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Abstract: As a multifactorial and multiorgan syndrome, cancer cachexia is associated with decreased
tolerance to antitumor treatments and increased morbidity and mortality rates. The current ap-
proaches for the treatment of this syndrome are not always effective and well established. Drug
repurposing or repositioning consists of the investigation of pharmacological components that are
already available or in clinical trials for certain diseases and explores if they can be used for new
indications. Its advantages comparing to de novo drugs development are the reduced amount of time
spent and costs. In this paper, we selected drugs already available or in clinical trials for non-cachexia
indications and that are related to the pathways and molecular components involved in the different
phenotypes of cancer cachexia syndrome. Thus, we introduce known drugs as possible candidates
for drug repurposing in the treatment of cancer-induced cachexia.

Keywords: cancer; cachexia; drug repurposing; drug repositioning

1. Introduction

Cachexia is a syndrome that involves different tissues and metabolic pathways, and
it is related with poor prognosis in cancer patients. Anorexia, asthenia, sarcopenia, and
anaemia are present features in cancer cachexia along with a reduction of response to
anabolic signals, domination of a catabolic state, energy expenditure imbalance, and
systemic inflammation. Continued loss of weight, adipose tissue, and skeletal muscle are
the results of these systemic actions [1].

According to the international consensus published in 2011, cancer cachexia is defined
by ≥5% weight loss in the previous 6 months or weight loss ≥ 2% with either a body
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mass index (BMI) of 20 kg/m2 or sarcopenia. Moreover, cancer cachexia has three phases,
including pre-cachexia, cachexia, and refractory cachexia [2].

The presence of a variety of divergent pro-cachectic mechanisms makes it complex
to define a single standard treatment for cachectic patients [2]. According to the latest
American Society of Clinical Oncology (ASCO) guideline on the management of cancer
cachexia, treatment interventions can be divided into three groups: nutritional interven-
tions, pharmacological interventions, and other interventions, such as exercise [3]. As
stated in ASCO guidelines of management of cancer cachexia, there are no FDA-approved
drugs to ameliorate the complications of cancer cachexia, and clinicians may choose not to
prescribe any medications for the treatment of cancer cachexia. However, there are some
evidence-based recommended drugs, such as megestrol acetate, which improves appetite
and weight gain, although it is mainly correlated to increased adipose tissue mass [3].

Drug repurposing or repositioning is the strategy to use drugs approved or in clinical
trials for certain diseases and to investigate if they can be used for new indications [4].
The advantages of drug repurposing comparing to the new development of drugs are the
considerable amount of time and cost reduction. In addition, there is already available
information concerning the safety of the drugs [4]. As an example of successful cases of
drug repurposing, there is thalidomide, which was initially used for morning sickness
during pregnancy but eventually withdrawn from the market because of its teratogenicity
and is now repurposed for refractory multiple myeloma excluding pregnant women [4].

In this work, based on the different phenotypes and molecular components associated
with cancer cachexia, we retrieved drugs from drug-target databases that can potentially
modulate those pathways in order to achieve more treatment options for cancer-induced
cachexia.

2. Materials and Methods
2.1. Selection of Phenotypes and Pathways/Molecular Components Involved in Cachexia Syndrome

In order to retrieve the cachexia’s phenotypes and the molecular pathways and com-
ponents involved in each one, we searched for review papers on PubMed regarding the
pathophysiology of cancer cachexia. From the search performed [1,5–7], we retrieved the
phenotypes and respective components presented in Table 1.

2.2. Selection of Pharmacological Candidates

In order to select pharmacological candidates that can potentially be useful in the
treatment of cachexia, we made a search based on Swanson’s ABC model. This model says
that if A is connected with B, and B is related with C, then C may have a novel connection
with A [8]. In order words, if cachexia is connected with a certain target, and that target is
related to a certain drug, then that drug may have a novel connection with cachexia.

Based on this model, we searched for drugs that interact with the targets/pathways
involved in each cachexia’s phenotype using drug-target interaction databases, namely
IUPHAR/BPS Guide to Pharmacology and Drugbank [9–11]. For the drugs obtained
from the search on these databases, we retrieved only the drugs that are approved or in
clinical trials for non-cachexia indications. For that, we also used Clinicaltrials.gov. When
additional information for each drug was necessary, the data were extracted from PubMed
literature. Additionally, we also searched on PubMed if there were pre-clinical studies for
the drugs obtained in cancer cachexia. All these searches were performed from March 2021
to April 2021.
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Table 1. Cachexia’s phenotypes and respective molecular pathways and components.

Cachexia Phenotypes Molecular Pathways and Components

Inflammation Increased levels of tumor necrosis factor alpha (TNF-α), interleukin (IL)-6, IL-1,
interferon gamma (IFN-γ), and IL-8

Skeletal and cardiac muscle wasting

Up-regulation of the ubiquitin-mediated proteasome degradation system (UPS)

Autophagy

Calcium-activated protease calpains

Low circulating levels of insulin-like growth factor 1 (IGF-1)

Insulin resistance

Myostatin

Proteolysis-inducing factor (PIF)

Impaired mitochondrial metabolism

Adipose tissue depletion
Lipolysis

Inhibition of lipogenesis

Browning

Hepatic metabolic changes Acute-phase response

Altered energy balance
Tumor metabolism and inflammation might increase resting energy expenditure
and simultaneously decrease energy intake (anorexia), shifting the scale towards

negative energy balance

Central neuroinflammation

Inflammatory cytokines bind to receptors on hypothalamic neuronal
populations, triggering an acute illness response, leading to anorexia, weight

loss, skeletal muscle-protein catabolism, and lipolysis. Neuropeptide Y (NPY),
melanocortins, and serotonin involved.

Gastrointestinal tract malfunction Impaired barrier function and malabsorption

3. Results
3.1. Inflammation

Systemic inflammation plays a central role in the genesis of cachexia. Pro-inflammatory
mediators can be released by tumor cells or by host immune cells in response to the pres-
ence of the tumor and thus activate pathways that lead to muscle and adipose tissue
wasting, altered energy balance, and dysregulation of the homeostatic control in the central
nervous system [5,6]. Among the pro-inflammatory mediators, the ones mainly implicated
in the pathogenesis of cachexia are TNF-α, IL-6, IL-1, IL-8, and IFN-γ [1,7].

Thus, since inflammation is a key factor in the development of cachexia, blocking the
synthesis or action of pro-inflammatory mediators to treat or ameliorate cachexia in cancer
patients has been attempted with mixed results [12]. From all the drugs obtained in the
drug-target interaction databases regarding the inflammation process in cancer-related
cachexia (Table 2), we will only describe in more detail the ones with reported side effects
and are in more advance stages of clinical development and relevant information.

3.1.1. TNF-α

Adalimumab
This is an anti-TNF-α monoclonal antibody approved by Food and Drug Adminis-

tration (FDA) and European Medicines Agency (EMA) for the treatment of rheumatoid
arthritis, juvenile idiopathic arthritis, psoriatic arthritis, ankylosing spondylitis, Crohn’s
disease, plaque psoriasis, and hidradenitis suppurativa [13]. Its rare side effects include
worsening or initiation of congestive heart failure, lupus-like syndrome, lymphoma, cy-
topenias, worsening or initiation of multiple sclerosis/neurological diseases, pancytopenia,
and increased liver transaminases [14]. In a retrospective study performed in patients with
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psoriasis, the administration of adalimumab significantly increased the weight and BMI
compared to the control group [15].

