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Abstract: In this work, sucrose acetate isobutyrate (SAIB) and polylactic co-glycolic acid (PLGA) were
used alone or in combination as a matrix-former (MF) to prepare long-acting injectable rivastigmine
(RV) in situ-forming microparticles (ISM). RV-ISM were prepared by the emulsification of an internal
phase, containing the drug and the matrix former(s), into an external oily phase containing a stabilizer.
The statistical design, Central Composite Design (CCD), was adopted as a quality by design (QbD)
approach to optimize the formulation of RV-ISM systems. The fabricated RV-ISM systems was
designed to minimize the initial burst drug release and maximize the sustainment of RV release from
the ISM and ease of injection. The influence of critical formulation variables such as the matrix-former
to drug (MF/D) ratio and SAIB to PLGA (S/P) ratio in the internal phase with respect to critical
quality attributes (CQAs), such as the percentage drug release within the first day (Q1), the time
required for 50% drug release (T50%) and the rate of injection, were studied using the CCD. The
optimal RV-ISM system with the highest desirability value (0.74) was predicted to have an MF/D
ratio of 11.7:1 (w/w) and an S/P ratio of 1.64:1 (w/w). The optimal RV-ISM system was assessed for
its release profile, injectability, rheological properties, morphology, effect on cell viability, tolerance
to γ-sterilization and in vivo performance in male albino rabbits. In vitro release studies revealed
that the optimal RV-ISM system released 100% of its drug content throughout a release period of
30 days with only 15.5% drug release within the first day (Q1) and T50% of 13.09 days. Moreover, the
optimal system showed a high injection rate of 1.012 mL/min, pseudoplastic flow, uniform spherical
globules with homogenous particle size, minimal cytotoxicity and high tolerability to γ-sterilization.
In vivo pharmacokinetic (PK) studies revealed that the rate of absorption of RV from the optimal
RV-ISM system was controlled compared to a drug solution following either intramuscular (IM) or
subcutaneous (SC) injection. Furthermore, the optimal RV-ISM was found to follow flip-flop PK
with poor correlation between in vitro release and in vivo findings. These findings suggest that the
optimal RV-ISM is a promising tool to achieve a sustained release therapy for RV; however, further
investigation is still required to optimize the in vivo performance of RV-ISM.

Keywords: in situ-forming microparticles; rivastigmine; depot release; sucrose acetate isobutyrate; op-
timization

1. Introduction

Alzheimer’s disease (AD) is a chronic neurodegenerative disorder characterized by a
reduction of cholinergic transmission. AD is considered the most common cause of demen-
tia contributing to about 60–70% of the cases worldwide [1]. Inhibitors of cholinesterase en-
zymes have emerged as effective agents for the management of AD [2]. Rivastigmine (RV),
a phenyl carbamate ester, is a “pseudo-irreversible” dual inhibitor of acetylcholinesterase
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(AChE) and butyrylcholinesterase (BuChE) that is currently available as oral capsules for
the treatment of mild to moderate dementia of the Alzheimer’s type [2,3]. Although RV is
rapidly absorbed, its oral bioavailability is limited by first pass metabolism in the intestine
and liver mediated by esterase enzymes [4], resulting in inter-patient variation in drug
response, ranging from 20% to 60% [4,5]. In addition, the oral administration of RV is
associated with dose-dependent adverse effects such as nausea, vomiting and diarrhea
which negatively affect the tolerability and compliance of the patient [6].

Many strategies have been attempted to overcome the oral limitations of RV by using
drug-loaded liposomes [7], microemulsions [8], nanoparticles [9], transdermal patches [10],
buccoadhesive films [11] and in situ-forming oleogel implants [12]. These in situ-forming
implants have provided prolonged in vivo drug absorption within the therapeutic range
for 11 days with peak plasma levels well below the toxic threshold [12].

In situ-forming systems, such as implants and microparticles, are marked by their
ease of administration and less complicated fabrication and demanding manufacturing
conditions for sensitive drug molecules [13]. In situ-forming implants were developed
as an alternative to solid implants or microparticles formulations [14,15]. These systems
are fabricated using hydrophobic polymers, such as poly lactic acid (PLA) and polylactic
co-glycolic acid (PLGA), which are dissolved together with the drug in a water-miscible
solvent. Upon injection of the drug- polymer solution, the polymer precipitates in body
tissues due to solvent/nonsolvent exchange and generates a semisolid or solid depot
which can effectively control the release of the drug in vivo [15]. Nevertheless, the use of
drug-loaded in situ-forming implants was limited by a typical initial rapid drug release
during the formation of the implant, poor rate of injection due to their high viscosity and
possible toxicity caused by the use of organic solvents [16].

