFE project. How-
ever, the exploitation of the preclinical knowledge contained in these reports is extremely
difficult since most of them are unstructured texts, usually digitized as PDF documents
and often including scanned images. To address this issue, a working group formed by
text mining experts and toxicology specialists was created with the intention of imple-
menting a text mining system that is able to identify, capture and standardize findings
related to drug treatment (i.e., safety findings) by mining legacy preclinical toxicology
reports. The ultimate goal of this effort is to develop text mining tools to (semi-)automat-
ically populate the eTRANSAFE Preclinical Database. Importantly, these tools would not
replace human experts, but support and facilitate the identification of safety findings that
can be later validated by experts, thus expediting the overall process. The knowledge ex-
tracted from the textual contents of toxicology reports is designed to provide valuable
insights to support the in silico modelling activities that are developed within the project.

Figure 5 provides an overview of the text mining pipeline devised to extract, charac-
terize and validate safety findings by analysing toxicology reports. Properly trained text
analysis models are used to extract the safety information of interest. This is achieved by
processing the contents of toxicology reports so as to detect the diverse key features that
contribute to characterizing each safety finding, i.e., type, dose, sex, group, etc. Then, by
means of a web interface, toxicology specialists can easily validate and refine the infor-
mation automatically extracted so as to populate a database of safety findings.



Pharmaceuticals 2021, 14, 237 9 of 18

Model trained

with Preclinical )
annotated ﬁ TO;()I( coel :tgy
corpus as p

SR-Domain

L
—>

Template Ny
| P
Toxicology Web tool /
report
4
&
“.. Females receiving 2500 or 5000 mg/kg/day gained slightly less /,’;
body weight than the control group (p<0.05 and p<0.01) ..." //.;/

“.. Females receiving 2500 or 5000 mg/kg/day gained SHGHEYNESS
body weight than the control group (p<0.05 and p<0.01) ...”

Figure 5. Overview of the preclinical text mining pipeline.

A core activity useful to enable the automated extraction of information from toxi-
cology reports has been the creation of a corpus of preclinical toxicology reports where
safety findings have been manually annotated. This corpus, curated thanks to the contri-
bution of 13 toxicological experts, includes more than 3000 sentences extracted from a col-
lection of 181 preclinical toxicology reports donated by pharmaceutical companies in
eTRANSAFE. Toxicological experts analysed the textual contents of the preclinical reports
and annotated safety findings by spotting the text excerpts that characterized a varied set
of facets of each finding, including the type of finding, the group of animals and the dose
of the drug at which the finding was observed. The creation of such a corpus required the
addressing of a variety of aspects, from legal issues related to the access to the legacy
reports that would be part of the corpus, to more operational ones such as the establish-
ment of a group of curators, the development of annotation guidelines, the definition of
an annotation schema and the adaptation of an annotation tool to support the remote cu-
ration process. The close collaboration and communication between text mining and tox-
icology experts was essential to the success of this endeavour. The annotations included
in the corpus are exploited to train and evaluate the text analysis models integrated in the
text mining pipeline.

6. ToxHub Concept and Architecture

The eTRANSAFE project has developed a software platform based on a knowledge
hub, so called ToxHub, which centralizes the access to all data sources and exploitation
modules (Figure 6). ToxHub has a modular architecture consisting of a collection of inde-
pendent components hosted in a secure cloud as a Kubernetes cluster [15]. This solution
is extremely flexible and can be deployed in different ways: the whole system can be
hosted by a commercial cloud provider or a private instance can be installed locally in the
computational facilities of the final user (e.g., a pharmaceutical company). This flexibility
would allow a route to overcome the restrictive policies imposed by pharmaceutical com-
panies to guarantee the confidentiality of sensitive information.
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Figure 6. The eTRANSAFE ToxHub concept.

ToxHub components are containerized applications which communicate using ap-
propriate Application Program Interfaces (APIs). A high-level description of the system
logical architecture, showing the most important components and their relationships, is
depicted in Figure 7.
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Figure 7. Logical architecture of the eTRANSAFE software platform (ToxHub).

Some of the components (exploitation modules) provide web-based graphical inter-
faces which allow, for example, querying the data sources, visualizing the data resulting
from the queries or predicting compound properties, directly from an Internet browser.