Table 2. Molecular pathways and respective drugs involved in inflammation.

Phenotype Molecular Pathways
and Components Drugs

Inflammation

TNF-α

Adalimumab

Ozoralizumab

Golimumab

Certolizumab pegol

Remtolumab

Chloroquine

Amrinone

Pomalidomide

Glycyrrhizic acid

IL-6

Sirukumab

Olamkicept

Vobarilizumab

Satralizumab

IL-1

Lutikizumab

Gevokizumab

Canakinumab

Rilonacept

Isunakinra

Anakinra

IL-8

AZD5069

Reparixin

Elubirixin

IFN-γ
Fontolizumab

Glucosamine

Certolizumab Pegol
This is an anti-TNF-α monoclonal antibody approved by FDA and EMA for the treat-

ment of rheumatoid arthritis, Crohn’s disease, axial spondyloarthritis, and psoriasis [16].
As side effects, there is a risk of infection and production of autoantibodies [17]. Leu-
copaenia, pancytopaenia, thrombocytopaenia, seizure disorder, neuritis, and peripheral
neuropathy are rare [17]. It is also contraindicated in cases of heart failure, Parkinson’s
disease, or demyelinating conditions [17].

Chloroquine
This is an antimalarial drug that also inhibits TNF-α. Chloroquine is also approved

for the treatment of rheumatoid arthritis and systemic lupus erythematosus [18]. The
side effects, such as reduced visual acuity, diplopia, bilateral loss of vision, paranoia,
hallucinations, suicidal ideations, pruritus, and photosensitivity, are usually associated
with high doses [18].

Inamrinone (Amrinone)
This is a phosphodiesterase inhibitor with the capacity to inhibit TNF-α, already

approved by FDA to treat congestive heart failure. Side effects include thrombocytopenia,
gastrointestinal and cardiovascular effects, hepatic toxicity, and hypersensitivity [19]. In a
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study using septic rats, it was shown that the ones treated with daily injections of amrinone
for 5 days prevented the inhibition of protein synthesis in muscle induced by sepsis [20].
However, another study performed in rats showed that amrinone did not alter cyclic
adenosine monophosphate (cAMP) levels and rates of overall proteolysis in soleus and
extensor digitorum longus muscles [21].

Pomalidomide
This is an analogue of thalidomide that also has the capacity to inhibit the production

of TNF-α and IL-6 by monocytes [22]. It is an approved drug by FDA and EMA for multiple
myeloma and Kaposi sarcoma [22,23]. The most common side effects are neutropenia,
thrombocytopenia, anemia, and fatigue [24]. Venous thromboembolisms are also reported,
with an incidence similar to other immunomodulatory drugs [24]. Infections and primarily
pneumonia are also observed [24].

Glycyrrhizic Acid
This is a natural product derived from the root of Glycyrrhiza glabra and an antagonist

of TNF-α [25]. It is approved by FDA and used for the treatment of premenstrual syn-
drome, viral infections, anti-lipidemic, antihyperglycemic, peptic ulcer, and other stomach
diseases [26]. Some of the side effects reported when consumed in high doses include
hypermineralocorticoidism with sodium retention and potassium loss, edema, increased
blood pressure, cardiac complaints, and depression of the reninangiotensin-aldosterone
system [26]. A study showed that in tumor-bearing mice, the treatment with glycyrrhizin
alone or combined with cisplatin reversed the loss of body weight [27].

3.1.2. IL-6

Sirukumab
This is an anti-IL6 monoclonal antibody and a phase 3 clinical candidate for rheuma-

toid arthritis, polymyalgia rheumatica, and temporal arteritis and also phase 2 clinical
candidate for major depressive disorder [28,29]. The associated side effects include na-
sopharyngitis, elevated liver enzymes, injection site erythema, and upper respiratory tract
infections [30].

3.1.3. IL-1

Canakinumab
This is a monoclonal antibody that binds to IL-1β. It is approved by familial cold

autoinflammatory syndrome 1, juvenile idiopathic arthritis—systemic, and Muckle–Wells
syndrome [31]. The most common side effects involve headache, vertigo, diarrhea, nausea,
musculoskeletal pain, rhinitis, nasopharyngitis, and bronchitis.

Rilonacept
This is a fusion protein consisting of the binding domains of the IL-1 receptor and the

IL-1 receptor accessory protein [32]. It is approved by FDA for Muckle–Wells syndrome,
familial cold autoinflammatory syndrome 1, and CINCA syndrome [33]. The more common
side effects reported include bleeding, body aches or pain, cough, and fever, among others.

Anakinra
This is a recombinant, non-glycosylated human interleukin-1 receptor antagonist ap-

proved by FDA and EMA for rheumatoid arthritis [32]. The most common side effects are
reaction at the injection site, worsening of rheumatoid arthritis, upper respiratory tract in-
fection, headache, nausea, diarrhea, sinusitis, arthralgia, flu like-symptoms, and abdominal
pain. A study showed that Anakinra, when administrated in colon-26 adenocarcinoma-
bearing Balb/c-mice, reduced loss of body weight [34].

3.2. Skeletal and Cardiac Muscle Wasting

During cachexia, both skeletal and cardiac muscle wasting are observed, and their
underlying mechanisms are intertwined [1,35]. The impaired protein synthesis and in-
creased proteolysis that are observed in skeletal myoblasts and cardiomyocytes occurs via
common pathways, such as autophagy, IGF-1 pathway, nuclear factor-kappa B (NF-kB),
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and up-regulation of UPS [1,35]. Therefore, the drugs that will be proposed in the next
sections can be considered as potential candidates to ameliorate skeletal and cardiac muscle
wasting. From all the drugs obtained in the drug-target interaction databases regarding the
skeletal and cardiac muscle-wasting process in cancer-related cachexia (Table 3), we will
only describe in more detail the ones with reported side effects and are in more advance
stages of clinical development and relevant information.

Table 3. Molecular pathways and respective drugs involved in skeletal and cardiac muscle wasting.

Phenotype Molecular Pathways
and Components Drugs

Skeletal and cardiac
muscle wasting

UPS

Pomalidomide

Iberdomide

Bortezomib

Carfilzomib

Ixazomib

Oprozomib

VLX1570

KZR-616

Autophagy

Fedratinib

Critzotinib

Fostamatinib

Calcium-activated protease calpains
Aloxistatin

Alicapistat

Insulin resistance Trodusquemine

PIF

Lestaurtinib

Parthelonide

Acetylsalicylic acid

Sulfasalazine

Anagrelide

Varespladib methyl

Darapladib

AK 106-001616

Budesonide

Hydrocortisone

Bryostatin 1

Tamoxifen

3.2.1. Autophagy

Skeletal muscle is one of the most metabolically active tissues in the body and is
essential for a variety of different biological activities, such as movement, support to soft
tissue, and respiration. A balance between protein synthesis and degradation is present
in normal physiological states; however, it is commonly disrupted during the tumor
progression. Indeed, extensive loss of skeletal muscle represents a key manifestation of
cancer-associated cachexia. Cachexia primarily results from an acceleration of protein
degradation, often combined with reduced protein synthesis in skeletal muscle [36].