In situ-forming microparticles (ISM) were developed as an alternative for in situ-
forming implants to overcome those limitations [17,18]. The system consists of an internal
phase which contains a mixture of the drug and the hydrophobic polymer dissolved
in a water-miscible solvent such as N-methyl pyrrolidine (NMP), dimethyl sulfoxide
(DMSO) or 2-pyrrolidone. The internal phase is then emulsified into a biocompatible
external oily phase such as peanut oil. Following intramuscular (IM) injection, the internal
polymer phase precipitates and forms microparticles. ISM systems were reported to have
a significantly better rate of injection using high-gauge syringes and lower myotoxicity
when compared to the in situ forming implants [16,19,20]. Improved muscle compatibility
observed in Sprague Dawley rats and reduced initial burst release of low molecular weight
drugs and peptides in vitro and in vivo were related to the lower viscosity of the continuous
phase and faster precipitation of the polymer during the formation of ISM [18].

The non-polymeric high viscosity excipient, sucrose acetate isobutyrate (SAIB), is a
fully esterified sucrose derivative with a viscosity of over 100,000 cP at room temperature
and it is also soluble in organic solvents such as ethanol, dichloromethane ethanol, 2-
pyrrolidone and N-methyl-2-pyrrolidone [21,22]. SAIB is biocompatible and biodegradable
to inactive metabolites in the body. It has been approved by the US FDA as a food additive
and is used as a density-adjusting agent in several non-alcoholic beverages [23]. Studies
investigating the use of SAIB as an in situ delivery matrix for drugs and proteins have
shown that it is tolerated by animals after subcutaneous (SC) injection in combination with
benzyl benzoate, ethanol and benzyl alcohol [21,24]. One characteristic of the SAIB/solvent
system is the small amount of organic solvent required during the manufacturing process
compared to commonly used injectable PLA- or PLGA-based in situ-forming implants
and standard microspheres [21]. Moreover, the resulting SAIB/solvent mixture has a
low viscosity, but upon injection, the viscosity increases dramatically as the solvent dis-
sipates away from the injection site. Accordingly, an SC or IM injection of a drug-loaded
SAIB/solvent system using simple injection techniques is followed by solvent diffusion
into the surrounding tissues that should allow SAIB to form a semi-solid, water-insoluble,
biocompatible and biodegradable depot from which the dissolved therapeutic agents are
slowly released. Moreover, injectable SAIB implants and microspheres involve shorter
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and simpler procedures in their preparation and are considered more economical than
those prepared using PLGA, which is known to be an expensive polymer [25]. Therefore,
drug-loaded ISM systems prepared using SAIB with or without the use PLGA can be
tailored to control the release of the drug to achieve optimal plasma level profiles, reduce
dosing frequency and minimize the total dose of the therapeutic agent. This should result
in fewer side effects, allow more efficient use of the drug and improve patient compliance.
Such benefits are particularly valuable in the effective treatment of chronic diseases where
patients fail to comply with complex, daily oral medication regimens [21].

The aim of this work is to fabricate and optimize injectable RV-ISM systems, using the
principles of QbD, to achieve an extended-release drug depot in the form of microparticles
at the injection site as a novel approach to improve the efficacy and tolerance of RV in the
treatment of AD. RV-ISM systems were optimized using a series of different ratios of matrix
former(s) to drug and SAIB to PLGA according to a central composite statistical design.
Then the influence of these formulation variables on critical quality attributes (CQAs) of
the prepared RV-ISM systems was investigated. The predicted optimal RV-ISM system
showing the optimal in vitro release profile was further characterized for its rheological
properties, particle size, morphology, in vitro cytotoxicity and in vivo PK profile following
SC and IM administration to rabbits.

2. Materials and Methods
2.1. Materials

Rivastigmine (RV) was received as a gift from Mepaco Pharmaceutical Co., Elsharqia,
Egypt. Poly(D,L-lactide-co-glycolide) (PLGA, Resomer® RG 653 H, Mw 24,000–38,000),
sucrose acetate isobutyrate (SAIB), sorbitan monostearate (Span 60), sesame oil, N-methyl-
2-pyrrolidinone (NMP), Pluronic F68 (PF68), Eagle’s Minimum Essential Medium with
Earle’s Balanced Salt Solution (EBSS) and fetal bovine serum (FBS) were purchased from
Sigma-Aldrich Co. (St. Louis, MO, USA).

