Supporting Information

Tryptophanol-derived oxazolopyrrolidone lactams as potential anticancer agents against gastric adenocarcinoma

Margarida Espadinha^a, Valentina Barcherini^a, Lídia M. Gonçalves^a, Elies Molins^b, Alexandra M. M. Antunes^c, Maria M. M. Santos^{a,*}

^a Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa,
Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
^b Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra,
Catalonia, Spain

^c Centro de Química Estrutural, Instituto Superior Técnico, ULisboa, 1049-001 Lisboa, Portugal

Table of contents:

X-ray crystallographic data for compounds 7j, 7j' and 8b	1
LC-HRMS/MS data for compound 7s and its metabolites	31
¹ H NMR and ¹³ C NMR spectra	35
LC-MS data	56

X-ray crystallographic data for compound 7j

Table S1. Crystal data and structure refinement for 7j.						
Identification code	Jb156					
Empirical formula	$C_{22}H_{21}ClN_2O_2$					
Formula weight	380.86					
Temperature	294(2) K					
Wavelength	0.71073 Å					
Crystal system	Monoclinic					
Space group	P 21					
Unit cell dimensions	a = 9.6271(19) Å	a= 90°.				
	b = 9.2727(19) Å	b= 103.725(4)°.				
	c = 11.535(2) Å	g = 90°.				
Volume	1000.3(3) Å ³					
Z	2					
Density (calculated)	1.264 Mg/m ³					
Absorption coefficient	0.210 mm ⁻¹					
F(000)	400					
Crystal size	0.210 x 0.210 x 0.080 mm	l ³				
Theta range for data collection	1.817 to 28.357°.					
Index ranges	-12<=h<=12, -12<=k<=12	2, -15<=l<=15				
Reflections collected	21809					
Independent reflections	4999 [R(int) = 0.1121]					
Completeness to theta = 25.242°	100.0 %					
Refinement method	Full-matrix least-squares on F ²					
Data / parameters	4999 / 245					

Table S1 Crystal data and structure refinement for 7i

Goodness-of-fit on F ²	0.956
Final R indices [I>2sigma(I)]	R1 = 0.0568, wR2 = 0.0897
R indices (all data)	R1 = 0.1797, wR2 = 0.1213
Absolute structure parameter	0.02(7)
Largest diff. peak and hole	0.129 and -0.167 e.Å ⁻³

	X	У	Z	U(eq)	
Cl(1)	1756(2)	1271(2)	-801(2)	121(1)	
O(1)	2561(4)	7442(4)	2230(3)	76(1)	
O(5)	6047(3)	6188(5)	5157(3)	91(1)	
N(1A)	-910(5)	5680(5)	5659(4)	79(2)	
N(4)	4104(4)	6113(5)	3583(3)	57(1)	
C(2)	1809(6)	7002(6)	3098(5)	81(2)	
C(2A)	-158(6)	5080(6)	4906(6)	74(2)	
C(3)	2927(4)	6389(6)	4157(4)	56(1)	
C(3A)	1252(5)	5409(5)	5290(5)	60(1)	
C(3B)	1396(5)	6253(6)	6353(4)	53(1)	
C(4A)	2536(6)	6926(5)	7137(4)	62(1)	
C(5)	5509(5)	6270(7)	4087(5)	68(2)	
C(5A)	2295(6)	7681(6)	8090(5)	74(2)	
C(6)	6228(6)	6511(7)	3084(5)	85(2)	
C(6A)	915(7)	7814(7)	8256(5)	79(2)	
C(7)	5051(6)	7079(6)	2034(5)	76(2)	
C(7A)	3689(5)	6419(6)	2316(4)	60(1)	
C(7B)	-231(6)	7176(6)	7508(5)	75(2)	
C(8A)	18(5)	6407(6)	6557(5)	62(1)	
C(30)	2433(5)	5051(6)	4700(5)	64(2)	
C(70)	5020(7)	8713(7)	1967(6)	120(3)	
C(71)	3157(5)	5104(6)	1573(5)	58(1)	
C(72)	2119(6)	5247(7)	513(5)	81(2)	

Table S2. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **7j**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(73)	1697(7)	4068(9)	-214(5)	93(2)
C(74)	2312(6)	2774(8)	103(5)	72(2)
C(75)	3335(6)	2588(6)	1136(6)	79(2)
C(76)	3751(5)	3773(7)	1871(5)	72(2)