Autophagy is one of the main promoters of proteolysis in skeletal muscle and plays an
important role in cancer cachexia [1], involving an extremely refined collection of altered
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organelles, abnormal protein aggregates, and pathogens, similar to a selective recycling
centre [37]. This process is regulated by AMP-activated protein kinase (AMPK), which
maintains energy homeostasis through the regulation of cellular metabolism. AMPK is able
to promote autophagy, under glucose starvation conditions, by activating an autophagy-
initiating kinase, unc-51 like autophagy activating kinase 1 (ULK1) involved in autophago-
some formation. Additionally, it was demonstrated that an inactivation of ULK1 resulted
in a decrease of autophagy in muscle cells. Therefore, we think ULK1 is a potential target
in autophagy, as it interacts with different molecules in the process of autophagy.

However, using autophagy inhibitors in cancer patients is still a controversial issue
since, on one hand, autophagy can suppress malignant transformation by decreasing
the production of reactive oxygen species and DNA damage, and on the other hand,
autophagy can support proliferation, tumorigenicity of cancer stem cells, and increase drug
resistance [38]. Thus, due to its dual-role in cancer, it should be well-thought-out before
giving an autophagy inhibitor in a cancer cachectic patient.

ULK1 Inhibitors
Fedratinib
Federatinib (TG 101348) is an FDA-approved drug for intermediate-2 and high-risk

primary and secondary myelofibrosis. The most common side effects include: anaemia,
thrombocytopenia, neutropenia, nausea, diarrhea, constipation, bleeding, urinary tract
infection, headache, muscle spasms, fatigue or asthenia [39,40].

Critzotinib
Critzotinib is an FDA-approved type-1 kinase inhibitor, originally approved for treat-

ment of anaplastic lymphoma kinase-positive non-small cell lung carcinomas. The most
common adverse effects include: vomiting, diarrhea, nausea, constipation, abdominal pain,
elevated transaminases, rash, oedema, and fatigue [41].

Fostamatinib
Fostamatinib is an FDA drug approved for the treatment of chronic immune thrombo-

cytopenia. It has also completed phase 3 clinical trials for rheumatoid arthritis and phase 2
for a range of solid tumors [42]. Dizziness, diarrhea, nausea, frequent bowel movement,
hypertension, and increased liver enzymes are amongst the very common adverse effects
of the drug [43].

3.2.2. Ubiquitin-Mediated Proteasome Degradation System (UPS)

UPS is one of the main mechanisms of protein degradation during muscle wasting [1].
This system comprises several components, such as ubiquitin activating enzymes (E1),
ubiquitin-conjugating or carrier enzymes (E2), ubiquitin ligases (E3), deubiquitinating
enzymes (DUBs), and the 26S proteasome that comprises two subcomplexes, such as 20S
core protein and 19S regulatory particle [44]. Due to the key role of this system in muscle
wasting, its components may provide pharmacological targets.

Bortezomib
Bortezomib has the capacity to inactivate the catalytic site on β subunits, which form

the active 20S core [45]. It is approved by FDA and EMA for multiple myeloma. Side
effects include nerve problems, nausea, fever, low blood cell counts, and liver problems,
among others. Some clinical efficacy has been detected in patients with systemic lupus
erythematosus, and other autoimmune disorders [46,47]. A study performed in rats showed
that Bortezomib reduced NF-kB and proteasome activity in skeletal muscle but did not
prevent weight loss, muscle wasting, and reduced food intake; however, 20S activation
was not accessed [48].

Carfilzomib
It is a proteasome inhibitor approved by FDA and EMA to treat multiple myeloma. The

most common adverse reactions reported are fatigue, anemia, nausea, thrombocytopenia,
dyspnea, diarrhea, and pyrexia [49]. A study showed that carfilzomib in combination with
z-VAD-fmk in a mouse model of cancer-induced cachexia reduced muscle wasting, tumor
burden, modulated metabolism, increased glucose, albumin, and total proteins levels and



Pharmaceuticals 2021, 14, 1084 8 of 27

lowered triglyceride fatty acids levels. It also induced more spontaneous physical activity
and longer survival when compared to the control group. Gastrocnemius muscle had
reduced proteolysis and apoptosis [50].

Ixazomib
This drug inhibits 20S proteasome activity, and it is approved by FDA and EMA

to multiple myeloma systemic light-chain amyloidosis [51]. Some of the side effects
include hepatic damage, fetal harm in pregnant women, diarrhea, thrombocytopenia, and
skin/subcutaneous disorders [52]. For multiple myeloma, it is in phase 3, and for bladder
cancer and renal cell carcinoma, it is in phase 1/2. It can cause several hepatic diseases and
also fetal harm. In a mouse model for Duchenne muscular dystrophy, it was shown that
Ixazomib reduced inflammation in muscles and increased the number of fibres [53]. The
expression of dystrophin and utrophin was increased, and the expression of osteopontin
and transforming growth factor beta (TGF-β) decreased [53].

3.2.3. Calcium-Activated Protease Calpains

The muscle wasting observed in cachexia is associated with several proteolytic path-
ways and processes, including the calpain system [54]. These proteins are associated with
the initiation of protein breakdown during cachexia since calpain-dependent cleavage of
myofilaments is considered the initial step in muscle proteolysis [54,55]. Calpains comprise
a family of calcium-activated cysteine proteases, which cleave at exposed regions between
domains of proteins affecting muscle in synergisms with UPP [55,56]. Therefore, inhibitors
of calpains might also protect skeletal muscle from cachexia-induced apoptosis [55]. The
drugs associated with this phenotype are mentioned in Table 3.

3.2.4. Insulin Resistance

Insulin resistance is one of the risk factors involved in the development of cancer and
is also seen in initial stages of cachexia, resulting in muscle wasting [1]. Insulin receptor
dephosphorylation is performed by protein tyrosine phosphatases (PTPases). Various
studies have reported that the insulin resistance in type 2 diabetes and obesity, both in
animal models and humans, is accompanied with an increase in PTPases activity and
increases in the level of expression of defined members of the PTP family, especially protein
tyrosine phosphatase 1B (PTP1B). Therefore, an inhibitor to PTP1B might act as a potential
treatment for insulin resistance [57,58]. The drugs associated with this phenotype are
mentioned in Table 3.

3.2.5. PIF

PIF is a glycoprotein that was initially isolated from the murine cachexia-inducing
MAC16 tumor model, but it was also found to be present in the urine of patients with
diverse range of carcinomas (pancreas, breast, ovary, lung, rectum, and liver) who suffer
from cachexia [59]. PIF is involved in many biological functions, from controlling protein
catabolism in cancer cachexia to regulating hepatic gene expression [60]. Despite that, PIF’s
normal role is at embryonic development [61]. It is thought that PIF’s production is ceased
before birth but that certain tumors regain the ability to synthesize it through glycosyl
transferases that restrict expression during embryogenesis [62].

