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Abstract: Osteosarcoma (OS) is an aggressive mesenchymal cell tumor that carries a poor long-term
prognosis. Despite definitive surgery for the primary tumor and adjuvant chemotherapy, pulmonary
metastasis is common and is the primary cause of morbidity. To improve outcomes for patients, we
have developed and optimized a phenotypic screen for drugs that may target OS disseminated tumor
cells (DTCs) and inhibit their metastatic outbreak rather than merely screening for cytotoxic activity
against proliferating cells, as is commonly conducted in conventional drug discovery approaches.
We report on the validation of a previously described 3D reconstituted basement membrane extract
(3D BME) model system for tumor dormancy and metastatic outgrowth adapted to clonal pairs of
high and low metastatic OS cells. A post-hoc validation of the assay was possible by comparing the
activity of a drug in our assay with early evidence of activity in human OS clinical trials (regorafenib
and saracatinib). In this validation, we found concordance between our assay and human clinical
trial experience We then explored an approved veterinary small molecule inhibitor of Janus kinase-1
(oclacitinib) as a potential drug candidate to take advantage of the high prevalence of OS in pet dogs
and its translational value to humans. Despite the biological rationale, we found no evidence to
support the use of oclacitinib as an antimetastatic agent in OS. The findings support our 3D BME
assay as a highly efficient method to examine drugs for activity in targeting OS DTCs.

Keywords: osteosarcoma; metastatic endurance; small molecule inhibitors; oclacitinib; regorafenib;
saracatinib; basement membrane extract assay

1. Introduction

Osteosarcoma (OS) is a neoplasia of mesenchymal cell origin. The aggressive nature
of OS results in poor prognoses, with metastasis to the lungs being the most common cause
of death. Despite complete resection of the primary tumor and adjuvant chemotherapy
for patients with localized disease, patients (~35%) develop recurrent metastases most
commonly to the lungs within a few years and the five-year survival rate is less than
30% [1,2]. Accumulating evidence in the literature suggests that occurrence of cancer years
after initial treatment arises from disseminated tumor cells (DTCs) that have colonized
distant organs such as the lungs and remained dormant (quiescent) [3]. These dormant
DTCs do not respond to chemotherapy or radiotherapy treatments which target actively
dividing cells, and they cannot be detected with current diagnostic imaging, thus lingering
in the body as ticking time bombs [3]. Therefore, the continuous presence of these dormant
DTCs even after primary treatment may explain metastatic recurrence years after initial
diagnosis. To date, no substantive improvements in outcome have been seen in these
patient cohorts in over 30 years. Hence, a change in drug discovery paradigms to develop
drugs that address the unmet needs of patients is critical [4].
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The current approaches to cancer drug development prioritize drugs that kill rapidly
dividing cells or induce apoptosis in cancer cells. Although these targets are characteristics
of cancer, they do not adequately represent the biology of DTC metastatic progression.
DTCs undergo adaptation, survival, and enter a phase of dormancy and eventually out-
growth at their metastatic site. This multistep process which we coined metastatic en-
durance (ME) [4] is just beginning to be addressed by cancer drug development. Hence,
new assays defining the activity of drugs that target DTC ME may be adapted for use
in OS.

Here, we describe the adaptation of a previously reported 3D reconstituted basement
membrane extract (3D BME) system modeling breast cancer tumor dormancy and out-
growth [5,6] to model ME of low and high metastatic OS cells. Clonally related OS cell
line pairs with validated high and low metastatic potential in mice and other assays of
metastasis were used [5]. We then examined drugs that have been used in human OS trials
for their ability to block metastatic progression. Small molecule inhibitors investigated
include saracatinib (a Src kinase inhibitor that appears to have failed in human OS trials [7];
negative control), regorafenib (a multi-targeting kinase inhibitor that appears to have ther-
apeutic activity in early human OS trials [8]; positive control), and an investigational drug
oclacitinib (a Janus kinase (JAK) inhibitor approved for use in canine atopic dermatitis [9])
to test its activity against OS metastasis.

