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Abstract: Osteoarthritis (OA) is an age-related degenerative disease for which an effective disease-

modifying therapy is not available. Natural compounds derived from plants have been traditionally

used in the clinic to treat OA. Over the years, many studies have explored the treatment of OA using

natural extracts. Although various active natural extracts with broad application prospects have

been discovered, single compounds are more important for clinical trials than total natural extracts.

Moreover, although natural extracts exhibit minimal safety issues, the cytotoxicity and function of

all single compounds in a total extract remain unclear. Therefore, understanding single compounds

ﬁ:ecfgtg with the ability to inhibit catabolic factor expression is essential for developing therapeutic agents for

OA. This review describes effective single compounds recently obtained from natural extracts and
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OA by magnetic resonance imaging is difficult until the end of cartilage destruction. The
best treatment for OA is to maintain healthy cartilage and administer treatment at an
early stage, before the induction of severe osteoarthritic cartilage destruction. Although
there is currently no Food and Drug Administration-approved indication for using glu-
cosamine sulfate as supplement to treat OA, many elderly people use natural extracts to
protect the joint cartilage from inflammation. Previous reports suggested that Boswellia
serrata, Arnica montana, Apis mellifera, Psoralea corylifolia, Rhizome coptidis, Betulae cortex,
Harpagophytum procumbens, Phellodendron amurense, Symphytum officinalis, and Withania
somnifera suppressed proinflammatory cytokines and induced Mmps and Cox2 expression
by blocking NF-kB. Interestingly, Achyranthes bidentata and Bauhinia championii can regulate
the cell cycle to protect against osteoarthritic cartilage destruction [11,12]. Although the
mechanisms of action of natural extracts are ambiguous because these extracts contain
a mixture of various active compounds, previous reports suggested that natural extract
for osteoarthritis mainly regulate one pathway such as NF-kB pathway [11,12]. Thus,
it is important to determine the functional compounds present in natural extracts and
characterize the signaling pathway by each functional compound to develop suitable
therapeutic options.

1.2. OA Clinical Treatment

Treatment of degenerative arthritis has both prophylactic and therapeutic aspects; the
prophylactic aspects have been emphasized in the past, whereas the therapeutic aspects
have been highlighted in recent studies [11,12]. At present, clinical treatment of OA is
mainly divided into two modes: drug injection and oral administration. Drug injection
involves the direct injection of drugs, such as sodium hyaluronate and glucocorticoids, into
the knee cavity. Oral administration further includes two categories of drugs: synthetic
drugs, which include non-steroidal anti-inflammatory drugs; antipyretics; analgesics; and
cartilage-protecting drugs, such as chondroitin sulfate, and different natural compounds,
including glycosides, polyphenols, alkaloids, flavonoids, anthraquinones, curcumin, and
triptolide. These different drugs have varying pharmacological mechanisms and efficacy
in OA treatment.

2. Candidate Therapeutic Agents
2.1. Mixture Compounds
2.1.1. Cirsium japonicum var. maackii

Cirsium japonicum var. maackii (CJM), a member of the family composite, is a peren-
nial herb and medicinal plant listed in the Korea, China, and Japan pharmacopoeias as
a traditional antihemorrhagic [13], antihypertensive [14], and uretic medicine [15]. CJM
is reported to exert anti-inflammatory and anticancer effects and help prevent diabetic
complications and oxidative stress-related diseases. CJM also has neuroprotective effects;
in the cells treated with amyloid beta 25-35-treated cells, CJM decreased reactive oxygen
species (ROS) accumulation and pro-inflammatory cytokine levels and regulated the ex-
pression of apoptotic factors [8]. CJM extracts also show antihepatitis activity. For instance,
pretreatment with CJM extract decreased the hepatotoxicity of tert-butyl hydroperoxide as
well as oxidative damage and increased heme oxygenase 1 (HO-1) and nuclear factor ery-
throid 2-related factor 2 (NRF-2) expression [16]. CJM comprises several single compounds
and well-known compositions including apigenin, cirsimarin, cirsimaritin, hispidulin, and
luteolin [17-19].

A recent study reported that CJM can block osteoarthritic cartilage destruction [20].
CJM reduces the expression of MMP3, MMP13, ADAMTS4, ADAMTS5, and COX-2 in-
duced by IL-1p3, IL-6, IL-17, and tumor necrosis factor (TNF)-o and blocks destabilization
of medial meniscus (DMM)-induced cartilage degradation in a mouse model. Further, CJM
suppresses activation of hypoxia inducible factor 2 « (HIF-2«) that directly regulates the
expression of MMP3, MMP13, ADAMTS4, IL-6, and COX-2. Particularly, in mice subjected
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to intra-articular injection with adenovirus-HIF-2¢, oral administration of CJM resulted in
reduced HIF-2x-induced cartilage destruction compared to the control group [17].