There are several therapeutic approaches that can be considered to target alterations
promoted by PIF in cancer-associated cachexia such as inhibit the release and nuclear
translocation of NF-κB or its binding to the DNA in the nucleus. In addition, downregula-
tion of phospholipase A2 (PLA2) or lipoxygenases or even inhibit protein kinase C (PKC)
are considered possible approaches [62].

NF-kB Antagonists
PIF is capable of initiating muscle protein degradation as a result of up-regulation

of the ATP-ubiquitin-dependent proteolytic pathway [63]. Mechanistically, PIF is able
to decrease cytosolic IκBα, NF-kB inhibitor protein. This leads to an increased NF-κB
migration to the nucleus and consequent activation of forkhead box O (FOXO), which
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results in an augment of transcription of ubiquitin ligase genes (FBXO32 and TRIM63) that
consequently promote muscle protein degradation [64].

Lestaurtinib
Lestaurtinib (CEP-701) is an orally available tyrosinase kinase inhibitor that is in

clinical trials for the treatment of psoriasis and a variety of neoplastic disorders (including
leukemia and breast cancer) [65,66]. Moreover, CEP-701 is also a potent NF-kB blocker via
the inhibition of IκBα phosphorylation [67]. The main reported side effects, at least in one
study with myelofibrosis patients, were anaemia and thrombocytopenia as well as nausea,
vomiting, and diarrhea [68].

Parthenolide
Parthenolide is a sesquiterpene lactone present in the flowers and leaves of the plant

feverfew (Tanacetum parthenium L.). Parthenolide has been used in clinical trials for the diag-
nostic of Allergic Contact Dermatitis [69]. This drug can inhibit the activation and release of
NF-κB and prevent its binding to the DNA [70]. Additionally, dimethylaminoparthenolide
(DMAPT), which is a water-soluble and orally bioavailable analogue of parthenolide, has
shown to ameliorate wasting syndrome in HPV16-transgenic mice and in a transgenic
mammary tumor model [71,72].

Acetylsalicylic Acid
Acetylsalicylic acid (ASA), also known as aspirin, is an FDA-approved drug to treat

pain and reduce fever and inflammation [73]. Moreover, it is also used as a preventive
treatment for heart attacks, strokes, and chest pain (angina). ASA has also been associated
with NF-κB inhibiton [74]. Some of the side effects include upset stomach, drowsiness, and
mild headache.

Sulfasalazine
Sulfasalazine is an FDA-approved drug for the treatment of inflammatory bowel

diseases [75]. It acts as a potent and specific inhibitor of NF-kB. Sulfasalazine has proven
to interfere with IkBα phosphorylation, which suggests that it has a direct effect either
on IkBα or on an upstream signal [76]. Adverse effects include gastrointestinal effects,
dizziness, headache, and rash; myelosuppression can also occur [77].

Phospholipase A2 Antagonists
Protein metabolism induced by PIF leads to the release of arachidonic acid (AA) from

membrane phospholipids. It is thought that this mechanism involves PLA2 [78]. Conse-
quently, the release of AA serves as a signal to activate PKC family of serine/threonine
kinases that act as intracellular signals of PIF action on the proteasome [79].

Anagrelide
Anagrelide is an FDA-approved drug for the treatment of thrombocythaemia (elevated

levels of platelets) in patients with myeloproliferative neoplasms [80]. It can inhibit the
release of AA from phospholipases through PLA2 inhibition [81]. So far, anagrelide has
been associated with some cases of interstitial pneumonitis [82].

Budesonide
Budesonide is an FDA-approved drug, since 1994, for the treatment of inflammatory

conditions of the lungs and intestines (such as asthma, COPD, Chron’s disease, and
ulcerative colitis). It is a glucocorticoid that inhibits PLA2 by decreasing AA formation and
inhibiting NF-κB [83]. Side effects may include headache, indigestion, back pain, and cold
symptoms.

Hydrocortisone
Hydrocortisone, also known as cortisol, is an FDA- and EMA-approved drug to treat

immune, allergic, and neoplastic disorders. Like the other glucocorticoids mentioned above,
hydrocortisone is a PLA2 antagonist [83]. There is evidence that low-dose hydrocortisone
infusion attenuates the systemic inflammatory response in human septic shock [84]. The
most frequent adverse effects include atrophy, striae, rosacea, perioral dermatitis, acne, and
purpura [85].

PKC Antagonists
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PKC is another crucial molecule to PIF-induced expression of the ubiquitin-proteasome
pathway [86]. PKC activation can arise from the conversion of 15-lipoxygenase (15-LOX)
to 15-hydroxyeicosatetraenoic acid (15-HETE), which is an important intracellular signal
for the induction of the ubiquitin-proteasome proteolytic pathway [87].

Bryostatin 1
Bryostatin 1 is a potent modulator of PKC activity that is on clinical trials for Alzheimer’s

disease and different types of cancer. Prolonged exposure of tumor cells to bryostatin-1
promotes PKC inhibition through ubiquitin-mediated proteasomal degradation from the
cell [88]. The major side effects associated are nausea, myalgias, and vomiting [89].

Tamoxifen
Tamoxifen is an FDA-approved drug, since 1977, for the treatment of oestrogen

receptor positive breast cancers [90]. Furthermore, tamoxifen is also able to regulate PKC
through several mechanisms, although it is not able to interact with the active site of the
enzyme [91]. Most reported side effects include hot flushes, joint pains, headaches, and
vaginal dryness [92].

3.3. Adipose Tissue Depletion

From all the drugs obtained in the drug-target interaction databases regarding the
adipose tissue-depletion process in cancer-related cachexia (Table 4), we will only describe
in more detail the ones with reported side effects and that are in more advanced stages of
clinical development and relevant information.

Table 4. Molecular pathways and respective drugs involved in adipose tissue depletion.

Phenotype Molecular Pathways
and Components Drugs

Adipose tissue depletion

Lipolysis ABX-1431

Inhibition of lipogenesis Glycyrrhizic acid

WAT browning

Brupanolol

Levobunolol

Nadolol

Diclofenac

3.3.1. Lipolysis

Although muscle wasting is the main manifestation of cachexia that impacts quality of
life, the loss of adipose tissue is also a feature of cancer cachexia, which contributes to the
negative imbalance [93]. Lipolysis, which is the breakdown of adipose tissue, is possibly
the most evident mechanism of adipose tissue that contributes to cancer cachexia [94]. The
enhancement of lipolysis in cachectic cancer patients is driven by an overactivation of
lipases, such as adipocyte triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL).
ATGL is responsible for the initial steps in triglyceride breakdown, forming diacylglyceride
(DAG) and free fatty acids (FFA), while HSL finalizes the hydrolysis producing FFAs
and glycerol [93,94]. Additionally, it would also be important to stabilize adipose tissue
metabolism to preserve skeletal muscle mass since infiltration of adipose tissue into skeletal
muscle can also contribute to wasting of this tissue [6].

