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Abstract: In the present study we tested, using the microscale thermophoresis technique, a small
library of thionocarbamates, thiolocarbamates, sulfide and disulfide as potential lead compounds
for SARS-CoV2 Mpro drug design. The successfully identified binder is a representative of the
thionocarbamates group with a high potential for future modifications aiming for higher affinity and
solubility. The experimental analysis was extended by computational studies that show insufficient
accuracy of the simplest and widely applied approaches and underline the necessity of applying
more advanced methods to properly evaluate the affinity of potential SARS-CoV2 Mpro binders.

Keywords: Mpro; thiocarbamates; MST

1. Introduction

The highly conserved region in the Mpro, the substrate-binding pocket, gives rise to a
hope that compounds that inhibit the analogous protein in SARS-CoV-1 could also work
on SARS-CoV-2 and provide a fast cure, for the treatment of the COVID-19 patients [1].
However, previous computational studies have shown that such a strategy can be insuffi-
cient [2,3]. Indeed, the initial attempts of known inhibitors repositioning have failed and
none of the previously discovered compounds were applied in treatment [4–7].

In parallel, massive virtual screening campaigns were conducted, based on well-
known databases of approved drugs, large drug-like molecules [8–11] as well as in-house
small nature-based compounds [12–15], each providing a different set of potentially active
compounds.

Besides pure computational studies, experimental screening techniques were ap-
plied. The fluorescence resonance energy transfer technique was used to test thiophene-2-
carboxylate derivatives, quinoline derivatives, quercetins, peptidomimetics, anilides and
others on the SARS-CoV2 Mpro [16]. Several groups have used a high-throughput X-ray
crystallographic screening of drug libraries or small fragments against the SARS-CoV2-
Mpro [17].

Despite over one year of battle against the COVID-19 pandemic, only a few examples
of successful experimentally verified Mpro binders were reported [17–20]. Since the Mpro
is a cysteine protease, the drug candidates are targeted toward cysteine residue. A good
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example is the first potential drug developed by Pfizer that has just started clinical trials [21].
In the structure of this drug, there are 4 amide bonds, including an intramolecular one.
PF-07321332 compound features two five-membered rings (pyrrolidine and γ-lactam) as
well as trifluoroamide, nitrile and alkyl moieties (tert-butyl and isopropyl) [22].

The other one of the intensively tested groups of compounds targeting the active
site of SARS-CoV2-Mpro are sulfur-containing derivatives, known also for their antivi-
ral, antibacterial, cytotoxic or antiallergic activity [23,24]. This group includes com-
pounds, such as: Disulfiram (IC50 = 9.35 ± 0.18 µM), PX-12 (IC50 = 21.39 ± 7.06 µM),
Tideglusib (IC50 = 1.55 ± 0.30 µM), Ritonavir (IC50 = 13.7 ± 1.1 µM), Montelukast sodium
(IC50 = 13.5 ± 1.0 µM), Cimetidine (Ki = ~3.27 µM) and others [9,17,25–29] (Figure 1).
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Figure 1. The structures of the compounds with known binding affinity.

In this paper, we have applied the microscale thermophoresis technique to investi-
gate the binding of a small library of in-house synthesized sulfur-containing compounds
including thiocarbamates (thiono- and thiolocarbamates), sulfide and disulfide (Figure 2).

Interestingly, within the tested group, we have found one thionocarbamate with the
binding affinity in the millimolar (mM) range, whereas corresponding thiolocarbamates
did not show any binding to the SARS-CoV2-Mpro. To explain the reasons for such dif-
ferences we have performed a series of in silico simulations, such as classical molecular
docking, molecular dynamics and advanced MM/GBSA calculations. We found that dock-
ing procedures are unable to reproduce the binding affinity, but the MD-based MM/GBSA
calculations show, that the thionocarbamate compound is capable to form an additional
hydrogen bond and thus stabilize its position in the Mpro active site, whereas the corre-
sponding thiolocarbamate tends to leave the active site. A rather simple structure of the
best compound is advantageous as it can be used as a lead for optimization and in further
search for potential SARS-CoV2-Mpro inhibitors.
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Figure 3. The workflow of experiments. Experimental studies (orange boxes) were followed by in
silico analysis (unsuccessful-red boxes, successful green box) aiming for explanation of the observed
results.