We first identified exposures of each drug that had minimal cytotoxic effect on two
highly metastatic OS cell lines in conventional 2D conditions (i.e., grown as a monolayer
on plastic). We then used exposures of these drugs well below a cytotoxic threshold in the
3D BME, to identify drugs that may have selective activity against OS ME. Our primary
objective was to determine if the 3D BME assay would recapitulate early human clinical
trial results. Our secondary objective was to determine if oclacitinib, a currently FDA-
approved veterinary drug (Apoquel®), would exert a desired antimetastatic effect in 3D
BME. Our hypothesis was that oclacitinib would suppress ME within OS cell lines.

Our results indicate that the adapted 3D BME assay could create a model phenocopy
of previously characterized clonally related OS cells that differ in metastatic proclivity in
mouse models. Interestingly, the selected agent with promising human clinical trial activity
(regorafenib) was active in the adapted 3D BME system, and the selected agent without
measurable activity in human OS trials (saracatinib) was inactive in the adapted 3D BME
system. The FDA-approved veterinary drug (oclacitinib) was not found to be active despite
a hypothesized biological rationale in cancer metastasis. While our data suggests against
prioritizing this drug for further development in OS, we believe the 3D BME system and
other assays that model metastatic progression will uncover new therapeutics with activity
against ME that are amenable to the proposed cross-species approach to metastasis drug
development in OS.

2. Results
2.1. Validation of Matched High and Low Metastatic OS Cell Pairs in the 3D BME Assay

Previously validated high and low metastatic human OS cell lines MG63 (low metastatic)
and MG63.3 (high metastatic) cells [10] were cultured in the 3D BME system as described
in Methods. Our results demonstrate that MG63 cells were growth arrested (dormant)
(Figure 1 left panel) over the six-day experiment period (consistent with a nonmetastatic
phenotype). Interestingly, MG63.3 displayed a transient growth arrest followed by exponen-
tial proliferation beginning at day 3 (consistent with a metastatic phenotype). Furthermore,
the proliferation of the MG63.3 cell line at day 6 was significantly higher (# p < 0.005)
compared to the MG63 cell line (Figure 1 left panel).

Similar results were found using a distinct and previously validated pair of murine OS
cells, K12 (low metastatic) and K7M2 (high metastatic) cell lines [11]. K12 cells were growth
arrested and resumed proliferation at day 3 (Figure 1 right panel). Similarly, K7M2 cells
demonstrated an initial lag phase of proliferation followed by outbreak and exponential
proliferation beginning on day three. However, the proliferation of K7M2 cells from day 3
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forward was significantly higher compared to K12 cells (Figure 1 right panel) (* p ≤ 0.05;
# p < 0.005).
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Figure 1. Comparison of growth kinetics of high and low metastatic potential OS cells in the 3D BME
system. Growth kinetics of matched human (MG63—low; MG63.3—high) and murine (K12—low;
K7M2—high) osteosarcoma cells were observed over a 6-day period in the 3D BME system. Matched
cells were plated under the same conditions and assessed for proliferation on days 1, 3, and 6 using
an MTS assay. Highly metastatic cells undergo outbreak after 3 days exhibited by the high rate of
proliferation from days 3–6, while low metastatic lines were growth arrested or displayed low rates of
proliferation. These graphs are from a single representative assay (replicates = 4) with n = 3 biological
repeats with similar results (* p < 0.05; # p < 0.005).