This modular architecture imposes the use of an abstraction layer wrapping hetero-
geneous data sources to allow simultaneous querying of some or all of them. This layer is
the so-called primitive adapter (Figure 6), which provides a single API for accessing all
the data sources, returning data structured in a consistent data-class. This solution, for
example, will allow extraction of data from preclinical and clinical data sources in formats
suitable for integrated data analysis and visualization.
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7. Modelling Tools in eTRANSAFE: The Flame Tool

The eTRANSAFE ToxHub was conceived as a one-stop shop with integrated access
to predictive models. The component we have developed for supporting the modelling
tasks is Flame, an advanced modelling framework for the development and hosting of in
silico models, suitable for being used in production environments as a prediction service.

Flame is a web application with a backend written in Python, implementing a wide
panel of predictive modelling functionalities and a modern frontend written in Angular
[16], allowing easy access to all the framework functionalities (Figure 8A). This architec-
ture allows the use of Flame remotely as a ToxHub component accessible to all eETRANS-
AFE partners, but also allows it to be installed locally as a desktop application or in the
company intranet to be used as a private prediction server. Models developed using
Flame are encapsulated in self-contained predictive engines that can be easily transferred
between Flame instances. This facilitates collaboration between academic and industrial
partners, since models generated using open data can be easily distributed and used in
production in their original form or enriched by retraining them locally with confidential
data.

Flame allows the building of models nearly automatically, starting from a training
series which can be entered as a single annotated SDFile. It implements natively a wide
variety of machine learning methods (Random Forest, XGBOOST, Partial Least Squares,
Support Vector Machine and Gaussian Naive Bayes, all of them as regressors or classifi-
ers) [17] as well as standardization workflows (e.g., EBI workflow [18] or standardizer
[19]) and molecular descriptors (RDKit properties and molecular descriptors) [20]. All
these methods are based in robust open-source libraries, but proprietary tools can be eas-
ily integrated because the source code has been designed to support them as external
tools. In Flame, the prediction output can be used as input for other models, allowing the
models to be combined in a flexible way (majority voting, consensus, mean, median, etc.).
This combination can be easily customized to create rules and combine hazard with expo-
sure.

In our view, the final aim of predictive models is to present prediction results which
can help users to make decisions, together with other sources of evidence. This means that
presented model results must be accompanied with information about their reliability and
practical interpretation. The native implementations of machine learning methods sup-
port a conformal framework [21], thus providing rigorous uncertainty estimations ex-
pressed as probabilistic confidence intervals. The Flame Graphic User Interface (GUI) was
designed to be user-friendly and show relevant information with different levels of detail:
from model quality as summaries, to 2D Principal Component Analysis (PCA) projections
of the training series showing the compound structures, and the distribution of the values
in the training series. Prediction results show the values, units and the interpretation for
each individual result, together with individual uncertainty estimations that incorporate
the model applicability domain. We also show the structures and properties of the closer
compound in the training series (Figure 8B) and 2D projections on the training series 2D
spaces, obtained by PCA of the model descriptors, representing as well as the distance to
the model (Figure 8C)

Flame is fully open-source and can be used as a standalone component. The source
code is accessible at https://github.com/phi-grib/flame, where we provide instructions for
using the Python library directly (e.g., using a Jupyter notebook), from a terminal, inte-
grated in scripts, making calls to the REST API or using the GUI described above. Install-
ers for Windows and Linux operative systems are also freely distributed.
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the Flame graphical user interface showing on the left-hand side the model list and on the right-

hand side information on the selected model, in this case a classifier. The selected tab presents an initial overview of the
model quality and the proportion of positive and negative values. (B) A view of the prediction result that shows the
compound structure, the prediction result and the associated confidence. The structure of the nearest compounds present
in the training series is shown as a list. (C) In this view of the prediction results, the predicted compounds are represented
in a PCA scores plot, together with the training series. The structures of the compounds are shown on mouse hover. The
dots of the predicted compounds are coloured according to the distance to the model (DModX).