2.1.2. Seomae Mugwort

Artemisia argyi, a natural herb used in food, tea, and traditional medicine, has antioxi-
dant, anti-inflammatory, and gastroprotective activities. Seomae mugwort (SM), a Korean
native variety of Artemisia arqyi, is a local-specific resource registered by the Korea Forest
Service (registration no. 42, 2013, 09. 27). SM contains several compounds, such as volatile
chemicals, polyunsaturated fatty acids, phenolic compounds, vitamin C, and essential
amino acids as well as high levels of jaceosidin and eupatilin. The anti-inflammatory
effects of SM have been demonstrated. A polyphenolic mixture of SM was shown to reduce
the activity of macrophages by inhibiting nitric oxide production, inducible nitric oxide
synthase and pro-inflammatory cytokine expression, mitogen-activated protein kinase
(MAPK) phosphorylation, and nuclear factor kappa-light-chain-enhancer of activated B
cells (NF-«B) activity in RAW 264.7 cells treated with lipopolysaccharide [21].

The medical effect of SM in OA has also been analyzed. In an in vitro study, SM sup-
pressed IL-13-induced MMP3 and MMP13 expression as well as IL-6 and TNF-« expression
and decreased the expression of ADAMTS4 and ADAMTS5. Upon oral administration
of SM to DMM-induced OA mice, protection against osteoarthritic cartilage degradation
was observed; the protective effect of SM on OA was related to suppression of NF-«B
and MAPK signaling because SM reduced inhibitor of. kB (IkB) degradation and JNK
phosphorylation [21].

2.1.3. Capparis spinosa L.

Capparis spinosa L. is a vine plant of the genus Capparis belonging to the white
cauliflower family. It has antibacterial, anti-inflammatory and antioxidant activities. The
methanol extracts of its flower buds mainly contain flavonoids, such as kaempferol and
quercetin derivatives [22].

Panico et al. [23] showed that methanol extracts of capers (10, 100, and 200 mg/kg)
inhibited the release of ROS and PGE, from IL-13-treated human chondrocytes in a
concentration-dependent manner; it also inhibited IL-13 expression in vitro. The release
of nitric oxide (NO) from human chondrocytes was increased, but the relationship was
not concentration dependent. Further, the extract reversed the decrease in glycosamino-
glycan (GAG) release from chondrocytes induced by IL-1f3 in a concentration-dependent
manner. These results indicate that the methanol extract of capers has cartilage-protective
effects and can be used to prevent and treat OA. Furthermore, Maresca et al. [24] demon-
strated that C. spinosa extracts relieved pain related to rheumatoid arthritis and OA after
a single administration. They used models of rheumatoid arthritis and OA induced by
intra-articular administration of complete Freund’s adjuvant and monosodium iodoac-
etate (MIA), respectively; different preparations of C. spinosa were acutely administered,
resulting in significantly reduced hypersensitivity to mechanical noxious stimuli as well as
spontaneous pain evaluated as hind limbs bearing alterations in both models.

2.2. Single Compounds
2.2.1. Flavonoids

Flavonoids are a group of phytonutrients found in most fruits and vegetables and
function as plant secondary metabolites. Flavonoids are well-known pigments present
in most angiosperm families and are present in all parts of the plants (Figure 1). These
compounds typically have a 15-carbon skeleton with a C6-C3-C6 structure including two
phenyl rings and a heterocyclic ring. Depending on the linkage between the phenyl ring
and heterocyclic ring as well as the degree of oxidation and unsaturation of the heterocyclic
ring, flavonoids are classified as flavones, flavonols, isoflavones, chalcones, and antho-
cyanins [25]. Many studies showed that flavonoids have antibacterial, anticancer, antiviral,
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antiallergic, and anti-inflammatory effects [26-29], with some flavonoids reported to aid
osteoarthritis. Here, we introduce flavonoids which have positive effects on osteoarthritis.
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Figure 1. Structures of single compounds.

Apigenin

Apigenin, i.e., 4 ,5,7-trihydroxyflavone, is a flavonoid abundant in C. japonicum var.
maackii, chamomile, parsley, celery, basil, and oregano [25-28]. Apigenin is reported
to exert antioxidant, anti-inflammatory, and antiapoptotic effects and suppress cancer
development. Apigenin also acts as an antidiabetic compound. In some studies, apigenin
was reported to improve renal dysfunction by decreasing the levels of transforming growth
factor-p31, type IV collagen, and fibronectin and reduce blood glucose levels by stimulating
glucose-induced insulin secretion [29,30].