2.2. Experimental Design for the Optimization of RV-ISM

A central composite design (CCD) was employed to investigate the influence of several
formulation variables on RV-ISM characteristics using Design-Expert® software (Version
12.0, Stat-Ease Inc., Minneapolis, MN, USA). Two numerical factors have been set as the
critical material attributes (CMAs) for the experimental design to investigate the effect of
these formulation parameters on the selected critical quality attributes (CQAs). These were
1) the matrix former(s) to drug ratio (MF/D w/w) in the internal phase at three levels (X1:
4:1, 10:1 and 16:1) and 2) the ratio of non-polymeric SAIB to polymeric PLGA (S/P w/w)
used in the internal phase at three levels (X2: 0:1, 1:1 and 1:0 w/w) respectively. The levels
of the independent variables were chosen to provide a maximal design space and at the
same time enable the feasible processing of the RV-ISM systems (Table 1). On the other
hand, three responses have been adopted to be tracked for the optimization of the studied
factors: (1) Q1, the percentage (%) drug release within the time interval of one day (Y1); (2)
T50%, the time elapsed for 50% of the drug to be released from the system (Y2); and (3) the
rate of injection (Y3) (Table 1). RV-ISM systems were optimized for the responses Y1–Y3
to yield the system with the highest overall desirability value. The optimal independent
variables were then used to prepare the optimal RV-ISM system.
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Table 1. Independent variables (factors) and dependent variables (responses) for the optimization of
RV-ISM systems.

Numerical Factors
Applied Levels

Low (−1) Medium (0) High (+1)

X1 MF/D (w/w) 4:1 10:1 16:1

X2 S/P (w/w) 0:1 1:1 1:0

Responses Optimization Goal

Y1 Q1 (%) Minimize
Y2 T50% (days) Maximize

Y3
Rate of injection

(mL/min) Maximize

The statistical design software yielded 11 experimental runs (systems) including
2 replications as presented in Table 2. To increase the predictability of the model and
eliminate biased variance, all experimental runs were conducted in random order. All
measurements of the three responses were performed in triplicate (n = 3) to satisfy the
statistical requirements. All responses were simultaneously fitted to linear, two-factor
interaction (2FI), and quadratic response surface models and the resulting polynomial
equations were statistically validated by the analysis of variance (ANOVA). Statistical pa-
rameters such as p-value, adjusted multiple correlation coefficient (Adjusted-R2), predicted
multiple correlation coefficient (Predicted-R2) and multiple correlation coefficient (R2)
were determined to ensure the significance of the model; 3D response surface plots were
generated by Design-Expert® software to analyze the results graphically and determine
the degree of interactions between the different factors for each response. The desirability
function technique was used to optimize the formulation using numerical and graphical
analysis. A desirability value of 0 was considered not acceptable, while a value closer to
1 corresponded to the desired response.

Table 2. Experimental design and measured responses for the optimization of RV-ISM systems.

Formulation MF/D (X1) S/P (X2) Y1: Q1 (%) Y2: T50%
(Days)

Y3: Injection Rate
(mL/Min)

F1 4:1 0:1 20.1 ± 1.5 8.54 ± 0.3 1.24 ± 0.09

F2 10:1 0:1 16.0 ± 1.3 10.59 ± 0.7 0.60 ± 0.03

F3 16:1 0:1 16.0 ± 2.1 13.24 ± 1.1 0.60 ± 0.04

F4 4:1 1:0 31.1 ± 1.7 6.74 ± 0.4 1.38 ± 0.11

F5 10:1 1:0 21.7 ± 0.9 9.96 ± 0.1 1.11 ± 0.08

F6 16:1 1:0 14.7 ± 1.6 12.51 ± 1.4 1.06 ± 0.05

F7 4:1 1:1 21.8 ± 0.8 8.64 ± 0.6 1.30 ± 0.02

*F8 10:1 1:1

16.3 ± 1.4 13.10 ± 1.3 1.08 ± 0.01

15.5 ± 1.1 13.61 ± 0.7 1.03 ± 0.10

13.3 ± 1.0 13.20 ± 1.2 1.11 ± 0.03

F9 16:1 1:1 14.3 ± 1.5 14.61 ± 1.0 0.80 ± 0.06
Data are mean value ± SD (n = 3), *F8 system was prepared in triplicate.

2.3. Preparation of RV-ISM Systems

RV-ISM systems were prepared as per the experimental design, through the emulsi-
fication of an internal drug-containing matrix-former phase into an external oily phase
containing a stabilizer [26]. SAIB and PLGA were used individually or in combination
to form the internal phase of the ISM. Briefly, the internal phase was prepared by first
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dissolving 40 mg of RV in 1 mL NMP containing 2.5% (w/w) PF68 as surfactant. To this
solution, the specified amount of SAIB, PLGA or their physical mixture was added and
homogenized using a probe ultrasonicator (Q500, Terra Universal, Inc, Fullerton, CA,
USA) until a clear solution was formed. The external oily phase was made of sesame oil
containing sorbitan monostearate (2.5% w/w) as stabilizer. The internal phase and the
external oily phase were mixed at a fixed ratio of 1:3 v/v, respectively, and then emulsified
using the Q500 probe ultrasonicator at 50 mHz for 2 min in an ice bath to avoid thermal
stresses on the incorporated materials, especially PLGA. The final concentration of RV in
each RV-ISM system was 10 mg/mL.