ABX-1431
ABX-1431 was described as a selective inhibitor of monoacylglycerol lipase, which is a

serine hydrolase that plays a crucial role catalysing the hydrolysis of monoglycerides into
glycerol and fatty acids [95]. Despite some adverse effects, such as headache, somnolence,
and fatigue, this drug was evaluated in human clinical trials to improve the treatment of
some diseases, like Tourette syndrome or chronic motor tic disorder, functional dyspepsia,
post herpetic neuralgia, diabetic peripheral neuropathy, small fiber neuropathy, and post-
traumatic neuralgia [95–97]. Moreover, ABX-1431 was demonstrated to be crucial in
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the control of lipid metabolism through the inhibition of the monoacylglycerol lipase in
neurologic disorders [96,97].

3.3.2. Inhibition of Lipogenesis

Reduced lipogenesis contributes for adipose tissue depletion in cachectic patients [98].
Lipogenesis consists in the de-novo fatty acid synthesis [98]. This process starts from high
levels of glucose in circulation that stimulate the release of insulin from the pancreas [98].
Then, insulin promotes the uptake of glucose by adipocytes, stimulates glycolytic and
lipogenic enzymes, and stimulates the expression of important genes for lipogenesis [98].
Glucose metabolization provides Acetyl-CoA which is the substrate for fatty acids synthe-
sis [98]. Finally, fatty acids are esterified to a glycerol molecule and form triglycerides that,
in white adipose tissue (WAT), will be stored as energy reserve [98,99]. Additionally, WAT
can also import fatty acids using the lipoprotein lipase, which will catabolize circulating
lipoproteins into fatty acids. Decreased activity of lipoprotein lipase has been observed in
cancer cachexia [99].

3.3.3. WAT Browning

While lipolysis represents a depletion of adipose tissue principally in WAT mass,
brown adipose tissue (BAT) is a site of heat production (thermogenesis) contributing
to cancer cachexia by increasing energy expenditure [6,94]. Furthermore, in cachectic
condition, there is an increase on the expression of the thermogenic marker UCP1 in
BAT [93]. In cachexia, the proton electrochemical gradient that leads to ATP synthesis is
disrupted by the activation of UCPs proteins, leading to heat production and energetic
inefficiency [6].

WAT browning occurs in response to β-adrenergic stimulation and also in response
to chronic peroxisome proliferator-activated receptor gamma (PPARγ) agonist stimula-
tion [100]. PPARγ activation enhances UCP1 expression driving to BAT formation and
regulating the thermogenic activity [101,102]. On the other hand, PPARγ antagonists inhibit
the browning process and also decreas the expression of thermogenic key markers [103].

β-adrenergic Blockers
β3-adrenergic receptor plays a crucial role in lipolysis and thermogenesis regulation,

being the principal signalling pathway that active WAT browning [104,105]. WAT tissue
normally has low levels of UCP1 expression; however, WAT displays thermogenic ca-
pacity with high levels of UCP1 expression upon certain signals; this process is called
“browning” [105]. Therefore, β-adrenergic blockers can reduce the severity of cachexia by
decreased lipolysis and WAT browning [104,105]. Then, there exist some β3-adrenoceptor
antagonists approved by the FDA that are used in other diseases but could be potential
drugs in the treatment of cancer cachexia. On the other hand, β-adrenergic receptor-
blocking drugs can be associated with some adverse effects, and the more common are
bronchospasm, heart failure, prolonged hypoglycaemia, bradycardia, heart block, and
intermittent claudication; neurological reactions include depression, fatigue, and night-
mares [106].

Bupranolol
Bupranolol is a β3-adrenoceptor antagonists approved by the FDA and is mainly used

in hypertension and tachycardia treatment [107–109]. In an experimental study, it was
demonstrated that bupranolol significantly reduced lipolysis since levels of glycerol and
non-esterified free fatty acids were reduced [108]. As an β-adrenergic receptor-blocking
drug, the side effects associated are bronchospasm, heart failure, prolonged hypoglycaemia,
bradycardia, heart block, and intermittent claudication; neurological reactions including
depression, fatigue, and nightmares [106].

Levobunolol
Levobunolol is a β3-adrenoceptor antagonist approved by the FDA and used in

intraocular pressure, chronic open-angle glaucoma, and ocular hypertension [110]. The
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adverse effects more frequently associated with this drug are fatigue, dizziness, heart
palpitations, and bradycardia [111].

Nadolol
Nadolol, a β3-adrenoceptor antagonist approved by the FDA, is also used in

diverse treatments, such as those for angina pectoris, infantile hemangioma, and
hypertension [112–114]. Cutaneous vascular lesion, bradycardia, hypotension, and hy-
poglycemia are the more common adverse events correlated with this drug [115].

PPARγ Antagonist
Diclofenac
Diclofenac is a PPARγ antagonists that is already approved by the FDA [116]. PPARγ

antagonists could be important to improve the cachexia treatment since they inhibit the
browning process and also decrease the expression of thermogenic key markers [103]. The
adverse symptoms are mostly skin reactions, loss of taste, and joint pain/swollenness [116].

3.4. Liver

In the initial stages of tumor development (or pathogen infection/local tissue injury),
the organism responds by initiating an acute phase response (APR) [117]. However, “too
much of a good thing is a bad thing”; therefore, a prolonged or severe APR can lead to
detrimental effects [118]. During the APR, there is a reprioritization of hepatic protein
synthesis, which results in an augment of positive acute phase proteins (p.e. serum amyloid
A, fibrinogen, and C reactive protein) accompanied by a decrease in plasma concentrations
of negative acute phase proteins (such as albumin and transferrin) [119]. What is interesting
is that, when placed on nutritional support, malnourished patients have an accelerated
synthesis of positive acute phase protein, which in turn contributes to the loss of lean
tissue [120].

APR is induced by pro-inflammatory cytokines (such as IL-6, IL-1, TNF, and IFN-
γ) produced by innate immune cells in response to the systemic inflammation process.
These cytokines elicit the activation of two major signalling pathways: JAK/STAT3 and
mitogen-activated protein kinase (MAPK) pathway, which consequently stimulate the liver
to produce acute-phase proteins [121].

Since systemic inflammation is the process that triggers these alterations in the liver,
one of the therapeutic approaches to take in this case is to include an anti-inflammatory
supplementation in programs of nutritional support. These drugs will target the signalling
pathways involved, mainly IL-6 and IL-1, that are the crucial inflammatory mediators.
They were addressed before the section on inflammation.

3.5. Altered Energy Balance

Cachexia is characterized as an energy balance disorder, in which is verified a de-
creased in energy intake and/or an increase of energy expenditure [7]. This syndrome is
driven by a combination of metabolic changes, such as inflammation, excess catabolism,
and elevated energy expenditure and a decreased of food intake [6]. Hypothalamic expo-
sure to the various inflammatory stimuli leads to an alteration in the neuronal population
activity that control metabolic processes, such as proteolysis and lipolysis, and regulate
appetite leading to weight loss, anorexia, and skeletal muscle atrophy [5]. Importantly,
the brain is crucially involved in the altered energy balance in cancer patients since its
mediators are significantly involved in the control of food intake through regulation of
appetite, satiation, taste, and smell of food and, consequently, are partially responsible for
the anorexia of the cancer patient [5,6]. Several studies of central nervous system regula-
tion in cancer cachexia focus in the administration of neuromodulator peptides, such as
ghrelin [5]. Another crucial component in the regulation of appetite and metabolism is the
neuropeptide calcitonin gene-related peptide (CGRP) that has been shown to be involved
with the decrease of food consumption [122]. From all the drugs obtained in the drug-
target interaction databases regarding the altered energy balance process in cancer-related
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cachexia (Table 5), we will only describe in more detail the ones with reported side effects
and that are in more advanced stages of clinical development and relevant information.