Cl(1)-C(74)	1.747(6)
O(1)-C(2)	1.427(6)
O(1)-C(7A)	1.428(6)
O(5)-C(5)	1.222(5)
N(1A)-C(2A)	1.374(6)
N(1A)-C(8A)	1.374(6)
N(4)-C(5)	1.347(6)
N(4)-C(7A)	1.449(5)
N(4)-C(3)	1.464(5)
C(2)-C(3)	1.533(6)
C(2A)-C(3A)	1.359(7)
C(3)-C(30)	1.517(7)
C(3A)-C(3B)	1.433(6)
C(3A)-C(30)	1.496(6)
C(3B)-C(4A)	1.393(6)
C(3B)-C(8A)	1.408(6)
C(4A)-C(5A)	1.369(6)
C(5)-C(6)	1.500(6)
C(5A)-C(6A)	1.393(7)
C(6)-C(7)	1.541(7)
C(6A)-C(7B)	1.364(7)
C(7)-C(70)	1.517(8)
C(7)-C(7A)	1.549(7)
C(7A)-C(71)	1.508(7)
C(7B)-C(8A)	1.376(7)

 Table S3.
 Bond lengths [Å] and angles [°] for 7j.

C(71)-C(76)	1.370(7)
C(71)-C(72)	1.390(7)
C(72)-C(73)	1.379(8)
C(73)-C(74)	1.350(8)
C(74)-C(75)	1.364(7)
C(75)-C(76)	1.388(7)
C(2)-O(1)-C(7A)	105.4(4)
C(2A)-N(1A)-C(8A)	109.3(4)
C(5)-N(4)-C(7A)	115.0(4)
C(5)-N(4)-C(3)	126.2(4)
C(7A)-N(4)-C(3)	111.4(4)
O(1)-C(2)-C(3)	106.7(4)
C(3A)-C(2A)-N(1A)	109.8(5)
N(4)-C(3)-C(30)	113.3(4)
N(4)-C(3)-C(2)	100.2(4)
C(30)-C(3)-C(2)	113.8(4)
C(2A)-C(3A)-C(3B)	106.8(4)
C(2A)-C(3A)-C(30)	127.6(5)
C(3B)-C(3A)-C(30)	125.5(4)
C(4A)-C(3B)-C(8A)	118.3(5)
C(4A)-C(3B)-C(3A)	134.5(4)
C(8A)-C(3B)-C(3A)	107.1(4)
C(5A)-C(4A)-C(3B)	119.6(5)
O(5)-C(5)-N(4)	124.8(5)
O(5)-C(5)-C(6)	128.7(5)
N(4)-C(5)-C(6)	106.4(5)
C(4A)-C(5A)-C(6A)	120.3(5)

C(5)-C(6)-C(7)	105.6(4)
C(7B)-C(6A)-C(5A)	122.0(6)
C(70)-C(7)-C(6)	112.5(5)
C(70)-C(7)-C(7A)	113.5(5)
C(6)-C(7)-C(7A)	101.6(4)
O(1)-C(7A)-N(4)	102.9(4)
O(1)-C(7A)-C(71)	110.3(4)
N(4)-C(7A)-C(71)	113.0(5)
O(1)-C(7A)-C(7)	113.0(5)
N(4)-C(7A)-C(7)	104.1(4)
C(71)-C(7A)-C(7)	113.0(4)
C(6A)-C(7B)-C(8A)	117.5(5)
N(1A)-C(8A)-C(7B)	130.6(5)
N(1A)-C(8A)-C(3B)	107.1(5)
C(7B)-C(8A)-C(3B)	122.3(5)
C(3A)-C(30)-C(3)	110.7(4)
C(76)-C(71)-C(72)	118.5(5)
C(76)-C(71)-C(7A)	121.4(5)
C(72)-C(71)-C(7A)	119.9(5)
C(73)-C(72)-C(71)	120.4(6)
C(74)-C(73)-C(72)	119.5(6)
C(73)-C(74)-C(75)	121.9(5)
C(73)-C(74)-Cl(1)	119.7(5)
C(75)-C(74)-Cl(1)	118.4(6)
C(74)-C(75)-C(76)	118.5(6)
C(71)-C(76)-C(75)	121.1(5)