2.2. Assessment of Direct Drug Cytotoxicity by Cell Number

MTT assays were used to assess the influence of oclacitinib, saracatinib, and rego-
rafenib on cell number in 2D monolayer conditions to determine the maximum physio-
logical concentration that will not have cytotoxic activity on highly metastatic OS cells.
This concentration will be further tested for inhibition of ME of highly metastatic OS cell
lines in the 3D BME system. Collectively, exposures up to 1 µM were associated with
minimal, consistent, and dose-dependent reductions in cell number across drugs and cell
lines (Figure 2). Oclacitinib showed minimal inhibition of OS cell number in either cell line
within physiologically relevant exposures up to 1 µM. Saracatinib and regorafenib showed
no effect on remaining cell number over the assessed exposures in MG63.3 cells. Based
on these MTT data, exposures of ≤1 µM were used in subsequent 3D BME experiments.
This 1 µM exposure was also selected since such exposures are typically physiologically
achievable for most small molecule inhibitors in human or preclinical studies. Accordingly,
the antimetastatic activity of the drugs shown in the 3D BME assay (below 1 µM) may be
described as independent of cytotoxicity.

2.3. Effect of Drug Treatment on OS Cells in 3D BME

The effect of regorafenib, saracatinib, and oclacitinib on ME of highly metastatic OS cell
lines was next determined. Regorafenib significantly inhibited the proliferative outgrowth
of both MG63.3 and K7M2 cell lines at physiologically relevant and non-cytotoxic exposures
of 1 µM (Figure 3; ~20% inhibition in both cell lines, # p ≤ 0.005) compared to vehicle
treated cells. Significant inhibition was not seen at 100 nM. Conversely, saracatinib did not
significantly inhibit the proliferative outgrowth of both cell lines in the 3D BME system
at or below 1 µM. Oclacitinib also had no significant effect in the 3D BME assay on the
proliferative outgrowth in either cell line tested (Figure 3).
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Figure 2. Drug exposures at or below 1 µM were determined to be non-cytotoxic in highly metastatic
OS cells. The inhibition of OS cell number in 2D culture was measured in dose-response via MTT
assay. Regorafenib, saracatinib, and oclacitinib were tested at various doses (10 pM-100 µM) in
MG63.3 (top) and K7M2 (bottom) for 72 h. IC50s were calculated using a four-parameter variable
slope nonlinear fit in GraphPad Prism. (N = 3, replicates = 3–9).
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Figure 3. The activity of antimetastatic drugs in the 3D BME system on day 6. Using the 3D
BME system, highly metastatic osteosarcoma cells were treated with regorafenib, saracatinib, and
oclacitinib at varying doses (1 nM−1 µM) and the % proliferation at day 6 was determined by MTS
assay. MG63.3 and K7M2 cells were treated with the inhibitors and only regorafenib was found to
significantly inhibit the proliferation (relative to vehicle [0.1% DMSO] control) (>20%, # p < 0.005)
across both cell lines at a dose (1 µM) that is not cytotoxic in 2D culture (See Figure 2).
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3. Discussion

This study was performed to validate a 3D BME assay using paired low and high
metastatic OS cell lines and then assess efficacy of drugs against metastatic endurance
(ME). Two small molecular kinase inhibitors, regorafenib and saracatinib were chosen as
suspected positive and negative controls respectively given their previous clinical results
in early human clinical trials. The results with these two “control drugs” provide a post
hoc validation of the 3D BME assay as a predictive screen for drugs with antimetastatic
activity in this adaptation of the 3D BME assay. A third small kinase inhibitor was then
assessed for efficacy against ME in OS cells.