Table 5. Molecular pathways and respective drugs involved in altered energy balance.

Phenotype Molecular Pathways
and Components Drugs

Altered energy balance

Ghrelin

Pralmorelin

Macimorelin

Ibutamoren

Ulimorelin

MCT1 AZD3965

CGRP receptor

Rimegepant

Ubrogepant

Telcagepant

Atogepant

3.5.1. Ghrelin Agonists

Ghrelin was identified as the endogenous ligand of the growth hormone secretagogue
(GHS) receptor; it is able to increase muscle mass through the GH/insulin-like growth
factor-1 (IGF-1) axis and promote adiposity, and it is also a potent stimulator of food
intake. Therefore, studies demonstrated that administration of ghrelin agonists have
numerous positive effects, including increased appetite, body weight, and muscle strength
and improved fatigue, gastrointestinal functions, and hypoglycaemia [123]. For these
reasons, ghrelin has been suggested as a treatment to prevent cachexia [124].

Pralmorelin (GHRP-2)
An example of one ghrelin agonist is the drug pralmorelin (GHRP-2), which is already

approved in Japan and increases growth hormone release from the pituitary [123]. This
drug seems to be a promising agent for the treatment of severe anorexia nervosa as a
chronic condition [123]. Moreover, it was demonstrated that the GHRP-2 administration
in arthritic rats decreased the serum IL-6 levels; then, this drug apparently also had anti-
inflammatory effects in arthritic rats [124]. Besides, in another study, it was shown that
GH-releasing peptides improve cardiac dysfunction and cachexia and suppress stress-
related hormones and cardiomyocyte apoptosis in rats with heart failure [125]. There are
no common reported side effects [126].

Macimorelin
Macimorelin is also a ghrelin agonist approved by the FDA used to improve adult

growth hormone (GH) deficiency and is associated with multiple side effects: headache,
nausea, vomiting, diarrhea, abdominal pain, dyspepsia, nasopharyngitis, and pain in
extremity [127].

Ibutamoren (MK-0677)
Ibutamoren (MK-0677), studied in a clinical trial concerning the treatment of fibromyal-

gia, is another oral ghrelin receptor agonist that demonstrated ability to maintain normal
GH secretion and increased lean body mass in normal subjects [128]. An in-vivo study
demonstrated an increase of food intake and body weight through the activation of the
hypothalamic mRNA expression of NPY and agouti-related protein (AgRP) and a decrease
of the UCP1 levels in brown adipose tissue, leading to a consequent decrease of energy
expenditure [129]. The most frequent side effects reported include an increase in appetite,
mild lower extremity edema, and muscle pain [130].

Ulimorelin (TZP-101)
Ulimorelin (TZP-101) is also a ghrelin receptor agonist conducted in diverse clinical

trials associated to gastrointestinal motility disorders [131,132]. This drug displayed a
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promising pharmacokinetic, pharmacodynamic, and safety profile, and the adverse effects
associated are headache, lower abdominal pain, diarrhea, and dizziness [131].

3.5.2. Inhibitor of Monocarboxylate Transporter 1 (MCT1)

AZD3965
Lactate inhibits the secretory function of ghrelin-producing gastric cells as a regulator

of energy intake and is important to reduce lactate activity in cachexia [133,134]. AZD3965
is a potent inhibitor of MCT1, which is a lactate transporter. This drug was submitted to
clinical trials in order to improve diffuse large B-cell lymphoma and Burkitt lymphoma,
demonstrating a potent effect on lactate transport inhibition [133,135]. The most commonly
reported side effects were nausea and fatigue [136].

3.5.3. Calcitonin Gene-Related Peptide (CGRP) Receptor Antagonist

CGRP is a neuropeptide that has been shown to be involved with the decrease of
food consumption and altered calorimetric parameters and plasma metabolic hormone
levels, thus confirming that CGRP plays a pivotal role in the regulation of appetite and
metabolism [122]. Therefore, inhibition of CGRP neurons protects against loss of lean body,
which may explain the influence of these neurons in cachexia development and their effect
on food intake [137].

Rimegepant
Rimegepant, an FDA-approved drug, is a CGRP receptor antagonist used in the

treatment of migraines. Nausea, dizziness, urinary tract infection, and liver injury are the
most commonly reported adverse events in patients treated with Rimegepant [138]. As a
CGRP blocker, Rimegepant has good efficacy and safety [138].

Ubrogepant
Ubrogepant is another FDA-approved drug with the potential to inhibit CGRP recep-

tors; thus, it was described as a potential antagonist of CGRP receptors that is effective and
safe for the treatment of acute migraine [139]. GRP promote the dilation of the cerebral
arteries and mediate neurogenic inflammation of the dura; as an CGRP receptor antag-
onist, ubrogepant mainly acts on the smooth muscle cells of the microvascular wall to
control peripheral vascular resistance. The most common adverse effects were headache,
oropharyngeal pain, nasopharyngitis, nausea, dizziness, diarrhea, and fatigue [139].

Atogepant
Atogepant is also a CGRP receptor antagonist used in diverse clinical trials, most of

which are related to migraine treatment [140]. The adverse effects of these drugs are very
similar to the side effects caused by the other CGRP receptor antagonists, which include
nausea, dizziness, and vomiting [140,141].

3.6. Neuroinflammation

The maintenance of energy homeostasis is crucial for long-term survival [142]. The
central melanocortin system is located principally in the arcuate nucleus (ARC) of the hy-
pothalamus, which is an area of relative permeability of the blood–brain barrier, giving ex-
posure to circulating indicators of disease activity, including inflammatory cytokines [143].
ARC has 2 subsets of neurons that have opposite effects on energy homeostasis. First, the
anorexigenic proopiomelanocortin (POMC) neurons release α-melanocyte stimulating hor-
mone (α-MSH) in synapses, which consequently binds to melanocortin receptors (MC4R),
leading to a decrease in food-seeking behavior, an increase in basal metabolic rate, and a
decrease in lean body mass. Second, the orexigenic NPY and AgRP neurons are natural
inverse agonist of the MC4R, producing a decrease in the constant tone that POMC neurons
place on restraining appetite [144,145].

Cytokines released during inflammation and malignancies act on the central nervous
system to modulate the function of several key neurotransmitters (such as serotonin and
leptin), leading to both altered appetite and metabolic rate [146]. When the systemic
inflammation is sensed by the hypothalamus, it reacts by inducing sickness behavior and
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activating the nicotine anti-inflammatory system in order to restrict tumor growth by
starvation or restore the immune surveillance. As it is well known, cancer cells possess the
ability to surpass these mechanisms of inflammation resolution and promote neurochemical
events that persistently activate POMC neurons, resulting in neuroinflammation [147].