	U11	U ²²	U ³³	U ²³	U13	U12	
Cl(1)	101(1)	137(2)	134(2)	-76(1)	44(1)	-41(1)	
O(1)	83(3)	62(3)	89(3)	5(2)	33(2)	19(2)	
O(5)	47(2)	141(4)	83(3)	-17(3)	12(2)	-8(3)	
N(1A)	46(3)	92(4)	104(4)	-1(3)	32(3)	-6(3)	
N(4)	49(3)	66(3)	59(3)	-11(2)	19(2)	-2(2)	
C(2)	76(4)	86(5)	83(4)	-9(3)	25(4)	22(3)	
C(2A)	54(4)	84(4)	87(4)	-19(3)	21(3)	-11(3)	
C(3)	42(3)	63(3)	65(3)	-16(3)	19(2)	1(3)	
C(3A)	41(3)	65(4)	75(4)	-8(3)	19(3)	-5(3)	
C(3B)	44(3)	51(3)	67(3)	6(3)	19(2)	5(3)	
C(4A)	60(4)	62(4)	65(3)	2(3)	19(3)	2(3)	
C(5)	47(3)	84(4)	78(4)	-19(4)	23(3)	-4(3)	
C(5A)	82(4)	71(4)	71(4)	-2(3)	21(3)	1(3)	
C(6)	61(3)	102(5)	101(4)	-12(4)	40(3)	-12(4)	
C(6A)	97(5)	69(4)	79(4)	4(3)	38(4)	19(4)	
C(7)	87(4)	74(5)	76(4)	-10(3)	33(4)	-25(3)	
C(7A)	64(3)	55(3)	65(3)	-3(3)	23(3)	5(3)	
C(7B)	69(4)	81(4)	87(4)	14(4)	43(4)	22(3)	
C(8A)	49(3)	64(4)	76(4)	11(4)	23(3)	9(3)	
C(30)	49(3)	67(4)	81(4)	-16(3)	22(3)	-6(3)	
C(70)	142(7)	67(5)	155(7)	-4(5)	42(5)	-30(4)	
C(71)	50(3)	63(4)	64(4)	-1(3)	21(3)	0(3)	

Table S4. Anisotropic displacement parameters ($Å^2x \ 10^3$) for **7j**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

C(72)	90(5)	86(5)	64(4)	5(4)	11(4)	16(4)	
C(73)	97(5)	113(6)	64(4)	-11(5)	10(4)	-2(5)	
C(74)	66(4)	88(5)	68(4)	-38(4)	26(3)	-20(4)	
C(75)	66(4)	61(4)	113(5)	-19(4)	26(4)	-1(3)	
C(76)	51(3)	71(4)	89(4)	-15(4)	6(3)	5(3)	

 Table S5.
 Hydrogen bonds for 7j [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1A)-H(1A)O(5)#1	0.86	2.07	2.887(6)	159.2	

Symmetry transformations used to generate equivalent atoms: #1 x-1,y,z

X-ray crystallographic data for compound 7j'

Table S6. Crystal data and structure refine.	ment for 7 j'.			
Identification code	Jb155			
Empirical formula	C22H21ClN2O2			
Formula weight	380.86			
Temperature	294(2) K			
Wavelength	0.71073 Å			
Crystal system	Monoclinic			
Space group	P 21			
Unit cell dimensions	a = 9.7065(10) Å	a= 90°.		
	b = 7.9809(8) Å	b= 105.143(2)°.		
	c = 13.0587(13) Å	g = 90°.		
Volume	976.49(17) Å ³			
Z	2			
Density (calculated)	1.295 Mg/m ³			
Absorption coefficient	0.215 mm ⁻¹			
F(000)	400			
Crystal size	0.15 x 0.15 x 0.08 mm ³			
Theta range for data collection	1.615 to 28.332°.			
Index ranges	-12<=h<=12, -4<=k<=10, -17<=l<=17			
Reflections collected	7895			
Independent reflections	3487 [R(int) = 0.0544]			
Completeness to theta = 25.242°	100.0 %			
Refinement method	Full-matrix least-squares on F ²			
Data / restraints / parameters	3487 / 1 / 245			

Goodness-of-fit on F ²	0.929
Final R indices [I>2sigma(I)]	R1 = 0.0503, wR2 = 0.0916
R indices (all data)	R1 = 0.1253, wR2 = 0.1129
Absolute structure parameter	0.02(13)
Largest diff. peak and hole	0.129 and -0.144 e.Å ⁻³

	Х	у	Z	U(eq)	
Cl(1)	8366(2)	1475(2)	10416(1)	113(1)	
O(1)	7435(3)	8515(4)	7592(2)	63(1)	
O(5)	3909(3)	6644(5)	5030(2)	67(1)	
N(1A)	10857(3)	6321(5)	4592(2)	57(1)	
N(4)	5902(3)	6892(5)	6405(2)	48(1)	
C(2)	8205(4)	7903(6)	6863(3)	62(1)	
C(2A)	10127(4)	5828(6)	5298(3)	55(1)	
C(3)	7058(4)	7213(5)	5907(3)	50(1)	
C(3A)	8699(4)	6033(5)	4892(3)	48(1)	
C(3B)	8526(4)	6692(6)	3849(3)	47(1)	
C(4A)	7349(4)	7189(6)	3036(3)	63(1)	
C(5)	4489(4)	6892(6)	5969(3)	55(1)	
C(5A)	7571(6)	7779(7)	2108(4)	83(2)	
C(6)	3783(4)	7269(7)	6856(3)	67(1)	
C(6A)	8952(6)	7893(7)	1970(4)	81(2)	
C(7)	4959(4)	8161(6)	7687(3)	65(1)	
C(7A)	6320(4)	7356(6)	7526(3)	52(1)	
C(7B)	10122(5)	7437(6)	2744(3)	61(1)	
C(8A)	9899(4)	6849(5)	3684(3)	47(1)	
C(30)	7532(4)	5652(6)	5422(3)	55(1)	
C(70)	4765(5)	8207(9)	8808(3)	99(2)	
C(71)	6849(4)	5840(6)	8234(3)	53(1)	
C(72)	7793(5)	6076(7)	9222(3)	71(1)	