Apigenin is also effective for treating OA. In an in vitro study, apigenin suppressed
the expression and proteolytic activity of MMP3 in rabbit articular chondrocytes and rabbit
knee joints; additionally, apigenin decreased the expression of MMP1, MMP3, MMP13,
a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-4, and -5
in rabbit articular chondrocytes treated with interleukin (IL)-1$ [31]. In an in vivo study,
apigenin attenuated cartilage erosion, bone loss, and catabolic factors and reduced the
expression of pro-inflammatory cytokines in an MIA-induced rat OA model [32]. The
mechanism of action of apigenin was further identified by Cho et al. [20], who reported
that apigenin blocked hypoxia-inducible factor (HIF)-2a-induced osteoarthritic cartilage
destruction, downregulated HIF-2o, MMP3, MMP13, ADAMTS4, IL-6, and COX-2 expres-
sion, and suppressed HIF-2x-induced MMP3, MMP13 and COX-2 expression by regulating
HIF-2x expression (Figure 2). This is because apigenin modulates the NF-«B and JNK
signaling pathways required for HIF-2o regulation. This study defined the inhibition mech-
anisms of apigenin against OA in vitro and in vivo; however, this study did not determine
the upstream molecules of NF-«B and JNK signaling. HIF-2« is a key regulator in OA, and
HIF-2 expression induces the expression of catabolic factors that induce OA by degrading
cartilage and inducing inflammation. Therefore, apigenin may be among the first drugs
targeting HIF-2oc against OA.
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Figure 2. Mechanism of action of apigenin, cirsimarin, and cirsimaritin.

Cirsimarin and Cirsimaritin

Cirsimarin and cirsimaritin are flavonoids present in C. japonicum var. maackii. Cirs
imaritin is 5,4’-dihydroxy-6,7-dimethoxyflavone and cirsimarin is cirsimaritin 4-O-glucoside
[33,34]. Cirsimarin is reported to exert an anti-lipogenic effect by reducing intra-abdominal
fat accretion [35]. In lipopolysaccharides-stimulated RAW 264.7 cells, cirsimarin inacti-
vated the Janus kinase/signal transducer as well as the activator of transcription and
interferon regulatory transcription factor-3 signaling pathways and decreased the expres-
sion of inducible nitric oxide synthase (iNOS) and COX2 as well as that of pro-inflammatory
cytokines, such as IL-6 and TNF-«, indicating that cirsimarin has anti-inflammatory ac-
tivity [18]. Further, cirsimarin has antilipolytic, antiproteinuric, and antioxidant activities.
Cirsimaritin also has anti-diabetes effects; cirsimaritin has been reported to reduce caspase-
8 and 3 activities and increase B-cell lymphoma 2 (BCL-2) expression [36]. Cirsimaritin
exerts anti-lung cancer effects on NCIH-520 cells by inhibiting proliferation compared to
other cell lines and increasing the levels of apoptosis and ROS [37]. Cirsimaritin can also
suppress influenza A virus replication by suppressing the NF-kB/p65, c-Jun N-terminal
kinase (JNK), and p38 signaling pathways but does not change viral attachment and release.
In line with its anti-inflammatory effects, cirsimaritin downregulates the expression of pro-
inflammatory cytokines, such as TNF-«, IL-1$3, IL-8, and IL-10, as well as COX2 [38]. The
in vivo effects of cirsimarin or cirsimaritin on OA have not been reported, although these
compounds were shown to have anti-inflammatory effects (Figure 2). Cho et al. performed
in vitro analysis and showed that cirsimarin and cirsimaritin decreased IL-13-induced
HIF-2a and COX2 expression but not MMP3 and MMP13 expression [20].
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Jaceosidin [5,7-dihydroxy-2-(4-hydroxy-3-methoxyphenyl)-6-methoxy-4H-chromen-
4-one], a major component of SM, is a pharmacologically active flavonoid [39]. Jaceosidin
reduces the oxidation of low-density lipoprotein, which is related to the inflammatory
process of atherosclerosis [40]. Jaceosidin also exerts anti-inflammatory effects on lung
injury by decreasing TNF-«, IL-6, and IL-13 expression and increasing IL-4 and IL-10
expression in bronchoalveolar lavage fluid [41]. Further, when db/db diabetic mice were
orally administered jaceosidin, their fasting blood glucose levels and insulin resistance
were decreased through upregulation of the insulin receptor pathway. Administration of
jaceosidin also attenuated the accumulation of glycation end products, decreased vascular
endothelial growth factor-alpha protein levels in the kidney, and increased copper- and
zinc-superoxide dismutase activity. Overall, jaceosidin has healing effects on diabetic
nephropathy [42].

Similar to SM, jaceosidin shows protective effects against OA. Jaceosidin suppresses IL-
1B-induced activation of NF-«B signaling and decreases IL-1f3-, IL-6-, and TNF-«x-induced
expression of MMP3 and MMP13 and ADAMTS4 and ADAMTSS expression [21]. In DMM-
induced OA mice, jaceosidin attenuated cartilage destruction; particularly, this protection
was more effective for combined treatment with jaceosidin and eupatilin (Figure 3) [21]. As
only Yang et al. have reported the effects of jaceosidin on OA, further studies are needed to
confirm this result.
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Figure 3. Mechanism of action of jaceosidin and eupatilin.