2.1. Thermal Stability Analysis

Prior to binding affinity experiments, the nanoDSF method was used to test the sta-
bility of the SARS-CoV-2 Mpro protein. The effect on the protein stability at different
concentrations of DMSO (ranging from 0 to 5% v/v) and in the presence of the tested
compounds was determined. The results indicate that the amount of DMSO in solution
should be lower than 2.5% not to affect the protein stability. A higher concentration of
DMSO (5% v/v) in solution lowers the Tm value from 55.8 ◦C to 54.83 ◦C (Supplemen-
tary Materials Figure S1; Supplementary Materials Table S1).

The effect of the compounds on the stability of the protein was examined with the
highest possible concentration of the compounds in the solution limited by their solubility
and DMSO threshold set at 1.25%. Among the compounds C1-C10, only 1 compound,
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namely C6 visibly affected protein stability in the highest possible concentration (250 µM),
hence we had to decrease its concentration to 125 µM. Furthermore, we observed a slight
effect of the C3 and C4 on the stability of the protein (Supplementary Materials Figure S2;
Supplementary Materials Table S2).

2.2. The Binding Affinity of the Compounds to the SARS-CoV-2 Mpro Protein

The binding affinity of the compounds to the SARS-CoV-2 Mpro protein was measured
during the MST experiment using a mixture of a labeled and unlabeled protein. This
technique is based on the fluorescence of the tag, which was used to label the protein and
thus requires none or very low intrinsic fluorescence of the ligands when compared to
the analyzed protein. The native fluorescence of the compounds C1-C10 was measured
and compared to the fluorescence of the mixture of the SARS-CoV-2 Mpro proteins. None
of the compounds exhibited substantial fluorescence and thus they were used in other
experiments in the whole tested concentration range.

The MST assay showed that only one compound (C4) binds to the SARS-CoV-2
Mpro protein (Figure 4). It is visible that the binding curves lack the points in the higher
concentration range, which was not achievable due to the solubility limitations. For this
reason, only the approximated value of the Kd 4 mM ± 15 mM was estimated.
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2.3. Molecular Docking of Sulfur-Containing Compounds

All synthesized compounds were considered in the docking analysis. Initial docking
was done with the AutoDock tools for four models: crystallographic structures without
water molecules (6Y2E_no_wat, 6LU7_no_wat) and structures containing crystal water
(6Y2E_wat, 6LU7_wat) (Supplementary Materials Table S3). The docking box was defined
by the active site amino acids: His41 and Cys145. The presence of the water molecules
had no significant effect on binding affinity value. The presence of the N3 inhibitor in the
crystal structure of the protein influenced the obtained results. Binding affinity was mostly
lower for the 6LU7 protein structure than for 6Y2E. Most of the compounds were scored
with a binding free energy of approximately −6.0 kcal/mol. Compounds with the best
scores were: −8.7 kcal/mol for C6 ligand and 6LU7_no_wat receptor and −6.7 kcal/mol
for C10 ligand and 6Y2E_no_wat receptor. Free energies obtained for the compounds with
experimentally determined Kd (C4) were −6.1 kcal/mol for 6LU7 and −5.1 kcal/mol for
6Y2E, which does not correspond to the best score.

Since the AutoDock docking procedure could not reproduce the experimental result
we aimed for a more challenging docking protocol with prior validation regarding the
prediction of crystallographically determined binding modes. Using both smina and Glide
SP protocols, we established an ensemble of eight structures that could correctly reproduce
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70.4% and 96.3% of 27 cocrystallized ligands within an RMSD (Root Mean Square Deviation)
threshold of 2.5 Å, respectively. The smina docking scores ranged from −5.9 kcal/mol for
C1 to −7.5 kcal/mol for C10, while the Glide scores ranged from −5.5 kcal/mol for C4 and
C5 to −7.3 kcal/mol for C9 and C10. The docking scores from Glide and smina presented
a Pearson correlation coefficient of 0.84 (Supplementary Materials Table S4). After docking,
the obtained complexes with Glide were subjected to classical MD simulations with a
duration of 50 ns (explicit water, Desmond software) to observe whether the binding of the
predicted inhibitors is subjective to spontaneous changes; additionally, the binding free
energy of each ligand was quantified using the MM/GBSA protocol. The calculated energy
values varied to a great extent and ranged from −29.1 to −49.0 kcal/mol for C5 and C8,
respectively. Visual inspection of the trajectories with the closely related compounds C4
and C5 revealed the dissociation of the latter, while C4 presented an additional hydrogen
bond in comparison to the initial starting conformation obtained from docking (Figure 5C).