The experiments performed here included OS cell lines that have been rigorously
evaluated for biologic and metastatic behavior [10,11]. The selection of these cell lines in
a phenotypic drug screen has some inherent weakness over well-characterized patient-
derived models (PDXs) since the three drugs tested are targeted agents and the expression
of targets is not known, not conserved, and not likely relevant for all cell models. Nonethe-
less, the value of a phenotypic screen is the opportunity to identify drugs or therapeutic
candidates with the desired phenotype of blocking metastatic potential independent of
target knowledge. It is reasonable to ask if two highly metastatic cell lines are sufficient
for such a screen and if the addition of a canine OS cell line would add value to a screen
that aspires to evaluate promising drugs prior to clinical trials for pet dogs with OS. The
addition of more cell lines to our screen is part of ongoing studies; nonetheless, we do not
believe there is significant value to the addition of a canine cell line, per se. Canine and hu-
man OS cells share many dysregulated intracellular signaling pathways, allowing a human
OS cell line (MG63.3) to reasonably represent canine disease [12]. The recognized genomic
complexity and heterogeneity of OS, and our dependence on highly characterized cell lines
is likely a greater weakness to the current approach than the absence of a canine cell line.
Additional cells with known metastatic potential from human patient derived xenograft
(PDX) models and genetically engineered models (GEMs) will be part of a planned assay
expansion. Our approach to using MTT to identify exposures for subsequent 3D BME
testing was intended to identify drug exposures that were not directly cytotoxic and that
would not confound our assessment of inhibition of ME. In parallel, we aligned the non-
cytotoxic exposures with exposures of these drugs that are physiologically attainable in
human clinical trials or preclinical models. This approach is reasonable and necessary;
however, we are aware of the challenges associated with pharmacokinetic modeling from
cell-based assays to the in vivo setting. While our proposal uses the OS modified BME
assay to identify drugs that may target important steps in the metastatic cascade, it cannot
fully recapitulate all facets of metastasis. To confirm our results, all findings using the OS
modified BME assay will be confirmed in complimentary ex vivo and/or in vivo metastasis
studies.

One additional challenge associated with our 3D BME assay approach is the exclusion
of the innate/adaptive immune system’s influence on the metastatic niche [3]. Only the
impact of the extracellular matrix and nutritional stressors placed upon the metastatic
cancer cells are modeled here [3], and, as such, the assay does not mimic the interaction
of the dormant tumor cell with an active immune system. It is important to recognize
and address this limitation. Inactivity against OS cells in 3D BME should not be the sole
criterion that eliminate potential therapeutic candidates but may be a valuable approach to
force rank or prioritize candidates in the setting of resource or clinical trial patient scarcity.
We plan to expand our screening assays to include models such as PuMA (pulmonary
metastasis assay) which models the lung metastatic niche [13]. In light of our planned
assay expansion, 3D BME becomes an important and higher-throughput screening step to
eliminate inactive candidates from further testing in the more labor and resource intensive,
but physiologically relevant, ex vivo PuMA model. The added efficiency provided by
this intermediate step is highlighted by the large number of drugs that can be screened in
parallel.
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Regorafenib, our positive control, significantly suppressed outgrowth of cells in 3D
BME at clinically relevant doses, suggestive of potential antimetastatic activity. Regorafenib
is already used across a multitude of cancer indications including hepatocellular carcinoma,
renal cell carcinoma, and gastrointestinal stromal cell tumors [14–16]. It recently showed
early promise in a phase two human clinical trial for OS and soft tissue sarcoma, where
progression of metastasis had occurred in the face of traditional cytotoxic chemotherapies
(REGOSARC, REGOBONE) [17,18], hence, its use in our study as a positive clinical control.
Regorafenib suppresses multiple receptors involved in angiogenesis (VEGFR1,2,3, TIE2,
and PDGFR-B). It also has demonstrated inhibitory effects on oncogenic kinases (KIT and
RET) [19]. One shortcoming of its use as a positive control is that this drug has not been
proven to work alone at blunting ME in the clinical setting. In the previously mentioned
REGOBONE clinical trial, the patient population had advanced metastatic disease and
had all been previously treated with conventional cytotoxic agents. This combination
of therapies is not recreated in our assay system. Additionally, patients with naturally
occurring disease may have different subtypes of OS than the cell lines used in our study.
Nonetheless, the results are in accordance with previous clinical trials and thus supports
our approach.

Saracatinib was used as a negative control for this study given its poor performance in
a clinical trial in humans with progressive OS. While the clinical trial showed an increase
in progression free survival there was no apparent benefit to long term overall survival [7].
It is fair to conclude that the question about saracatinib activity against OS metastasis was
never answered in the referenced clinical trial as a result of insufficient patient accrual.
Enrollment and median overall survival times were not reached for the experimental or
placebo group. Nonetheless, the totality of data from the small number of evaluable patients
is sufficient to conclude that saracatinib was not associated with a profound treatment
benefit. Interestingly, our data also suggests saracatinib is an inactive antimetastatic drug
in OS.