Eupatilin

Eupatilin [2-(3,4-dimethoxyphenyl)-5,7-dihydroxy-6-methox-ychromen-4-one] is a
pharmacologically active flavone and a type of flavonoid which has anti-cancer, antiox-
idant, and anti-inflammatory effects. Eupatilin can suppress renal cancer growth by
inhibiting the expression of miR-21, which targets yes-associated protein 1 [43]. Regarding
its anti-inflammatory effect, eupatilin downregulated the expression of pro-inflammatory
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cytokines, such as IL-1f3, TNF-«, and IL-6, in an anaphylactic shock model by regulating
NF-«B and MAPK signaling [44].

In some studies, eupatilin showed an inhibitory effect on OA. For instance, paw with-
drawal latency and threshold were increased when eupatilin was orally administered to
experimental OA model rats that had been injected MIA [45]. Eupatilin treatment reduced
the Mankin score (an OA disease grade), attenuated cartilage degradation, and decreased
the number of osteoclasts in the subchondral bone of an OA rat model [45]. Eupatilin
also downregulated the expression of MMP-13, IL-1§3, IL-6, iNOS, and nitrotyrosine in
an OA rat model compared to in the control [45]. iNOS synthesizes NO to contribute to
upregulating the expression of catabolic factors. The effects of eupatilin effects were also
investigated in vitro; eupatilin suppressed IL-1p-induced expression of MMP3, MMP13,
ADAMTSS, and tissue inhibitor of metalloproteinase-1 in human chondrocytes by reducing
JNK phosphorylation (Figure 3) [45]. In another study, eupatilin blocked the apoptosis
of chondrocytes stimulated with IL-1§3 by activating autophagy through upregulation of
sestrin2 expression and downregulation of mechanistic target of rapamycin phosphoryla-
tion [46]. However, Jeong et al. study used only an MIA OA model, which is not suitable
for evaluating mild progression of OA. In addition, Lou et al. did not evaluate autophagy
flux; there is limitation information on whether eupatilin-induced autophagy has positive
or negative effects on OA.

Genistein

Genistein is an isoflavone compound extracted from soybeans reported to exert anti-
cancer effects; it decreases HIF-1« levels in breast cancer cells by binding with the factor
inhibiting HIF site on HIF-1x [47]. Genistein is also reported to be effective against obesity
during menopause, as its administration suppresses estrogen-deficiency-induced obesity
and hepatic lipogenesis by reducing NF-«B activity in an ovariectomized and high-fat diet
rat model [48].

Genistein was also reported to suppress IL-13-induced apoptosis and increase colla-
gen II and aggrecan expression in human chondrocytes cell line, CHON-001 [49]. Through
flow cytometry analysis and enzyme-linked immunosorbent assay, genistein was found to
decrease chondrocyte apoptosis and TNF-« levels, respectively [49]. However, this study
did not define the apoptosis mechanisms, e.g., caspase dependent or independent. When
genistein was orally administrated in an anterior cruciate ligament transection rat model,
the collagen and acid glycosaminoglycan content was increased compared to that in the
control OA rat model, whereas the level of TNF-« and IL-1§3 decreased [49]. Addition-
ally, genistein showed anti-inflammatory effects in IL-13-stimulated human OA chondro-
cytes [50]. Genistein attenuated NOS2, COX2, and MMP expression in IL-1-stimulated
chondrocytes through activated nuclear factor erythroid 2-related factor 2 (NRF2)/heme
oxygenase-1 (HO-1) signaling. Overall, genistein may be useful as a potential treatment
for postmenopausal OA. Genistein, an estrogen mimic, is a phytoestrogen used to reduce
the adverse effects of estrogen and binds to estrogen receptors [51]. Genistein increased
the effects of insulin, resulting in enhanced sulfate-uptake by female bovine articular
chondrocytes in the absence of 173-estradiol [52].

Epigallocatechin Gallate (EGCG)

Green tea has high medicinal value and a long history of clinical application. Green
tea is rich in polyphenolic compounds, which mainly have anti-inflammatory, antioxidant,
and antitumor effects. Epigallo-catechin-3 gallate (EGCG) is the main active ingredient
isolated from tea polyphenols, and its antioxidant effect has shown protective effects on
erythrocytes. Insertion of EGCG into the outer monolayer of erythrocytes inhibited the
access and veneniferous effect of oxidant molecules into erythrocytes [53]. Furthermore,
EGCG can inhibit NO release and iNOS expression in human chondrocytes stimulated
with IL-1f3 in vitro; it may target the NF-kB signaling pathway by inhibiting degradation
of the NF-«B inhibitor, IkB«, in the cytoplasm, thereby inhibiting NF-kB transport to the
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nucleus [54]. EGCG can also inhibit the mRNA and protein expression of MMP-1, MMP-13,
and COX-2 in human or mouse chondrocytes under IL-1§3 stimulation, thereby inhibiting
GAG release from cartilage tissues [55,56]. Furthermore, numerous studies suggested that
EGCG can be used as a food dietary supplement for arthritis [57,58]

Butein

Butein (2/,3,4,4'-tetrahydroxy chalcone), a polyphenolic compound isolated from
the stem bark of cashews and Rhus verniciflua Stokes, has been reported to have various
biological activities, including antioxidant, antifibrosis, anti-inflammatory, and antitumor
activities [59].