Table S7. Atomic coordinates (x 10⁴) and equivalent isotropic displacement parameters ($Å^2x$ 10³) for 7j'. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(73)	8248(5)	4717(8)	9887(4)	76(2)
C(74)	7775(5)	3167(7)	9564(4)	71(1)
C(75)	6865(5)	2894(7)	8583(4)	73(1)
C(76)	6414(5)	4230(7)	7923(4)	64(1)

Cl(1)-C(74)	1.749(5)
O(1)-C(7A)	1.409(5)
O(1)-C(2)	1.440(4)
O(5)-C(5)	1.225(4)
N(1A)-C(2A)	1.358(4)
N(1A)-C(8A)	1.369(4)
N(4)-C(5)	1.341(4)
N(4)-C(3)	1.459(4)
N(4)-C(7A)	1.461(5)
C(2)-C(3)	1.541(5)
C(2A)-C(3A)	1.358(5)
C(3)-C(30)	1.522(6)
C(3A)-C(3B)	1.429(5)
C(3A)-C(30)	1.504(5)
C(3B)-C(4A)	1.398(5)

 Table S8. Bond lengths [Å] and angles [°] for 7j'.

C(3B)-C(8A)	1.410(5)
C(4A)-C(5A)	1.369(6)
C(5)-C(6)	1.522(5)
C(5A)-C(6A)	1.402(7)
C(6)-C(7)	1.530(5)
C(6A)-C(7B)	1.358(6)
C(7)-C(70)	1.524(5)
C(7)-C(7A)	1.532(5)
C(7A)-C(71)	1.528(6)
C(7B)-C(8A)	1.383(5)
C(71)-C(76)	1.380(6)
C(71)-C(72)	1.386(5)
C(72)-C(73)	1.388(7)
C(73)-C(74)	1.349(8)
C(74)-C(75)	1.370(6)
C(75)-C(76)	1.370(6)

- C(7A)-O(1)-C(2) 105.0(3)
- C(2A)-N(1A)-C(8A) 108.7(3)
- C(5)-N(4)-C(3) 129.2(3)
- C(5)-N(4)-C(7A) 114.2(3)
- C(3)-N(4)-C(7A) 110.9(3)
- O(1)-C(2)-C(3) 105.5(3)
- N(1A)-C(2A)-C(3A) 111.1(3)
- N(4)-C(3)-C(30) 113.1(3)
- N(4)-C(3)-C(2) 100.3(3)
- C(30)-C(3)-C(2) 113.4(3)
- C(2A)-C(3A)-C(3B) 105.6(3)
- C(2A)-C(3A)-C(30) 127.7(4)
- C(3B)-C(3A)-C(30) 126.7(3)
- C(4A)-C(3B)-C(8A) 118.5(4)
- C(4A)-C(3B)-C(3A) 134.2(4)
- C(8A)-C(3B)-C(3A) 107.3(3)
- C(5A)-C(4A)-C(3B) 118.9(4)

- O(5)-C(5)-N(4) 125.2(4)
- O(5)-C(5)-C(6) 127.9(4)
- N(4)-C(5)-C(6) 107.0(3)
- C(4A)-C(5A)-C(6A) 120.9(4)
- C(5)-C(6)-C(7) 103.3(3)
- C(7B)-C(6A)-C(5A) 121.9(4)
- C(70)-C(7)-C(6) 115.8(4)
- C(70)-C(7)-C(7A) 118.0(4)
- C(6)-C(7)-C(7A) 102.6(3)
- O(1)-C(7A)-N(4) 103.6(3)
- O(1)-C(7A)-C(71) 110.6(3)
- N(4)-C(7A)-C(71) 111.6(4)
- O(1)-C(7A)-C(7) 113.1(4)
- N(4)-C(7A)-C(7) 102.7(3)
- C(71)-C(7A)-C(7) 114.5(3)
- C(6A)-C(7B)-C(8A) 117.2(4)
- N(1A)-C(8A)-C(7B) 130.2(3)