Oclacitinib, our drug of interest, is a Janus kinase inhibitor approved for use in
controlling allergy, inflammation, and pruritus in dogs. The drug binds to JAK1/2/3 and
TYK2 [9] with its most potent inhibitory action against JAK1 (1.8 times that of JAK2 and
9.9 times that of JAK3). Given that increased JAK2/STAT3 activity has been documented
in MG63 OS cells with lung metastasis [20] and that upregulation of STAT3 in OS cells
have shown to promote invasion and metastasis [21], it was reasonable to ask whether
oclacitinib would inhibit escape from dormancy in OS cell lines. Based on our findings,
oclacitinib was not useful at suppressing metastatic progression in OS in vitro. The biologic
dependency of the JAK/STAT pathway in MG63.3 or K7M2 is not known. The pathway
may not be one of the crucial steps in escape from dormancy in OS cells or it may be
part of a highly redundant biology that was compensated for by other pathways upon its
blockade. Nonetheless, oclacitinib should not be prioritized above other agents for clinical
development. An additional potential advantage in choosing oclacitinib for our study was
the opportunity to accelerate translation/repurposing of this FDA-approved veterinary
drug to treat human OS metastasis should it have proven active. Unfortunately, our results
indicate that oclacitinib was not active in suppressing ME in two distinct highly metastatic
OS cell lines. Given the consideration that there was no biologically useful activity with this
drug as compared to regorafenib, we will not prioritize further development of oclacitinib
in OS metastasis at this time.

An additional consideration in deprioritizing oclacitinib as a therapeutic candidate
is concern for its immunosuppressive properties. In initial safety studies, concern was
raised about emergence of diseases commonly seen in immunosuppressed dogs (e.g.,
demodicosis) [22]. Subsequent in vitro studies have shown oclacitinib has pro-apoptotic
effects on T cells [23]. In light of the known importance that T cell activity exerts on
regulating tumor outgrowth within the metastatic microenvironment, [3,24] one may
argue that inhibition of T cell activity while trying to control metastatic progression is
counterproductive.
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Despite oclacitinib’s lack of efficacy reported here, we believe the described 3D BME
assay approach has value as part of a phenotypic screen of cancer metastasis, that in this
case could be rapidly applied to in vivo validation studies in canine OS as a model for
human OS. The switch from a dormant cell to an active metastatic cell involves multiple
intracellular pathways [8,25] and so it is perhaps not surprising oclacitinib, a drug that
selectively targets the JAK/STAT pathway, proved ineffective. The success noted with
regorafenib, which targets multiple pathways, highlights the potential need for probing
combination therapies. Using the 3D BME assay system, screening for additive or even
synergistic combinations of multiple small molecule inhibitors (or small molecule inhibitors
in combination with classic cytotoxic chemotherapies) is feasible and efficient. Once identi-
fied, successful combinations of already approved FDA drugs can be rapidly translated to
clinical trials in dogs or humans directly.

4. Materials and Methods
4.1. Cell Culture

Two previously described clonally related and biologically validated high and low
metastatic OS cell lines MG63.3 (highly metastatic; human OS), MG63 (low metastatic,
human OS), K7M2 (highly metastatic murine OS), and K12 (low metastatic murine OS), [10]
were used to optimize and validate the 3D BME assay for use with OS cells. The highly
metastatic clone from each pair was then used to assess antimetastatic activity of the
selected drugs.

Cells were maintained and passaged in Dulbecco’s modified Eagle medium (DMEM)
+4.5 g/L D-Glucose and 2 mM L-glutamine supplemented with 10% fetal bovine serum
(FBS) and 1% penicillin/streptomycin (P/S) (Gibco, Grand Island, NY, USA), and incubated
at 37 ◦C in 5% humidified CO2.