Butein significantly inhibited IL-1p-induced PGE,, COX-2, iNOS, TNF-«, IL-6, and
MMP-13 expression [59,60]. Additionally, butein inhibited the mRNA or protein levels of
MMP-1, MMP-3, ADAMTS-4, and ADAMTS-5 in IL-13-exposed chondrocyte [59]. In vivo,
butein-treated mice exhibited less Safranin O loss and cartilage erosion as well as reduced
subchondral bone plate thickness and synovitis [59]. The mechanisms of this phenomenon
involved NF-kB signaling, e.g., IkB-« degradation and NF-«B p65 activation. However, the
effects of butein on rheumatoid arthritis have not been examined.

Wogonin

The root of Scutellaria baicalensis Georgi, a labial plant, contains flavonoids (baicalin,
wogonin, wogonoside, and wogonin) and is an active component of S. baicalensis. This plant
also contains small amounts of sterols and amino acids [61]. Scutellaria baicalensis exhibits
anti-inflammatory, immune-promoting, and sedative antipyretic properties. Additionally,
it has shown antimicrobial, antiallergic, hypotensive, diuretic, hypolipidemic, antiplatelet
aggregation and anticoagulant, hepatoprotective, and nephroprotective effects [62].

Wogonin inhibits ROS production and the suppression of catabolic markers includ-
ing IL-6, COX-2, iNOS, MMP-3, MMP-9, MMP-13 and ADAMTS-4 as well as s-GAG
release from IL-1(3-treated OA chondrocytes. The inhibitory effect of wogonin was me-
diated through the suppression of c-Fos/AP-1 activity at the transcriptional and post-
transcriptional levels in OA chondrocytes [63].

Morin

Moraxanthin (Morin) is a natural polyphenol originally isolated from members of
the Moraceae family. In vitro and in vivo studies showed that morin has very low toxicity
and is well-tolerated for long-term administration [64]. Qu et al. revealed that morin
effectively inhibited IL-1B-induced NF-«B activation and decreased the production of NO,
PGE;, MMP1, and MMP3. In addition, Nrf2 and HO-1 were increased by morin, and
knockdown of Nrf2 prevented its anti-inflammatory effects [65]. These effects have only
been demonstrated in vitro.

Another group obtained the same results for morin against IL-13-exposed rat primary
chondrocytes. Treatment with morin attenuated IL-13-induced proteoglycan loss in the
articular cartilage by suppressing catabolic factors, such as MMPs, inflammatory medjiators,
and pro-inflammatory cytokines [66]. Morin inhibited IL-1f-induced phosphorylation of
extracellular signal-regulated kinase and p38 in rat chondrocytes [67]. In an in vivo rat
OA model induced by anterior cruciate ligament transection, orally administered morin
suppressed cartilage degradation [67].

Quercetin

Quercetin is a polyhydroxyflavonoid compound with a chemical name of 3,3 4’5,
7-pentahydroxyflavonoids. Quercetin is widely present in the flowers, leaves, and fruits of
plants. Its pharmacological effects have been extensively studied, including its antioxidant,
anticancer, anti-inflammatory, antibacterial, and antiviral activities [68,69].

Oral administration of quercetin with glucosamine or chondroitin significantly im-
proved knee OA pain symptoms [70]. Quercetin can significantly reduce inflammatory
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mediators, such as IL-13, TNF-«, IL-6, and other cytokines [69]. Quercetin regulates the
expression of MMP-13 and has potential medicinal value [71]. Combined quercetin with
palmitoylethanolamide (palmitoylethanolamide) treatment in an OA rat model resulted in
low levels of IL-13 and TNF-« and improvement the pain index and histological scores [72].
In a type II collagen-immunized arthritis mouse model, quercetin alone (30 mg/kg) sig-
nificantly reduced the expression of IL-133, TNF-«, and IL-6 compared to in the control
group [73]. Quercetin is a potential therapeutic drug against OA, targeting TNF-«, IL-13,
and IL-6 [73]. Further, the protective effect of quercetin against OA was investigated in
tert-butyl hydroperoxide-stimulated rat chondrocytes and DMM rat OA model. Quercetin
treatment attenuated oxidative stress and endoplasmic reticulum stress through the sir-
tuinl/adenosine monophosphate-activated protein kinase signaling pathway [74].