- N(1A)-C(8A)-C(3B) 107.2(3)
- C(7B)-C(8A)-C(3B) 122.6(3)
- C(3A)-C(30)-C(3) 111.8(3)
- C(76)-C(71)-C(72) 118.6(5)
- C(76)-C(71)-C(7A) 122.0(4)
- C(72)-C(71)-C(7A) 119.5(4)
- C(71)-C(72)-C(73) 120.1(5)
- C(74)-C(73)-C(72) 119.6(4)
- C(73)-C(74)-C(75) 121.5(5)
- C(73)-C(74)-Cl(1) 118.8(4)
- C(75)-C(74)-Cl(1) 119.7(5)
- C(76)-C(75)-C(74) 119.1(5)
- C(75)-C(76)-C(71) 121.1(4)

	U11	U ²²	U ³³	U ²³	U13	U12
Cl(1)	104(1)	103(1)	134(1)	58(1)	34(1)	32(1)
O(1)	75(2)	57(2)	60(2)	-4(2)	26(2)	-17(2)
O(5)	49(1)	83(2)	66(2)	1(2)	10(1)	3(2)
N(1A)	40(2)	71(3)	64(2)	-1(2)	19(2)	4(2)
N(4)	44(2)	53(2)	48(2)	0(2)	15(1)	-3(2)
C(2)	60(2)	64(3)	67(3)	2(3)	28(2)	-16(3)
C(2A)	53(2)	58(3)	56(3)	5(2)	19(2)	6(2)
C(3)	45(2)	54(3)	55(2)	10(2)	18(2)	-5(2)
C(3A)	45(2)	43(3)	60(2)	1(2)	20(2)	-2(2)
C(3B)	49(2)	41(2)	51(2)	-3(2)	12(2)	-4(2)
C(4A)	51(2)	62(3)	70(3)	-4(3)	4(2)	3(3)
C(5)	53(2)	50(3)	64(3)	3(2)	18(2)	4(2)
C(5A)	95(4)	80(4)	64(3)	8(3)	3(3)	7(3)
C(6)	54(2)	75(3)	80(3)	11(3)	30(2)	14(3)
C(6A)	117(4)	76(4)	54(3)	4(3)	28(3)	-4(4)
C(7)	73(3)	56(3)	75(3)	-1(3)	34(3)	7(3)
C(7A)	55(2)	48(3)	58(2)	0(2)	22(2)	-7(2)
C(7B)	74(3)	58(3)	59(3)	-8(3)	30(2)	-5(3)
C(8A)	49(2)	38(3)	55(2)	-4(2)	16(2)	-3(2)
C(30)	50(2)	54(3)	65(3)	5(2)	22(2)	-4(2)
C(70)	108(4)	122(5)	84(3)	-12(4)	58(3)	18(4)
C(71)	54(2)	58(3)	56(3)	-1(3)	28(2)	-4(3)

Table S9. Anisotropic displacement parameters (Å²x 10³) for **7j**'. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2}U^{11} + ... + 2hka^{*}b^{*}U^{12}]$

C(72)	85(3)	69(4)	55(3)	-3(3)	14(2)	-8(3)
C(73)	78(3)	86(5)	62(3)	14(3)	13(3)	4(4)
C(74)	64(3)	75(4)	80(3)	29(3)	32(3)	10(3)
C(75)	69(3)	53(3)	101(4)	11(3)	28(3)	-8(3)
C(76)	56(3)	66(4)	70(3)	3(3)	19(2)	-10(3)

Table S10. Hydrogen bonds for 7j' [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(1A)-H(1A)O(5)#1	0.86	2.03	2.879(4)	171.0	
C(2)-H(2B)N(1A)#2	0.97	2.67	3.576(5)	155.4	

Symmetry transformations used to generate equivalent atoms:

#1 x+1,y,z #2 -x+2,y+1/2,-z+1

X-ray crystallographic data for compound 8b

Identification code	Jb109	
Empirical formula	C21H19FN2O2	
Formula weight	350.38	
Temperature	294(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	P 21 21 21	
Unit cell dimensions	a = 8.853(2) Å	$\alpha = 90^{\circ}$.
	b = 10.6234(14) Å	$\beta = 90^{\circ}.$
	c = 18.662(3) Å	$\gamma = 90^{\circ}.$
Volume	1755.1(5) Å ³	
Z	4	
Density (calculated)	1.326 Mg/m ³	
Absorption coefficient	0.093 mm ⁻¹	
F(000)	736	
Crystal size	0.39 x 0.30 x 0.21 mm	3
Theta range for data collection	2.18 to 24.97°.	
Index ranges	0<=h<=10, 0<=k<=12	, 0<=l<=22
Reflections collected	1852	
Independent reflections	1789	