Pharmaceuticals 2021, 14, x FOR PEER REVIEW 5 of 11 
 

 

reproduce 70.4% and 96.3% of 27 cocrystallized ligands within an RMSD (Root Mean 
Square Deviation) threshold of 2.5 Å, respectively. The smina docking scores ranged from 
−5.9 kcal/mol for C1 to −7.5 kcal/mol for C10, while the Glide scores ranged from −5.5 
kcal/mol for C4 and C5 to −7.3 kcal/mol for C9 and C10. The docking scores from Glide 
and smina presented a Pearson correlation coefficient of 0.84 (Supplementary Materials, 
Table S4). After docking, the obtained complexes with Glide were subjected to classical 
MD simulations with a duration of 50 ns (explicit water, Desmond software) to observe 
whether the binding of the predicted inhibitors is subjective to spontaneous changes; ad-
ditionally, the binding free energy of each ligand was quantified using the MM/GBSA 
protocol. The calculated energy values varied to a great extent and ranged from −29.1 to 
−49.0 kcal/mol for C5 and C8, respectively. Visual inspection of the trajectories with the 
closely related compounds C4 and C5 revealed the dissociation of the latter, while C4 
presented an additional hydrogen bond in comparison to the initial starting conformation 
obtained from docking (Figure 5C). 

 
Figure 5. The comparison of the binding of the C4 and C5 compounds. (A) The best pose of the C4 
compound (Glide docking). (B) The best pose of the C5 compound (Glide docking). (C) The last 
frame from the MD simulations of the Mpro protein with bound C4 compound showing an addi-
tional hydrogen bond. In case of the C5 compound, the ligand has left the binding site spontane-
ously. 

3. Discussion 
Sulfur-containing derivatives are well known for their antiviral and antibacterial ac-

tivities and are often used against enzymes relying on catalytically active cysteine in their 
active site, such as the SARS-CoV2-Mpro. Therefore, we tested a small group of rather 
simple sulfur-containing compounds that could be used as a core structure for the design 
of novel inhibitors. We sought some initial binding affinity in the limited library of thio-
carbamates (thiono- and thiolocarbamates), sulfide and disulfide using the microscale 
thermophoresis technique. The library was designed in such a way that all compounds 
can be further used as a lead and can be easily synthetically modified to provide a vast 
library of analogs. Due to a high similarity (homology) of the compounds, we aimed at 
elucidating fine differences in structural and electronic properties driving their affinity 
towards the active site of the SARS-CoV2-Mpro. 
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C4 compound (Glide docking). (B) The best pose of the C5 compound (Glide docking). (C) The last
frame from the MD simulations of the Mpro protein with bound C4 compound showing an additional
hydrogen bond. In case of the C5 compound, the ligand has left the binding site spontaneously.

3. Discussion

Sulfur-containing derivatives are well known for their antiviral and antibacterial
activities and are often used against enzymes relying on catalytically active cysteine in
their active site, such as the SARS-CoV2-Mpro. Therefore, we tested a small group of
rather simple sulfur-containing compounds that could be used as a core structure for the
design of novel inhibitors. We sought some initial binding affinity in the limited library of
thiocarbamates (thiono- and thiolocarbamates), sulfide and disulfide using the microscale
thermophoresis technique. The library was designed in such a way that all compounds can
be further used as a lead and can be easily synthetically modified to provide a vast library
of analogs. Due to a high similarity (homology) of the compounds, we aimed at elucidating
fine differences in structural and electronic properties driving their affinity towards the
active site of the SARS-CoV2-Mpro.

The measurement of the binding affinity yielded only a single hit, a representative
of the thionocarbamate group with Kd estimated in the mM range. Interestingly, for a
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corresponding thiolocarbamate, no binding could be observed. Such situations allow
the challenging of several in silico approaches to prove their applicability in the proper
assignment of the compound affinity.

The computational methods are believed to significantly improve the success rate in
discovering the initial binders.