2.2.2. Glycosides

Glycosides contain a glycosidic bond formed by binding of sugar with another
functional group to generate an O-, N-, or C-glycosidic bond. Glycosides include some
flavonoids and secondary metabolites in plants (Figure 1). The bioactivity of many gly-
cosides has been demonstrated, and traditional use of these compounds has been re-
ported [75-77]. Additionally, the effect of glycosides against osteoarthritis were reported,
with representative glycosides described below.

Paeoniflorin

Paeonia lactiflora Pallas is a traditional Chinese natural plant medicine that has been
used as an analgesic and anti-inflammatory agent and to improve the immune system for
thousands of years in China. The therapeutic effects of P. lactiflora Pallas have been listed
in the Chinese Experience Medicine books Treatise on Cold Pathogenic and Synopsis of Golden
Chamber [78,79]. Total glycoside of paeony (TGP) is extracted from the roots of P. lactiflora
Pallas. TGP includes effective components, such as paeoniflorin, hydroxyl-paeoniflorin,
paeonin, albiflorin, and benzoyl-paeoniflorin [80]. Paeoniflorin, [(1R,25,3R,5R,6R,85)-6-
hydroxy-8-methyl-3-[(25,3R 45,5S 6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-ylJoxy-9,10-
dioxatetracyclo[4.3.1.02,5.03,8]decan-2-ylJmethyl benzoate is a monoterpene glucoside, is
a major active component of TGP. Paeoniflorin accounts for more than or equal to 40%
of TGP.

A study found that paeoniflorin possessed extensive anti-inflammatory immunoregu-
latory effects. Paeoniflorin can diminish pain, joint swelling, synovial hypertrophy, bone
erosion, and cartilage degradation in collagen induced arthritis [81,82]. Further, paeoni-
florin suppressed the migration of fibroblast-like synoviocytes from patients with RA or
OA patients through blocking the CXCR4-Gpy-PI3K/AKT signaling [83]. Particularly,
some studies reported that paeoniflorin suppresses OA. IL-13-induced MMP1, MMP3,
and MMP13 expression was reduced and issue inhibitor of metalloproteinase-1 expression
was increased in chondrocytes pretreated with paeoniflorin [84,85]. Furthermore, paeoni-
florin suppressed NF-«B signaling, as indicated by increased inhibitor of NF-«B (IxkB) and
decreased p65 protein levels [84,85]. Another study reported that paeoniflorin blocked
chondrocyte apoptosis induced by IL-1p by downregulating Bcl2 and Bcl-2-associated
X-protein levels as well as caspase 3 activity; paeoniflorin also regulated protein kinase B
signaling by increasing phosphorylation of this protein [86]. The mechanisms of paeoni-
florin on OA have only been demonstrated in vitro; therefore, in vivo animal studies are
needed to clarify the mechanisms of the effects of paeoniflorin.

Clematis Saponins

Total Clematis saponin extract from Clematis Florida Thunb. This plant belongs to the
family Ranunculaceae, which includes a wide range of species with a large distribution. Its
chemical composition is relatively complex and includes triterpenoid saponins, flavones,
and lignans as the main active components. Clematis was found to have anti-inflammatory
and analgesic, antitumor, immunosuppressive, and antioxidant effects.
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The main mechanism of clematis saponins against OA is inhibition of chondrocyte
apoptosis. Total clematis saponin extract (300 pg/mL) can significantly inhibit staurosporin-
induced apoptosis of rat cartilage cell lines (RC]3.1 C.18). It prevents downregulation of
the expression of the intracellular antiapoptotic proteins, Bcl-xL and Bcl-2, induced by
staurosporin, and inhibits upregulation of the expression of the intracellular proapop-
totic protein Bcl-2-associated X-protein induced by staurosporin [87]. Further studies
suggest that total clematis saponins target chondrocyte apoptosis through the antiapop-
totic protein 14-3-3. The 14-3-3 protein can combine with proteins, such as Bad, to play
an antiapoptotic role. Total clematis saponins can inhibit the decrease in 14-3-3 protein
expression caused by staurosporin [88]. The total saponins of Tripterygium can also inhibit
the reduction in 14-3-3 protein expression with phospho-Ser112-Bad and Bcl-xL with the
phospho-Ser155-Bad induced by staurosporin [88]. A study of Clematis chinensis Osbeck
roots showed that treatment with the saponin-rich fraction of C. chinensis Osbeck sup-
pressed apoptosis, depolarization of the mitochondrial membrane, and caspase-3 activity
in rabbit chondrocytes exposed to sodium nitroprusside, a NO donor [89]. As inhibition
of chondrocyte apoptosis is the main mechanism of clematis saponins against OA, other
mechanisms should be investigated for drug development.