 Table S11. Crystal data and structure refinement for compound 8b

21

Completeness to theta = 25.0°	99.9 %
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	1789 / 0 / 236
Goodness-of-fit on F ²	1.104
Final R indices [I>2sigma(I)]	R1 = 0.0385, wR2 = 0.0924
R indices (all data)	R1 = 0.0601, wR2 = 0.1013
Extinction coefficient	0.072(4)
Largest diff. peak and hole	0.129 and -0.117 e.Å ⁻³

	Х	у	Z	U(eq)	
F(1)	3539(3)	-3942(2)	3814(1)	106(1)	
O(1)	4905(3)	1008(3)	5459(1)	77(1)	
O(5)	1077(3)	1137(2)	6898(1)	68(1)	
N(4)	2901(2)	390(2)	6140(1)	46(1)	
N(17)	1700(3)	-2856(2)	7593(1)	57(1)	
C(2)	5334(4)	1100(3)	6187(2)	59(1)	
C(3)	4216(3)	285(3)	6607(2)	49(1)	
C(5)	1583(4)	983(3)	6294(2)	55(1)	
C(6)	907(4)	1408(3)	5591(2)	74(1)	
C(7)	2286(5)	1545(3)	5111(2)	75(1)	
C(7A)	3384(3)	564(3)	5398(2)	52(1)	
C(8)	3382(3)	-652(3)	4971(2)	53(1)	
C(9)	4176(5)	-717(4)	4331(2)	80(1)	
C(10)	4197(5)	-1821(5)	3933(2)	91(1)	
C(11)	3467(4)	-2845(4)	4192(2)	73(1)	
C(12)	2662(4)	-2828(3)	4808(2)	66(1)	
C(13)	2635(4)	-1712(3)	5198(2)	58(1)	
C(14)	4769(3)	-1054(3)	6702(2)	52(1)	

Table S12. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for compound **8b.** U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(15)	3634(3)	-1968(3)	7003(1)	47(1)
C(16)	2460(4)	-1750(3)	7453(2)	53(1)
C(18)	2360(3)	-3797(3)	7216(2)	50(1)
C(19)	1962(4)	-5068(3)	7152(2)	63(1)
C(20)	2831(5)	-5804(3)	6711(2)	77(1)
C(21)	4058(5)	-5314(3)	6340(2)	80(1)
C(22)	4464(4)	-4066(3)	6403(2)	64(1)
C(23)	3601(3)	-3285(3)	6843(1)	48(1)

F(1)-C(11)	1.363(4)
O(1)-C(2)	1.414(4)
O(1)-C(7A)	1.431(4)
O(5)-C(5)	1.223(4)
N(4)-C(5)	1.357(4)
N(4)-C(3)	1.458(3)
N(4)-C(7A)	1.460(4)
N(17)-C(18)	1.355(4)
N(17)-C(16)	1.379(4)
C(2)-C(3)	1.531(4)
C(3)-C(14)	1.515(4)
C(5)-C(6)	1.512(4)
C(6)-C(7)	1.521(5)
C(7)-C(7A)	1.522(5)
C(7A)-C(8)	1.518(4)
C(8)-C(13)	1.373(4)
C(8)-C(9)	1.388(4)
C(9)-C(10)	1.388(5)
C(10)-C(11)	1.354(5)
C(11)-C(12)	1.352(5)
C(12)-C(13)	1.392(4)

 Table S13. Bond lengths [Å] and angles [°] for compound 8b.

C(14)-C(15)	1.505(4)
C(15)-C(16)	1.357(4)
C(15)-C(23)	1.431(4)
C(18)-C(19)	1.400(4)
C(18)-C(23)	1.409(4)
C(19)-C(20)	1.371(5)
C(20)-C(21)	1.389(5)
C(21)-C(22)	1.379(5)
C(22)-C(23)	1.396(4)
C(2)-O(1)-C(7A)	110.6(2)
C(5)-N(4)-C(3)	126.5(2)
C(5)-N(4)-C(7A)	113.2(2)
C(3)-N(4)-C(7A)	110.0(2)
C(18)-N(17)-C(16)	108.7(2)
O(1)-C(2)-C(3)	106.2(2)
N(4)-C(3)-C(14)	113.6(2)
N(4)-C(3)-C(2)	99.6(2)
C(14)-C(3)-C(2)	112.5(2)
O(5)-C(5)-N(4)	124.9(3)
O(5)-C(5)-C(6)	128.0(3)
N(4)-C(5)-C(6)	107.1(3)
C(5)-C(6)-C(7)	102.8(3)
C(6)-C(7)-C(7A)	103.9(2)