However, one of the first in silico studies focused on the SARS-CoV2-Mpro 2 pointed
out that this protein can be a challenging system for computational chemists and more
advanced computational (and thus also time and cost-demanding) techniques are required
to provide accurate results. Indeed, when we applied the conceptually simplest proce-
dures for our small set, they failed in recognizing the active compound and the predicted
binding affinity for the experimentally verified binder was among the worst ones (Sup-
plementary Materials Table S5). Therefore, we applied an advanced docking protocol
followed by complex MM/GBSA calculations aiming to detect a correlation between the
predicted binding free energies of the analyzed compounds and the observation that C4
is the only ligand among them with an affinity toward the dimeric form of Mpro. The
advanced ensemble docking procedure provides much more reliable results than the clas-
sical docking protocol used in the first step [30], however, in our case both advanced
protocols were unable to reproduce experimentally observed data. The more elaborate
MD-based MM/GBSA calculations predicted C4 among the better binders. Interestingly,
C4 presented the best ligand efficiency among all compounds assessed here. Even though
ligand efficiency does not represent a measurable physical or thermodynamic property
and depends on the reported concentration or energy unit, it can be a useful property
in computational chemistry projects [31]. Due to the often strong influence of the van
der Waals term in scoring functions and post-scoring methods, such as MM/GBSA [32],
scaling the predicted affinities of comparable ligands with the number of heavy atoms can
be advantageous [31]. Further, larger ligands with a high number of heavy atoms often
suffer from a larger entropic penalty upon binding to a binding pocket due to the loss of
more degrees of freedom associated with more rotatable bonds. Entropy is often treated
insufficiently in the current scoring methodology, which is mostly focused on enthalpic
contributions, even though it can largely contribute to the binding affinity and compensate
(or even reverse) gains from enthalpically favorable interactions [33,34]. Thus, in the case
of the congeneric ligands studied here, the improved ligand efficiency of C4 compared to
the remaining compounds, stands in correlation with experiments suggesting this to be a
valuable parameter in Mpro inhibitor design.

Due to the remarkable similarity between C4 and C5, which only differ by being
an O-thiocarbamate and S-thiocarbamate respectively, their different binding behavior
toward Mpro is especially interesting. While the binding modes obtained from molecular
docking were inconclusive besides the cis-orientation of C4, the MD simulations started
using the docking complexes presented significant differences among the ligands. During
the 50 ns simulation, C5 dissociated from the enzyme while C4 formed an additional
hydrogen bond to the protein (Figure 5). Thus, the time-evolved insight provided from
these simulations offered a potential explanation for the experimentally observed affinity
differences. Other similar ligands of C4 and C5, which did not present a measurable
binding affinity, include their closely-related derivatives C3 and C6. In these ligands, the
benzyl moiety was replaced with a phenyl group, which could not be accommodated at
the same position without significantly perturbing the placement of the remaining ligand
according to the obtained docking poses. This might explain the experimental behavior of
these ligands.

A simple method of synthesizing thiocarbamates allows flexible substitution of both
functional groups of the C4 compound and thus opens doors for substantial improvement
of the solubility and binding properties of C4 derivatives. The aromatic ring can incorporate
heteroatoms or can hold different electron-donating or withdrawing substituents which
can improve binding without significant enlargement of the group fitting to the active
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site cavity. Similarly, the allyl moiety can be modified and provide donors or acceptors
increasing the variability of the library of C4 compound derivatives.

In summary, our study highlights an interesting compound that can be used as a
lead structure for the design of novel SARS-CoV2-MPro inhibitors. Its simple chemicals
structure allows for facile future modification aiming for the improvement of binding
affinity, solubility and pharmacokinetic properties. Additionally, our studies indicate the
drawbacks in the application of the simplest in silico procedures for SARS-CoV2-MPro
inhibitors discovery study.

4. Materials and Methods
4.1. Protein Preparation

The concentration of the purified SARS-CoV-2 Mpro protein was measured using the
NanoDrop Spectrophotometer and BCA assay (Pierce™ BCA Protein Assay Kit, Thermo
Fisher Scientific, Rockford, IL, USA) based on the beforehand prepared calibration curve on
the bovine serum albumin. In the next step, a part of the Mpro protein was labeled using
the Protein Labeling Kit RED-NHS 2nd Generation (NanoTemper Technologies, Munich,
Germany) according to the manufacturer’s instructions. The concentration of the protein
in the labeling mixture was adjusted to 10 µM and the molar dye:protein ratio was 3:1. The
labeling reaction was performed in the labeling buffer NHS (130 mM NaHCO3, 50 mM
NaCl, pH 8.2–8.3) at room temperature for 30 min in the dark. The unbound dye was
removed using a dye removal column equilibrated with HEPES buffer. The degree of
labeling (DOL parameter) was determined using UV/VIS spectrophotometry at 650 and
205 nm. The achieved DOL value was around 1.0. After the labeling, the labeled protein
solution was supplemented with Pluronic F-127 with the final concentration of 0.01% (w/v).