8. Mechanistic Modelling in eTRANSAFE

The need to move towards a mechanistic-based risk assessment is widely recognized,
since it will strengthen the causality connection between compound exposure and the oc-
currence of adverse outcomes [22]. Systems Toxicology approaches, based on network sci-
ence and machine learning and embracing different types of data (omics as well as clinical
and biomedical data), are especially suited to the study of the perturbations elicited by
drugs within the context of cellular networks and in this way provide insight into the
molecular mechanisms leading to drug adverse outcomes.

Network science approaches have been widely used across different domains, from
life sciences to medical and clinical research [23,24]. They rely on a simple observation:
genes or proteins involved in biological processes underlying the proper functioning of
the organism rarely act in isolation but as part of networks of interactions between bio-
molecules. Therefore, modelling the relationships between biomolecules helps to charac-
terize the impact of perturbations in the human body. In fact, previous studies showed
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that biomarkers identified using cellular network information are more reproducible than
individual marker genes and achieve higher accuracy in the classification of disease states
[25]. Furthermore, toxicity pathways tend to be more conserved across species than indi-
vidual genes, therefore supporting a translational safety assessment [26].

In eTRANSAFE, we have implemented different approaches based on Systems Tox-
icology principles to identify toxicity pathways as key processes between a molecular in-
itiating event and an adverse outcome [27]. These approaches integrate a wide scope of
omics data (genomics, transcriptomics, proteomics, interactomics) with information on
drug targets, off-targets and pathological outcomes to deliver mechanistic hypotheses of
the adverse outcomes elicited by drugs (the toxicity pathways). These approaches, sche-
matized in Figure 9, are based on graph optimization on the human interactome and sig-
nalling pathways or correlation patterns in large transcriptomics/toxicogenomics datasets.
They use as a starting point different omics and biological data, and by applying network
optimization algorithms or gene correlation network methods, identify network modules
associated to a particular Molecular Initiating Events (MIE) or the subsequent Key Events
(KE). Then, these network modules can be further analysed to learn more about the bio-
logical processes that they represent, by means of gene enrichment analyses using differ-
ent biological annotations followed by interpretation (Biological Interpretation), as well
as with information on adverse outcomes and pathology biomarkers to identify those net-
work modules associated with the toxicity endpoint (Hypothesis Prioritization).
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Figure 9. Scheme of the pipeline for toxicogenomics analysis implemented in eTRANSAFE.

One example of such an approach is the TXG-MAPr tool that is focused on tran-
scriptomic data, which are quite abundant in the field of toxicogenomics [28]. The TXG-
MAPr allows dimensionality reduction and improved interpretation of in vivo tran-
scriptomic data (Figure 10) and is based on a widely applied network analysis algorithm
[29]. Leveraging large toxicogenomic databases, such as TG-GATEs [30], groups of co-
regulated genes (modules) can be identified, pinpointing known pathways and suggest-
ing new processes involved in drug toxicity. Whenever toxicogenomic data are not avail-
able for a compound, alternative methods based on network optimization algorithms on
the human interactome are a suitable alternative for the identification of toxicity path-
ways. All in all, these approaches offer complementary perspectives, one based on tran-
scriptomic data and the other on proteomic data, that can even be combined to infer tox-
icity pathways.
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Figure 10. An example of a toxicogenomics analysis carried out in eTRANSAFE using the TXG-MAPr tool.

These data-driven, mechanistic approaches have the advantage of first being able to
capture new biomolecular interactions that participate in response to toxicants, which are
not currently collated in resources that provide information about canonical pathways.
Second, the pathway space has higher predictive robustness than models in the gene space
[31] (Segura-Lepe 2019). Finally, the third advantage is that these data-driven approaches
would be capable of providing a complete map of the full spectrum of toxicity pathways
that underlie adverse events [32-34].

9. Opportunities Opened by eTRANSAFE: The eTRANSAFE Virtual Control Group

The pharmaceutical companies participating in eTRANSAFE have developed indi-
vidual decision trees to identify which data can be shared (i.e., data which are “non-con-
fidential”) and data which have to remain confidential. Though the decisions may vary
from company to company, it became evident that the most sensitive information in da-
tasets or studies is the chemical structure, disclosure of the target or indication and, in
some cases, specific toxicological findings, particularly when these are rare or can be re-
lated to the pharmacological mode of action. On the other hand, there was a common
understanding that some data can be shared without any restriction because they cannot
be linked back to an individual test item or mechanisms. This particularly applies to data
from control animals. Sharing data from control animals opens the door for completely
new analyses and approaches to spare animals in studies. The shared control animal data
can be used to construct so-called “Virtual Control Groups” (VCG) or replace real control
animals by virtual ones [35].