2.2.3. Non-Flavonoid Polyphenolics

Polyphenols, which are compounds with a polyphenol structure, comprise two sub-
groups: flavonoids and non-flavonoids (Figure 1). There are three subgroups of non-
flavonoids with different structures: phenolic acids, stilbenes, and lignans [90]. Phenolic
acids are hydroxybenzoates that contain some phenolic rings and at least one carboxylic
acid. Stilbenes commonly have a C6—C2-C6 structure; resveratrol is the most common
stilbene. Lignans are low-molecular weight polyphenols that exist as phenolic dimers with
a 2,3-dibenxylbutane structure.

Resveratrol

Resveratrol, a non-flavonoid polyphenolic compound, was first obtained from the
root of Veratrum grandiflorum in 1904. Accumulating evidence has shown that resveratrol
has anti-inflammatory, antioxidant, immunomodulatory, and antitumor activities.

Resveratrol significantly inhibited the increased clinical scores in rats with OA. Resver-
atrol suppressed TNF-«, IL-1f3, IL-6, and IL-18 expression and decreased caspase-3/9 activ-
ity in rats with OA [91]. iNOS, NF-kB, phosphorylated-p-AMP-activated protein kinase,
and sirtuin-1 protein expression was significantly suppressed, whereas HO-1 and Nrf-2
protein expression was stimulated in OA rats treated with resveratrol [91]. These results
indicate that resveratrol ameliorates inflammatory damage and protects against OA in a
rat model through NF-«kB and HO-1/Nrf-2 signaling. This study did not show histology
images, although animal experiments were performed. The anti-osteoarthritic effects of
resveratrol via NF-kB signaling were recently reported. For example, resveratrol regulates
NF-«B signaling in IL-13-induced chondrocyte injury [92]. The anti-inflammatory effects of
resveratrol are also involved in NF-«kB signaling [93,94] Another study showed that resvera-
trol can inhibit chondrocyte mitochondrial degradation and apoptosis caused by IL-1(3 and
that its antiapoptosis effect may be mediated through inhibition of caspase-3 expression,
cleavage of the DNA repair enzyme PARP, and upregulation of ROS levels induced by IL-
13 [95]. Resveratrol can also induce p53 protein degradation in a concentration-dependent
manner and inhibit chondrocyte apoptosis caused by p53. Resveratrol may thus exert
anti-OA effects by inhibiting chondrocyte apoptosis, and may target multiple proteins in
the chondrocyte apoptosis pathway [95]. Only the in vitro mechanism was determined,
which is a limitation of this study. Importantly, intra-articular injection of resveratrol
exerted a curative effect by preventing inflammation and cartilage destruction [96].
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Curcumin

Curcumin is the main active ingredient of turmeric (Curcuma longa L.) and has been
reported to exert anti-inflammatory, antioxidant, lipid-regulatory, antiviral, anti-infective,
antitumor, anticoagulation, anti-liver fibrosis, and anti-atherosclerotic effects. It also demon-
strates anti-cirrhosis activity, low toxicity, and limited adverse reactions. Curcumin is
currently one of the highest-selling natural food colors in the world. It is a food additive
approved by the World Health Organization, US Food and Drug Administration, and other
organizations in many countries [97].

Many studies previously reported the effect of curcumin on OA. In a mouse model
of OA, oral administration of curcumin delayed disease progression and decreased the
transcriptional level of catabolic factors, such as MMPs, ADAMTSS5, IL-1§3, and TNFg, in
chondrocytes [98]. In addition, topically applied curcumin nanoparticles were localized
within the infrapatellar fat pad and effectively reduced the expression of pro-inflammatory
mediators [98]. This study provides the first evidence that single compounds can reach
the articular cartilage area and exert therapeutic effects. A study using an MIA-induced
OA rat model, with intraperitoneal injection of curcumin, demonstrated decreased levels
of IL-6, IL-13, and TNF« in synovial fluid compared to in a control OA rat model [99].
Curcumin treatment also significantly reduced the level of MyD88 and IkB phosphorylation
in the NF-«B signaling pathway [99]. Additionally, it has been reported that dietary
supplementation or ointment application reduced osteoarthritic pain in a mouse model
and clinical trials [100,101].

2.2.4. Other Compounds

In addition to those mentioned above, many other natural compounds are found
in plants and animals and have been used for drug discovery or bioassays because of
their bioactivity. As natural compounds, secondary metabolites are used because they
confer advantages but are not necessary for survival. Among the compounds not in-
cluded in the previous category, some compounds reported as effective in osteoarthritis
are introduced below.