O(1)-C(7A)-N(4)	104.0(2)
O(1)-C(7A)-C(8)	108.9(3)
N(4)-C(7A)-C(8)	112.9(2)
O(1)-C(7A)-C(7)	113.8(3)
N(4)-C(7A)-C(7)	103.5(3)
C(8)-C(7A)-C(7)	113.4(3)
C(13)-C(8)-C(9)	118.0(3)
C(13)-C(8)-C(7A)	122.5(2)
C(9)-C(8)-C(7A)	119.6(3)
C(8)-C(9)-C(10)	120.6(4)
C(11)-C(10)-C(9)	118.8(3)
C(12)-C(11)-C(10)	122.9(4)
C(12)-C(11)-F(1)	118.4(4)
C(10)-C(11)-F(1)	118.6(3)
C(11)-C(12)-C(13)	117.7(4)
C(8)-C(13)-C(12)	121.9(3)
C(15)-C(14)-C(3)	115.7(2)
C(16)-C(15)-C(23)	106.2(3)
C(16)-C(15)-C(14)	129.2(3)
C(23)-C(15)-C(14)	124.5(3)
C(15)-C(16)-N(17)	110.2(3)
N(17)-C(18)-C(19)	130.3(3)
N(17)-C(18)-C(23)	107.9(3)

C(19)-C(18)-C(23)	121.7(3)
C(20)-C(19)-C(18)	117.4(3)
C(19)-C(20)-C(21)	121.6(3)
C(22)-C(21)-C(20)	121.5(4)
C(21)-C(22)-C(23)	118.6(3)
C(22)-C(23)-C(18)	119.2(3)
C(22)-C(23)-C(15)	133.8(3)
C(18)-C(23)-C(15)	106.9(3)

	U11	U ²²	U ³³	U ²³	U ¹³	U ¹²	
 F(1)	93(2)	116(2)	109(2)	-55(2)	-4(2)	16(2)	
O (1)	65(2)	101(2)	65(1)	8(1)	2(1)	-38(2)	
O(5)	62(1)	65(1)	76(1)	-5(1)	18(1)	10(1)	
N(4)	44(1)	46(1)	48(1)	2(1)	2(1)	-1(1)	
N(17)	49(1)	64(2)	57(1)	7(1)	12(1)	-7(1)	
C(2)	56(2)	50(2)	71(2)	2(2)	-4(2)	-13(2)	
C(3)	43(2)	55(2)	48(2)	0(2)	-3(1)	-5(2)	
C(5)	48(2)	43(2)	74(2)	4(2)	0(2)	-3(2)	
C(6)	62(2)	66(2)	93(3)	16(2)	-16(2)	8(2)	
C(7)	96(3)	68(2)	62(2)	18(2)	-8(2)	0(2)	
C(7A)	48(2)	58(2)	51(2)	11(2)	0(2)	-8(2)	
C(8)	42(2)	71(2)	46(2)	6(2)	3(1)	-2(2)	
C(9)	81(3)	94(3)	67(2)	0(2)	20(2)	-16(2)	
C(10)	78(3)	123(4)	73(2)	-25(3)	26(2)	-11(3)	
C(11)	60(2)	90(3)	68(2)	-31(2)	-9(2)	10(2)	
C(12)	64(2)	71(2)	61(2)	-6(2)	-10(2)	-3(2)	
C(13)	56(2)	70(2)	47(2)	-2(2)	-1(2)	-7(2)	
C(14)	41(2)	56(2)	60(2)	7(2)	-3(1)	-2(2)	

Table S14. Anisotropic displacement parameters (Å²x 10³) for compound **8b**. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

C(15)	41(2)	51(2)	48(2)	7(1)	-5(1)	-3(1)	
C(16)	52(2)	51(2)	58(2)	1(2)	0(2)	2(2)	
C(18)	50(2)	52(2)	46(2)	8(1)	-8(2)	-2(2)	
C(19)	64(2)	61(2)	65(2)	16(2)	-10(2)	-10(2)	
C(20)	103(3)	48(2)	81(2)	5(2)	-5(2)	-8(2)	
C(21)	104(3)	54(2)	83(2)	5(2)	14(2)	13(2)	
C(22)	69(2)	59(2)	65(2)	11(2)	11(2)	5(2)	
C(23)	47(2)	52(2)	44(2)	8(1)	-2(1)	2(1)	

Table S15. Hydrogen bonds for compound **8b** [Å and °].

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
N(17)-H(17)O(5)#1	0.86	2.08	2.845(3)	147.8	

Symmetry transformations used to generate equivalent atoms:

#1 -x,y-1/2,-z+3/2

Depletion plot of compound 7s

Figure S1. Depletion plot of compound 7s.