Some potential drugs that target these specific mechanisms involved in neuroinflam-
mation will be presented next, but it is important to have in mind that this imbalance in the
neuronal network is mainly due to an exacerbated increase in systemic inflammation, so
anti-inflammatory drugs, already addressed in a previous section, will also have beneficial
effects. From all the drugs obtained in the drug-target interaction databases regarding the
neuroinflammation process in cancer-related cachexia (Table 6), we will only describe in
more detail the ones with reported side effects and that are in more advanced stages of
clinical development and relevant information.

Table 6. Molecular pathways and respective drugs involved in neuroinflammation.

Phenotype Molecular Pathways
and Components Drugs

Neuroinflammation

Pizotifen

Trazodone

Serotonin Ziprazidone

Clozapine

Olanzapine

Sertindole

Serotonin Antagonists

One of the neurotransmitters that contributes to energy balance by triggering satiety
is serotonin [148]. In anorexic and cachectic cancer patients, increased levels of tryptophan
(serotonin precursor) were found in plasma and cerebrospinal fluid [149]. These anorectic
effects of serotonin are mediated by the melanocortin system. The two serotonin receptors
are located in the ARC; 5-HT2cR is expressed by POMC neurons, while on the contrary,
5-HT1bR is expressed by NPY neurons [150].

Pizotifen
Pizotifen acts as a 5-HT2cR antagonist. Despite not being approved by the FDA and

EMA, it is available in several countries for the prophylactic treatment of migraines and
cluster headaches [151]. Some of the side effects reported include drowsiness, tiredness,
and weight gain [152].

Trazodone
Trazodone is an FDA-approved drug, since 1981, to treat major depressive disorders.

It acts as a 5-HT2cR antagonist [153]. Other not officially approved uses of trazodone
include treatment of bulimia, fibromyalgia, and degenerative diseases [154]. Furthermore,
trazodone has the advantage of not decreasing sexual function or promoting insomnia,
which are common features associated to this type of drug. Side effects like sedation,
orthostatic hypotension, and headaches were reported [155].

Ziprazidone
Ziprazidone is a second-generation antipsychotic approved by the FDA to treat

schizophrenia and related psychotic disorders. This compound acts as an antagonist
of 5-HT2cR [156]. The most common adverse reactions include somnolence, respiratory
tract infections, extrapyramidal symptoms, dizziness, akathisia, abnormal vision, asthenia,
vomiting, headache, and nausea.

Clozapine
Clozapine is an antipsychotic agent approved by the FDA and used in the treatment

of resistant schizophrenia. It is a serotonin antagonist with high-affinity to 5-HT2c receptor
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subtype [157]. Side effects include agranulocytosis, weight gain, diabetes, myocarditis, and
seizures [158].

Olanzapine
Olanzapine is a second-generation anti-psychotic agent approved by the FDA to treat

schizophrenia and other psychotic illnesses, like bipolar disorder. It targets 5-HT2cR and is
very similar to clozapine [157,159]. Weight gain, hyperglycemia, and increased cholesterol
and triglycerides are among the most common side effects reported.

3.7. Impaired Barrier Function and Malabsorption

Cachexia also promotes alterations in gastrointestinal function impairing gut-barrier
function at several levels, including altered intestinal morphology, decreased renewal
for various cell linages, depressed immunity, and increased gut permeability associated
with decreased expression of tight junctions [160]. Moreover, gut-barrier function and
also gut microbiota composition and function are significantly altered in cancer cachexia,
leading to malabsorption [161]. Cancer cachexia is also associated with gastrointestinal
mucosal atrophy, which leads to endotoxin absorption, poor wound healing, and sep-
sis [5]. Cachexia progression is correlated with barrier dysfunction and also with increased
bacterial lipopolysaccharide levels [161]. Studies revealed that cachectic patients had a
significantly higher rate of microbial translocation than non-cachectic patients and healthy
controls [161]. Besides, gut-barrier alterations may reinforce systemic inflammation due
to the translocation of pro-inflammatory bacterial compounds [160]. Increased levels of
pro-inflammatory cytokines, such as TNF-α, IFN-γ, and diverse interleukins, have been
demonstrated to increase paracellular permeability by impacting the expression or degra-
dation of claudin and occludin tight-junction proteins [161]. The major macromolecules
of tight junctions are occludins, claudins, and junction adhesion molecules [162]. Zonula
occludens (ZO), ZO-1, is the main tight-junction protein that binds to the intracellular
domain of occludins, playing a crucial role in sustaining the structure of tight junctions
and consequently epithelial barrier function [163]. From all the drugs obtained in the drug-
target interaction databases regarding the gastrointestinal tract process in cancer-related
cachexia (Table 7), we will only describe in more detail the ones with reported side effects
and that are in more advanced stages of clinical development and relevant information.

Table 7. Molecular pathways and respective drugs involved in altered gastrointestinal tract.

Phenotype Molecular Pathways
and Components Drugs

Gastrointestinal tract:
Impaired barrier function

Zonulin Larazotide

ZO-1 and claudins
Diacerein

Lubiprostone

3.7.1. Zonulin Inhibitor

Intestinal tight junctions are able to create gradients in order to promote an optimal
absorption and transport of nutrients; besides, these molecules are crucial in the control of
the paracellular antigens trafficking [164]. Tight junctions are dynamics structures that act
in diverse key functions of the intestinal epithelium [164,165]. Zonulin was described as
a main modulator of intracellular tight junctions. and it is known to reversibly regulate
intestinal permeability by modulating intercellular tight junctions [164]. The expression
of zonulin is augmented in some diseases, such as autoimmune conditions associated
with tight junctions’ dysfunction, including celiac disease [164]. Therefore, zonulin can be
used as a biomarker of impaired gut-barrier function and can be a potential therapeutic
target [164,166].

Larazotide
Larazotide acetate (AT1001) is a synthetic eight amino acid peptide; it is orally admin-

istered and acts locally [165–167]. This drug is known to act as a tight-junction regulator
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acting as a zonulin inhibitor, and it is able to close leaky or open interepithelial junc-
tions [165,167]. This drug is being studied in phase 3 clinical trials to evaluate the efficacy
and safety of larazotide acetate for the relief of persistent symptoms in patients with celiac
disease [165,167]. This drug seems to prevent opening of intestinal epithelial tight junctions
induced by numerous stimuli, like cytokines, bacterial antigens, and gluten peptides [166].
Larazotide acetate was normally well tolerated, and it is not associated to serious adverse
events, with headache and urinary tract infection among the most common [167].

3.7.2. ZO-1 and Claudins Agonist

Tight junctions are constituted by three major groups of macromolecules, which are
occludins, claudins, and junction-adhesion molecules [162]. Occludin and claudins interact
with the ZO proteins, which are connected with the actin cytoskeleton, thus regulating cell-
cycle control, and they are associated with cell polarity and permeability function [163,168].
ZO-1 is the major tight-junction protein that binds to the intracellular domain of occludins,
and this interaction is crucial to maintain the structure of tight junctions and epithelial-
barrier function [163]. Therefore, ZO-1 acts in both tight-junction and cell adhesion pathway
being a key factor in the maintenance of the integrity of tight junctions’ complexes through
linking claudins, occludins, and cytoskeletal proteins [163,168]. Moreover, several studies
have indicated that TNF-α leads to the disruption of tight-junction assembly and decreases
expression of ZO-1 [169].