The prerequisite for such an approach is a well curated repository and a thorough
understanding of which factors in the dataset influence variability. In the field of carcino-
genicity studies, such data collections and analyses are common to assess the background
incidence of tumours [36]. For systemic toxicity studies, such an approach has not yet been
applied. The eTRANSAFE project has started to collect control data from oral 4-week re-
peated dose toxicity studies in rats from five companies. Essentially, all routine endpoints
covered in an oral repeated dose toxicity study are included, namely study definition,
animal data, clinical chemistry, haematology, urinalysis, organ weights, gross pathology
and histopathology findings (see Table 2).
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Table 2. Measurements and observations performed in an oral 4-week repeated dose toxicity
study in rats, which were collected for the eTRANSAFE Virtual Control Group (VCG) database.

Category

Measured or Observed Parameters

Study definition

Route or administration, duration, test facility

Animal data

Species, strain, source, age, sex, initial body weight,
body weight gain

Clinical chemistry

Sodium, potassium, calcium, chloride, inorganic phos-
phate, glucose, urea, creatinine, total bilirubin, choles-
terol, triglycerides, bile acids, total protein, albumin, al-
bumin/globulin ratio, alanine aminotransferase, aspar-
tate aminotransferase, alkaline phosphatase, glutamate
dehydrogenase

Haematology

Erythrocytes, haemoglobin, haematocrit, mean cell vol-
ume, mean haemoglobin content, mean haemoglobin
concentration, platelets, reticulocytes, leukocytes,
neutrophilic granulocytes / (%) and (103/uL),
lymphocytes / (%) and (103/uL),
eosinophilic granulocytes / (%) and (103/uL),
basophilic granulocytes / (%) and (103/uL),
monocytes / (%) and (103/uL),
large unstained cells / (%) and (10%/puL),
prothrombin time / (s),
activated partial thromboplastin time / (s)

Urinalysis

pH value, protein (grading), glucose (grading), biliru-
bin (grading), blood (grading), ketone (grading), sedi-
ment, specific gravity, urine weight (g)

Organ weights

Liver, heart, kidneys, spleen, thymus, ovaries, uterus,
brain, adrenal glands (both), thyroid/parathyroid, tes-
tes, prostate, seminal vesicles, epididymites

Histopathology

Adprenal gland, aorta, bone, bone marrow, brain, oe-
sophagus, eye, heart, intestine large (cecum), intestine
large (colon), intestine large (rectum), intestine small
(duodenum), intestine small (ileum), intestine small (je-
junum), kidney, knee joint, liver, lung, lymph node
(mandibular), lymph node (mesenteric), mammary
gland, muscle (skeletal), nerve (optic), nerve (sciatic),
pancreas, parathyroid gland, Peyer’s patches, pituitary
gland, reproductive organs (male, epididymis), repro-
ductive organs (male, prostate), reproductive organs
(male, seminal vesicle), reproductive organs (male, tes-
tis), salivary gland, skin, spinal cord, spleen, stomach,
thymus, thyroid gland, trachea, ureter, urinary bladder,
reproductive organs (female, ovary), reproductive or-
gans (female, oviduct), reproductive organs (female,
uterus), reproductive organs (female, vagina), gallblad-
der (mouse specific), larynx (fixation only)

Many of the parameters collected are continuous data, but others, e.g., those from
histopathology, are scientific opinion-based discrete gradings derived from a visual ex-
amination and obtained after expert evaluation. The continuous data will be analysed by
descriptive statistics for their mean, distribution and variability. The discrete gradings will
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be evaluated using nonparametric methods. Here, the incidence of findings and changes
in incidences will provide insights for deciding if an observation is a treatment-related
effect or still in the range of control group animals.