<u>HRMS characterization of compound 7s</u>: Compound 7s displays its protonated molecule at m/z 477.1148 with the characteristic isotopic pattern of a di-chlorinated compound and elutes with retention time 17.9 min (Figure S2.A). In the MS/MS spectrum (Figure S2.B) is observed a fragment ion at m/z 304.0289 +/- 0.3 ppm and minor fragment ions at m/z 156.0809 +/- 0.6 ppm, m/z 174.0911 +/- 1.1 ppm and m/z 346.0398 +/- 0.6 ppm, which are in accordance with the proposed fragmentation mechanisms given in Figure S2.C.

Figure S2. A) Full HRMS ESI(+) spectrum of compound **7s**; **B)** HRMS/MS spectrum; and **C)** proposed fragmentation mechanism of ion at m/z 477.1143 ± 3.6 ppm, corresponding to the protonated molecule of **7s**.

Figure S3. A) Proposed MS/MS-ESI(+) fragmentation mechanism; and B) and C) HRMS/MS-ESI(+) spectra of ions at m/z 493.1100 and m/z 493.1098, corresponding to the protonated molecules of two close eluting mono-hydroxylated metabolites, **mono-OH-7s**, identified upon *in vitro* incubation of compound **7s** in human liver microsomes.

Figure S4. A) Proposed MS/MS-ESI(+) fragmentation mechanism; and **B)** HRMS/MS-ESI(+) spectrum of ion at m/z 509.1050 ± 4.1 ppm, corresponding to the di-hydroxylated metabolite identified in **7s** incubations in human liver microsomes.

NMR spectra

¹H NMR of compound 8a (CDCl₃)

¹³C NMR (APT) of compound **8b** (CDCl₃)

¹H NMR of compound **8c** (CDCl₃)

¹H NMR of compound **8d** (CDCl₃)

¹³C NMR of compound **8d** (CDCl₃)

¹H NMR of compound **8e** (CDCl₃)

¹H NMR of compound **8f** (CDCl₃)

¹H NMR of compound **8g** (CDCl₃)

¹³C NMR (APT) of compound 8g (CDCl₃)

¹H NMR of compound **7h** (CDCl₃)

¹H NMR of compound **7j** (CDCl₃)

¹³C NMR of compound **7j** (CDCl₃)

¹H NMR of compound **7**j' (CDCl₃)

¹H NMR of compound **7k** (CDCl₃)

¹³C NMR (APT) of compound 7k (CDCl₃)

¹³C NMR (APT) of compound **7l** (CDCl₃)

¹H NMR of compound **7m** (CDCl₃)

¹³C NMR (APT) of compound **7m** (CDCl₃)

¹³C NMR (APT) of compound **7n** (CDCl₃)

¹H NMR of compound **7o** (CDCl₃)

¹³C NMR (APT) of compound **70** (CDCl₃)

¹³C NMR (APT) of compound **7p** (DMSO-d6)

¹H NMR of compound **7q** (CDCl₃)

¹H NMR of compound **7r** (CDCl₃)

¹³C NMR (APT) of compound **7r** (CDCl₃)

¹H NMR of compound **7s** (CDCl₃)

¹³C NMR (APT) of compound **7s** (DMSO-d6)

¹³C NMR (APT) of compound **7t** (CDCl₃)

¹H NMR of compound **7u** (CDCl₃)

LC-MS data

Compound 7j: retention time 6.7 min; purity 98.87%.

Area % Report

Page 1 of 1

MS spectrum of compound 7j (m/z 381 [MH]+)

Note: red - blank spectrum (MeCN); green: sample spectrum.

Compound 7j': retention time 6.1 min; purity 96.95%.

Area % Report

1 2000

Data File: Method: Acquired: Printed:	C:\EZChrom El: C:\EZChrom El: 02-12-2020 18:0 03-02-2021 11:4	ite\Enterprise\Proje ite\Enterprise\Proje 19:57 42:24	cts\João Pais\02 cts\João Pais\M	2-12-2020 18-08- (ethods\QuickGr:	05VB64B_2.dat ad.met	
¹⁵⁰ -	L-7 40 0		1	1	1	
-						-
100 -				·		
*						-
≶ 50 -				·		
-	3 1180 1180 1280 1280 1280 1280					Ē
0 -						
1				20	25	 30
			Minutes			
L-7400 I	Results					
Rete	ntion Time	Area	Area %	Height	Height %	
	1,180	35763	1,61	2311	1,70	
	2,950	31670	1,43	1302	0,96	
	3,601	5936	0,27	399	0,29	
	4,276	1241	0,06	126	0,09	
	6,073	2140916	96,63	131678	96,95	

MS spectrum of compound 7j' (m/z 381 [MH]+ ion)

Note: red - blank spectrum (MeCN); green - sample spectrum.

Compound **7h**: retention time 6.4 min; purity 96.62%.

Page 1 of 1

Area % Report

MS spectrum of compound **7h** (m/z 381 [MH]+ ion)

Note: red - blank spectrum (MeCN); green: sample spectrum.