Oclacitinib, saracatinib, and regorafenib (Selleck Chemical, Houston, TX, USA) were
each dissolved in DMSO at a stock concentration of 10 mM.

4.2. Assessment of Cell Number and Cytotoxic Activity of Each Drug in 2D Culture

The number of viable cells present in 2D culture was determined by MTT as previously
reported [26]. Briefly, cells were plated in 96-well plates at 2000 cells/well and incubated at
37 ◦C for 24 h. After 24 h, the media was replaced with fresh media containing drugs at the
desired concentrations (10 pM−10 µM) and incubated at 37 ◦C for 72 h. After 72 h, MTT
reagent (20 µL/well of a 5 mg/mL stock solution in sterile water; Sigma, St. Louis, MO)
was added to each well and the plate was incubated at 37 ◦C for 2 h. DMSO (100 µL/well)
was then added to each well to solubilize the formazan crystals.

The resulting absorbance was measured at 490 nm via plate reader (Molecular Devices,
San Jose, CA, USA). DMSO (0.1%) was used as vehicle control, while 20 µM rapamycin was
used as a positive cell-kill control [27,28]. The experimental conditions were conducted in
triplicate and each experiment was repeated three times. Regression lines and IC50s were
calculated using a four-parameter variable slope nonlinear fit in GraphPad Prism.

4.3. Assesment of ME and Drug Response of OS Cells in the 3D BME System

The influence of drug exposure on the transition from tumor dormancy to metastatic
growth of OS cells was assessed in a 3D BME system as described before [5,29].

Cultrex® PathClear, Reduced Growth Factor Basement Membrane Extract (BME—Bio-
Techne, Minneapolis, MN, USA) was added (50 µL/well) to a 96-well plate and allowed to
gel by incubating at 37 ◦C for ≥30 min. Cells were harvested, washed with DMEM (no glu-
cose, no FBS, Gibco, Grand Island, NY, USA), and centrifuged at 1500× g 5 min. The media
was aspirated, and the remaining cell pellet flicked for ~10 s to ensure disaggregation.

Cells were diluted in assay media containing 2% BME, resuspended vigorously, and
150 µL of the cell suspension was added on top of the gelled 3D BME layer. For comparison,
matched low-metastatic cell lines (MG63 and K12) were grown under the same conditions
as the highly metastatic cells (MG63.3 and K7M2) and did not exhibit the same growth rate
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or kinetic profile, highlighting the differences in their metastatic potential. Proliferation
was determined in the control vehicle (cells in media + 0.1% DMSO) or treated wells at
indicated days by the addition of 20 µL/well of MTS reagent (Cell Titer 96 Aqueous One,
Promega, Madison, WI, USA), followed by incubation at 37 ◦C for 2 h and absorbance
measurements at 490 nm via plate reader (Molecular Devices, San Jose CA, USA).

4.4. Statistical Analysis

All conditions were conducted in quadruplicate and each experiment was carried
out at least 3 separate times. All comparisons were made between treatment and vehicle
control at concordant time points. Statistical analyses and non-linear regressions were
derived using GraphPad Prism statistical software.

5. Conclusions

The results reported here validate a modified 3D BME assay system for use with OS
cells to assess efficacy of drugs or therapeutic agents against ME satisfying our primary
objective. We showed that the assay system was effective at mirroring previously known
clinical results with two drugs: regorafenib and saracatinib. In 3D BME, regorafenib
suppressed metastatic outgrowth of two highly metastatic OS cell lines while saracatinib
was ineffective. Oclacitinib also proved ineffective at suppressing ME in two highly
metastatic cell lines, refuting our working hypothesis. Next steps include expansion of the
number of cell lines used in 3D BME testing, and continued examination of drugs with
potential for translation to anti-metastatic agents. Once identified, these agents will be
further evaluated for efficacy against ME using the ex vivo pulmonary metastasis assay to
better model an in vivo metastatic niche. Drugs found to show continued efficacy against
ME in the PuMA may be brought forward for clinical trials, specifically trials in the canine
OS population as a model for human OS.
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