3'-Sialyllactose

Human milk contains up to 23 g/L oligosaccharides (Figure 1). These oligosaccha-
rides consist of a lactose core elongated with various carbohydrates, such as glucose (Glc),
galactose (Gal), fucose (Fuc), N-acetylglucosamine (GIcNAc), and N-acetylneuraminic
acid (Neu5Ac). Neu5Ac, named as sialic acid (SL), is the main monosaccharide represent-
ing variants of a 9-carbon carboxylated backbone and 2,3-sialyllactose (3'-SL), which are
mainly produced by sialyltransferase (ST3GAL). In a CIA model of rheumatoid arthritis in
mice, 3'-sialyllactose decreased paw swelling, the clinical score, pro-inflammatory cytokine
levels in the serum, autoantibody production, synovitis and pannus formation, and car-
tilage destruction. Its protective effect was related to NF-«B signaling by regulating p65
phosphorylation [102]. In atopic dermatitis, 3’-sialyllactose prevents skin inflammation.
Administration of 3'-sialyllactose reduced ear, epidermal, and dermal thickness in a mouse
model of atopic dermatitis, downregulated the expression of pro-inflammatory and atopic
dermatitis-related cytokines, and suppressed mast cell infiltration and IgE levels. Further,
3’-sialyllactose induced transforming growth factor-p-mediated Treg differentiation in
an in vitro system [103]. Experiments in both in vitro and ex vivo systems showed that
3’-sialyllactose restored IL-1p-induced reduction of COL2A1 expression as well as pro-
moted the accumulation of sulfated proteoglycan, which is a critical factor for cartilage
regeneration in OA development [104]. In addition, 3'-sialyllactose reduced IL-13-induced
up-regulation of MMP3, MMP13, and COX2 expression and showed similar effects in OA-
mimicking conditions induced by IL-6, IL-17, and TNF-« [104]. IL-1p-induced reduction of
SOX9 expression, a master transcription factor for COL2A1 expression, was also restored
by 3'-sialyllactose, supporting previous data that 3'-sialyllactose increased the expression
of COL2A1 [104]. 3'-Sialyllactose inhibited MAPK and NF-«B signaling by attenuating
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NF-kB

extracellular-signal-regulated kinase phosphorylation and IkB degradation, resulting in
decreased MMP and COX2 expression [104]. The effect of 3/-sialyllactose was confirmed
in a DMM-induced OA mouse model, demonstrating inhibition of cartilage degradation
(Figure 4) [104]. Studies of the effects of 3'-sialyllactose studies against rheumatoid arthritis
or OA rheumatoid arthritis have been performed using suitable in vitro and in vivo mouse
models, although other carbohydrate-type compounds must be evaluated.
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Figure 4. Structure of 3'-sialyllactose.

Triptolide (Tripterygium wilfordii Hook. f.)

Triptolide is a diterpene lactone compound containing three epoxy groups isolated
from Tripterygium wilfordii Hook. f (Figure 1). Triptolide has anti-inflammatory, immuno-
suppressive, and other activities, and has been widely used in the clinic. Recently, triptolide
was reported to exert anticancer effects; intravenous administration of triptolide in mice
along with H538 lung cancer cells through the tail vein led to altered microRNA expression
related to cell movement along with decreased cell migration and invasion [105]. Trip-
tolide also decreased pro-inflammatory cytokine-induced MMP3 and MMP13 expression
in primary rat, bovine, and human chondrocytes as well as in human chondrosarcoma cells
and synovial fibroblasts [106,107]. Furthermore, triptolide suppressed OA progression
in a DMM-mouse model and inhibited the expression of pro-inflammatory cytokines,
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which was related to downregulation of the expression of has-miR-20b, which targets the
NLR family pyrin domain containing 3 (NLRP3) gene. Triptolide downregulated has-
miR-20b expression, leading to increased and decreased NLRP3 and caspase-1 expression,
respectively [108]. The exact molecular mechanisms of the effects of triptolide on OA

remain unclear.

Hyaluronic Acid (HA)

HA, also known as hyaluronan, is a non-sulfated glycosaminoglycan expressed in
connective, epithelial, and neural tissues. HA is used to treat intra-articular injection and
alleviates pain in OA. The safety of intra-articular HA injections for OA is well-established;
however, the most common adverse effect of HA is a self-limited reaction at the injection
site [109]. According to a recent study, HA injection is more effective for osteoarthritic pain
in the long-term compared to corticosteroids. Further, the effects of HA and corticosteroids
in knee function improvement were shown to be similar [110]. Recently, to increase the
efficacy of pain relief by HA, combination approaches have been attempted using a PPAR-5

agonist or mesenchymal stem cells [111,112].

3. Conclusions

Based on the results of recent research, several active components from plants and
natural compounds are effective for treating OA (Figure 5). However, these studies have
many limitations.
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Figure 5. Mechanisms of action of single compounds against osteoarthritis.

For example, most studies were limited to in vitro experiments, lacking sufficient
animal and clinical experimental data. Additionally, preliminary studies were conducted
to determine the anti-OA and cartilage protective effects, with a lack of in-depth discussion
on the mechanism of action. Insufficient attention has been given to the toxicity and
side effects of the drugs. Moreover, the etiology and pathological mechanisms of OA are
unclear, greatly increasing the difficulties of drug research and making the research targets

considerably scattered.
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