4.2. Compounds Preparation

The compounds C1-C10 (synthesized in-house, characteristics of which are presented
in the Supplementary Materials) [35–37] were dissolved in DMSO purged with Argon (due
to their low solubility in water) to the final concentration of 20 mM.

4.3. Thermal Stability Analysis
4.3.1. The Influence of DMSO Concentration on the SARS-CoV-2 Mpro Protein Stability

The 3 µM unlabeled SARS-CoV-2 Mpro solution was tested with a series of concen-
trations of DMSO (from 0 to 5% v/v) after 2 hr incubation at room temperature. The
experiment was performed on Standard Capillaries Prometheus NT.48 (NanoTemper, Mu-
nich, Germany) in 2 technical repetitions using the Prometheus NT.48 apparatus with the
following parameters: excitation power: 100%, initial temperature: 20 ◦C, final temperature:
80 ◦C and slope: 2 ◦C/min.

4.3.2. Thermal Stability of the SARS-CoV-2 Mpro with the Examined Compounds

Each solution of the examined compounds or DMSO were mixed with 4 µM unlabeled
SARS-CoV-2 Mpro solution in HEPES buffer with 0.01% (w/v) of Pluronic F-127 in separate
samples. The final concentration of compound C8: 62.5 µM; C1, C6, C9, C10: 125 µM and
C2, C3, C4, C5, C6, C7: 250 µM. The blank sample consisted of the Mpro protein with 1.25%
DMSO and without any of the compounds.

The experiment was performed on Standard Capillaries Prometheus NT.48 in two
technical repetitions using the Prometheus NT.48 apparatus with the following parameters:
excitation power: 100%, initial temperature: 20 ◦C, final temperature: 70 ◦C and slope:
2 ◦C/min.
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4.4. The Binding Affinity of the Compounds to the SARS-CoV-2 Mpro Protein
4.4.1. The Intrinsic Fluorescence of the Compounds

The assessment of the fluorescence of the compounds was carried out based on the
comparison of the fluorescence of the compound solutions in HEPES buffer with 0.01%
(w/v) of Pluronic F-127 and the SARS-CoV-2 Mpro protein.

The final concentration of compound C8: 62.5 µM; C1, C6, C9 and C10: 125 µM, C2,
C3, C4, C5, C7: 250 µM and the mixture of labeled and unlabeled SARS-CoV-2 Mpro
protein solution: 0.075 µM and 4 µM, respectively. The experiment was performed on
Standard Capillary Chips in 2 technical repetitions using the Monolith NT. Automated
with the following parameters: excitation power: 40% Nano-RED, MST Power: medium,
Before MST: 3 s, MST-On Time 10 s and After MST: 1 s.

4.4.2. Binding Affinity Measurement-MST Experiment

During the MST experiments, the concentration of the proteins in solution was kept
constant while the compounds were titrated. The dilution series of the compounds were
prepared by applying a 3:1 ratio with initial concentrations of the compounds: C8: 125 µM;
C1, C6, C9 and C10: 250 µM, C2, C3, C4, C5, C7: 500 µM. HEPES buffer supplemented with
0.01% (w/v) of Pluronic F-127 was used to dilute the stock solutions of the compounds to
the initial concentrations (mentioned above). The same buffer with an appropriate amount
of DMSO (2.5% v/v) was used as the dilution buffer in the dilution series. Next, a constant
amount of the mixture of the proteins in the HEPES buffer without DMSO (concentration
of the labeled protein: 0.150 µM, unlabeled protein: 8 µM) was added in 1:1 volume ratio to
the respective diluted compounds resulting in the final concentration of the labeled protein:
0.075 µM, unlabeled protein: 4 µM and the final concentration of the compounds starting
from C8: 62.5 µM; C1, C6, C9 and C10: 125 µM, C2, C3, C4, C5, C7: 250 µM.