The eTRANSAFE VCG database supports a quantitative assessment that may pro-
vide a complete picture of the variability of given historical control data not only for single
laboratories but on inter-laboratory comparisons. These analyses will be performed first
on an intra-company basis and then on an inter-company basis, with the objective of gain-
ing a better understanding of which thresholds need to be set in the variability for using
the data in the virtual control approach, but also to detect factors which generate variabil-
ity (e.g., can rats of the same strain and from the same breeder be used even though they
have been used at different sites?).

Particularly, the analysis and use of historical negative control data is essential for
judging both quality and proficiency control in toxicological assays. It will provide im-
portant instruments for data evaluation and interpretation of current experiments. The
negative control data are being collected and continuously used to evaluate the validity
of experiments by comparing the historical control data with the current negative controls.
Further analysis of treatment-related findings requires robust historical data reflecting the
experimental conditions used for the evaluation. For this purpose, the quality of the con-
trol data and the adequacy in the statistical evaluation are of the highest relevance.

The ultimate goals of the use of the eTRANSAFE VCG database are the reduction of
the number of control group animals or a complete replacement of the control group by
virtual control animals based on data drawn from the database. The prerequisite to
achieve these goals is a thorough understanding of the data variability for the laboratory
performing the studies and clear rules and definitions for thresholds of variability in order
to adequately safeguard the sensitivity and specificity of the in vivo studies with regard
to the question of whether an observation is treatment-related, i.e., compound-related, or
not.

The VCG activity probably will not be fully accomplished during the course of the
eTRANSAFE project. It is expected that internal data collection in qualification within in-
dividual companies will take at least one year. Thereafter, a cross-company validation
exercise may be started, and the results presented to regulatory authorities. However, the
pharmaceutical companies can already use the collected, curated and analysed data for
the non-GLP studies (e.g., virtual control groups could be used for dose-range-finding
studies without any formal approval by the authorities). It is indeed expected that the
VCG activity will be part of the sustainability of the eTRANSAFE project and that the
VCG database and adjacent statistical tools will be continuously updated by at least a
group of partners constituting a task group after the end of the project. Overall, it is ex-
pected that the full use of VCGs will take a number of years of parallel work with real
control groups, before health authorities could validate this approach and accept its in-
corporation into regulatory guidelines.

10. Conclusions and Prospects

The IMI eTRANSAFE project, building on the achievements of its predecessor, eTOX,
is addressing key needs and gaps in pursuit of a more holistic assessment of drug toxicity.
The translational perspective is increasingly seen as essential to both be able to improve
the predictive potential of animal studies and to better understand adverse events ob-
served in humans. Integrative exploitation and expanded availability of preclinical and
clinical data is possible; however, a multitude of technical, legal, ethical, financial, cultural
and psychological obstacles require a concerted approach to be overcome, and eTRANS-
AFE represents the type of collegiate strategy that can pave the way for future progress.
Exploration of data and read-across strategies can be complemented with predictive mod-
elling and biological substantiation approaches that offer a deeper view on potential tox-
icity and plausibility of observed effects; in other words, holistic views need not only to
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refer to data types and coverage, but also to types of perspectives that can be harmonically
integrated into the daily workflows of the drug discovery and development life cycle.

Two thirds through its planned duration, eTRANSAFE has already demonstrated the
feasibility of a holistic approach to toxicity assessment, collecting otherwise inaccessible
data from private companies, facilitating a translational linkage between the preclinical
and clinical worlds, and complementing the exploitation of such data with predictive
modelling and biological plausibility strategies and tools, as well as promoting innovative
approaches such as the development of virtual control groups or advanced text mining
approaches. To our knowledge, it also represents the first attempt to systematically map
semantic concepts between preclinical and clinical data related to toxicity. The open ar-
chitecture implemented in the eTRANSAFE system is expected to facilitate its mainte-
nance and development, and to flexibly allow the addition of supplementary data sources
and tools to expand its scope and features. The eTRANSAFE system is expected to change
the existing workflows in toxicology to help to provide better drugs faster, including the
drug repurposing operations. Such a system is foreseen as the core element of a future
ecosystem that unites end users and developers for an ever-expanding in silico framework
for translational safety assessment. This will depend on successfully creating value prop-
ositions and incentives that attract a critical mass of tool and model developers both from
academia and industry, which will amplify the potential impact of eTRANSAFE to enable
a true quantum leap in the field.
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