Diacerein
Diacerein is an approved drug for the treatment of osteoarthritis although the use

of diacerein is restricted due to the side effects, including severe diarrhea, dyspepsia,
gastroesophageal reflux disease, and hemorrhoidal hemorrhage [170,171]. Diacerein also
was under investigation in several clinical trials for the treatment of insulin resistance,
diabetes mellitus (type 2), and diabetes-related complications [172]. Importantly, this drug
it is metabolized to rhein, which reduces intestinal permeability by protecting intestinal
epithelial tight-junction proteins ZO-1 and occludin, which alleviates the damage to the
intestinal mucosa [162]. Besides, rhein enhances the expression of ZO-1 and occludin,
repairs damaged tight junctions, and protects the intestinal barrier, which is important in
cachectic patients [162,173].

Lubiprostone
Lubiprostone, an FDA-approved drug, is an activator of chloride channels-2 and a

member of a class of compounds called prostones. It is a gastrointestinal-targeted bicyclic
fatty acid that is able to enhance intestinal fluid secretion [174]. This drug is highly
effective in treating constipation (chronic idiopathic constipation, irritable bowel syndrome
with constipation), and the most common adverse events are diarrhea and nausea [175].
Furthermore, lubiprostone has been shown to have a positive effect on the intestinal-barrier
function since oral administration of this drug significantly reduced the severity of colitis
and reduced intestinal permeability [174]. It was demonstrated that lubiprostone increased
the expression of claudin-1, which is crucial to the normal function of the epithelial barrier
function. Moreover, this drug improved the IFNγ-induced decrease [174].

4. Discussion

Cachexia remains a major clinical challenge, with only few pharmacological options
for the treatment of this syndrome, which are still far from being fully effective. Drug
repurposing is a strategy that offers several advantages when comparing with the de-novo
development of drugs. Taking this into consideration, this paper highlights drugs that
have not been explored in clinical trials for cachexia and its related phenotypes (Figure 1)
but targets key molecular components responsible for the cachexia syndrome (Figure 2)
and that have been approved or in clinical trials for several other diseases. For that, we
used IUPHAR/BPS Guide to Pharmacology and Drugbank to retrieve the drugs that
act on the targets/pathways involved in each cachexia’s phenotype. These drug-target
databases were selected since Drugbank incorporates data that are experimentally validated
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and approved as well as Guide to Pharmacology, which is subject to review and quality
control [176–179].
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response in liver, neuroinflammation, malabsorption, as well as impaired mitochondrial
metabolism, the treatment with anti-inflammatory drugs it is also reported to be beneficial.
Additionally, glycyrrhizic acid acts in both inflammation and adipose tissue wasting
since it is an antagonist of TNF-α and induces lipoprotein lipase activity.Furthermore,
pomalidomide acts on inflammation and muscle wasting due to is capacity to inhibit
TNF-α, IL-6, and cereblon. We think that it should be of great interest to better explore
those drugs in the context of cachexia since they intervene in more than one phenotype.
For the phenotype related to low levels of circulating IGF-1, no drugs were found in
the drug-target databases that could increase IGF-1 levels and that have not been tested
in clinical trials related to cachexia. Regarding impaired mitochondrial metabolism, we
were able to find some molecules involved in this phenotype, such as OXPHOS proteins,
uncoupling proteins (UCP) 2/3, sarcoplasmic reticulum calcium ATPases (SERCA), and
peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1α, among others.
Oxidative phosphorylation (OXPHOS) involves an electron transfer through the OXPHOS
subunit proteins (complex III, IV, and V) generating an electrochemical gradient used to
produce ATP [180]. In muscle wasting, decreased expression levels of OXPHOS subunit
proteins leading to an impairment of mitochondrial activity has been observed [181,182].
Additionally, in skeletal muscle mitochondria, the uncoupling protein 2 and 3 (UCP) genes
are overexpressed, promoting an inefficient ATP synthesis [183,184]. SERCA activity also
increases promoting energy inefficiency since, during Ca2+ export to the cytosol, they
consume the ATP associated with this process, generating Ca2+ overload [6]. Moreover,
PGC-1α coactivates several transcription factors that regulate mitochondria biogenesis. It
is reduced during cancer cachexia, resulting in loss of muscle mitochondrial content and
ATP production [185].

However, for these molecular targets, we were not able to find any drugs that could
be used for this purpose on the drug-target databases used in this paper. In the case of
myostatin, all the drugs retrieved are in clinical trials for phenotypes related to cachexia.

From the drugs obtained in this study, adalimumab, amrinone, glycyrrhizic acid,
anakinra, carfilzomib, ixazomib, parthelonide, pralmorelin, and ibutamoren already have
pre-clinical studies in cancer cachexia; thus, we found these to be promising therapeutic
approaches and should be further evaluated in clinical trials. Particularly with bortezomib,
the pre-clinical study did not show any improvement in weight loss, muscle wasting, and
reduced food intake, so we think that other pre-clinical studies should be performed.

We believe that the remaining drugs reported in this paper could be better explored
in future drug-repurposing studies to understand if they are reliable to be administrated
in cancer patients and effective at preventing or ameliorating cachexia. Some of these
proposed drugs present some associated common side effects (e.g., diarrhea, vomit, among
others). It is important to have in mind that the severity of the side effects varies among
patients according to their disease stage, physical condition, and genetic background.
However, for each patient, it should be assessed if drug benefits can overcome these side
effects, and treatment should only be administered when this condition is verified.

Moreover, other strategies/drugs could be used for attenuation of the side effects,
such as what happens with the use of megestrol acetate. When this drug is used in
cancer cachectic patients, it has as side effects of diarrhea. Thus, to treat this side effect,
it is recommended to eat low-fiber foods high in protein and calories or use drugs that
can reduce or stop diarrhea. The same occurs with prednisolone and dexamethasone,
which are prescribed to ameliorate anorexia symptoms and should be used simultaneously
with proton pump inhibitors to avoid corticotherapy adverse effects. Additionally, new
strategies on precision medicine/pharmacogenomics must be evaluated to identify patients
that will benefit from those drugs and thus reduce the frequency of side effects.

Since incorporation of omics strategies may lead to significant advances on drug
repurposing, future omics-based drug-repurposing studies should be performed for cancer
cachexia in order to identify other relevant driver pathways and new drugs for cancer
cachexia as well as to help inform decisions on efficacy and toxicity [186].
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5. Conclusions

In this paper, we suggest possible drugs that could be potential candidates for future
drug-repurposing studies. From the cachexia’s phenotypes presented in this paper, the
ones with more drugs that could be further explored are inflammation and muscle wasting.
Drugs that intervene in more than one phenotype, such as glycyrrhizic acid and poma-
lidomide, should be taken in consideration in order to improve the treatment of cancer
cachexia. However, it should always be kept in mind that drug benefits should always
overcome the side effects.
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