The experiments were performed in 3 independent repetitions with the following
parameters of the analysis: Standard Capillary Chips, excitation power: 40%, Nano-Red,
MST Power: medium, Before MST: 3 s, MST-On Time 10 s and After MST: 1 s.

4.5. Molecular Docking of Sulfur-Containing Compounds

Two crystal structures of SARS-CoV-2 main protease: apo enzyme (PDB ID: 6Y2E)
and enzyme bound to N3 inhibitor (PDB ID: 6LU7) were downloaded from the Protein
Data Bank [38]. N3 ligand from the 6LU7 crystal structure was removed. Initial docking
was performed using AutoDock tools [39] on four models: crystallographic structures
without water molecules (6Y2E_no_wat, 6LU7_no_wat) and structures containing crystal
water (6Y2E_wat, 6LU7_wat). H++ server [40] was used to protonate the protein structures
using standard parameters and pH 7.4. The 3D structures of 10 ligands from the library of
sulfur-containing compounds were prepared using the ChemAxon MarvinSketch 19.22.0
and OpenBabel 2.3.2 software [41]. The docking box was defined by the active site amino
acids: His41 and Cys145. We retained the ten best-scored poses from docking.

Next, we validated the Glide standard-precision (SP) [42] and smina [43] protocols
regarding their capability to reproduce crystallographic binding modes in an ensemble
docking setting. We evaluated ensembles of up to eight structures from 39 crystal struc-
tures with 27 non-covalent cocrystallized ligands at an RMSD threshold of 2.5 Å. The
best-performing ensemble was retained for further procedures. For this procedure, the
protein structures were treated with the Protein Preparation Wizard [44] in the Schrodinger
Small-Molecule Drug Discovery Suite [45] with default specifications except for a pH
value of 7.4 for steps concerning protonation. For the following production phase, we
preprocessed the 10 ligand structures with the LigPrep [46] routine in Maestro to obtain
energy-minimized 3D conformers with the OPLS3e force field and protonation states at
pH 7.4 were predicted with Epik. We then docked the ligands to the selected ensemble
and retained complexes with the lowest binding free energy of each compound (Glide
score). The Pearson correlation coefficient between the docking scores from Glide and
smina was computed using the pearsonr routine included in the scipy python package.
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Subsequent molecular dynamics (MD) simulations were conducted with the Desmond
(v2019-1) [47] engine using the OPLS_2005 force field in an NPT ensemble. While the
temperature was controlled by the Nose–Hoover thermostat, atmospheric pressure was
maintained by the Martyna–Tobias–Klein barostat. Long-range forces were treated with the
u-series algorithm [48] with a cutoff of 9 Å for short-range interactions. Bonds to hydrogen
atoms were constrained with the M-SHAKE algorithm. The orthorhombic periodic systems
were solvated with TIP3P water molecules and an appropriate number of counter ions
was added to equalize the net system charge to zero. After the default relaxation protocol,
every complex was simulated for 50 ns at 310 K. By default, the time step of the RESPA
integrator was set to 2 fs. Atomic coordinates were saved at an interval of 10 ps. The MD
simulations were then processed with the Molecular Mechanics Generalized Born Surface
Area (MM/GBSA) protocol using the therma_mmgbsa.py script included in Maestro to
obtain binding free energies for each ligand. We selected every second frame of the last
10 ns to be processed by the routine and averaged the final energies (triplicas). To determine
the “ligand efficiency” descriptor values of each compound, we divided the calculated
binding energy values as well as the docking scores by the number of heavy atoms.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ph14111153/s1, Chemical characteristics and information about synthesis of C1-C10 com-
pounds, Table S1: The measured melting temperatures of SARS-CoV-2 Mpro in HEPES buffer with
different DMSO concentration, Table S2: The measured melting temperatures of SARS-CoV-2 Mpro in
HEPES buffer with tested compounds, Table S3: Binding affinities [kcal/mol] of sulfur-containing
compounds, Table S4: Results from ensemble docking, Table S5.: Results from molecular docking
with smina and Glide, as well as binding free energy obtained from the MM/GBSA protocol and
the related ligand efficiency. The ligand efficiency was determined by dividing ∆GMM/GBSA by
the number of heavy atoms of the respective ligand, Figure S1: The comparison of the stability of
SARS-CoV-2 Mpro in buffer and with different DMSO concentration, Figure S2: The analysis of the
influence of the compounds C1-C10 on the thermostability of the SARS-CoV-2 Mpro.
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