2.4. Physico-Chemical Characterization of RV-ISM Systems
2.4.1. In Vitro Drug Release

Aliquots of 1 mL of the prepared RV-ISM systems, equivalent to 10 mg RV, were
transferred, using a syringe fitted to a 21-gauge needle, into cellulose dialysis bags
(6 cm × 2.2 cm with MWCO of 12–14 kD, Sigma Chemical Company, (St. Louis, MO,
USA)) containing 1.5 mL phosphate buffer saline (PBS, pH 7.4) and left for 15 min to form
the microparticles [27,28]. An equivalent volume of RV solution in NMP was used as a
control to determine the degree of sustainment achieved due to ISM formation. The dialysis
bags were then immersed in 20 mL PBS under sink conditions, contained in Stoppard glass
bottles, for 30 days in a horizontal water bath shaker (OLS Aqua Pro, Grant instruments,
Cambridge, UK) maintained at 37 ± 0.5 ◦C and operated at an oscillation rate of 100 strokes
per minute [29]. At specific time intervals (2 h then 1, 2, 3, 4, 6, 7, 8, 9, 10, 11, 14, 15, 25,
30 days), samples of 1 mL were collected from the receptor medium and were immediately
replaced by equal volumes of fresh medium. The samples were then analyzed for drug
content spectrophotometrically at λmax 264 nm to calculate the percentage RV released at
each time interval. A standard curve of RV in PBS (pH 7.4) was generated over the range
of 10–1000 µg/mL and used to convert absorbance to concentration. A cumulative release
profile was generated by normalizing the data against the total amount of RV and reported
as percentage drug release. All release experiments were conducted in triplicates (n = 3).

The percentage RV released from the prepared RV-ISM systems within the time
interval of 1 day (Q1) was adopted in the statistical response surface analysis (Y1) as
it reflects the degree of burst drug release. The in vitro release data from all systems
were also analyzed according to zero-order, first-order and Higuchi-diffusion release
mechanisms [30]. The linear regression equation employed for zero order kinetics was:
Ct = Co − kt; where Co is the zero-time concentration of the drug, Ct is the concentration
of the drug at time t, and k is the apparent release rate constant. First order kinetics
were determined according to the equation ln Ct = ln Co − kt. Drug release following
the Higuchi model was determined using the equation Q = kt0.5, where Q represents the
fraction of drug released in time t, and k is the Higuchi release rate constant. T50% values
(Y2) were calculated from the slope of the release equation having the highest correlation
coefficient (R2) [31]. T50% was adopted as a statistical response (Y2) to study the effect of
the formulation variables on the rate of RV release from the different RV-ISM systems.

2.4.2. Injectability of RV-ISM Systems

The injectability of the prepared RV-ISM systems was assessed using a handmade
equipment depending on controlling the pressure acting on a fixed volume of the stud-
ied system and measuring the time required for injection [32]. Samples of 1 mL of the
prepared RV-ISM systems were withdrawn into 3 mL syringes fitted to 19-gauge needles.
The syringes were then fitted into a rubber tube ending with an air pump to maintain a
constant pressure (70 mmHg) on the system surface. The time taken to inject each system
was recorded and the rate of injection (mL/min) was determined and considered as an
indicator of the ease of injectability [33,34]. All measurements were done in triplicates and
the data were reported as mean ± SD.
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2.5. Rheological Studies

The rheological properties of the optimal RV-ISM system were characterized by gen-
erating complete rheograms at room temperature using Cone and Plate Brookfield DV3T
Rheometer equipped with Spindle CPE-341 and Rheocalc software (Brookfield Engineering
Laboratories Inc., Middleboro, MA, USA) [20]. The shear rate (γ, s−1) was plotted as a
function of the shearing stress (τ, dyne/cm2), and coefficients of viscosity in centipoise
(η, cp) were calculated and recorded within a torque range of 10–100%. The shear rate
values were kept between 0.3 s−1 and 40 s−1. The collected data were fitted into the power
law model as follows: τ = K γn; where n (dimensionless) refers to the flow behavior index
(n = 1 refers to a Newtonian flow, n < 1 refers to a shear-thinning Non-Newtonian flow
and n > 1 refers to a shear-thickening or dilatant Non-Newtonian flow) and K is the flow
consistency index (dyne/cm sn).

2.6. Particle Size Determination and Morphological Characterization

The average particle size (PS) diameter (z-average) of the optimal RV-ISM system was
determined by dynamic light scattering using a Zetasizer Nano ZS (Malvern Instruments,
Malvern, UK) and its morphology was examined using transmission electron microscope
(TEM). Samples from the optimal RV-ISM system were kept in PBS (pH 7.4) for 15 min
at the same conditions used for the in vitro release study to allow complete solidification
of the microparticles. Solidified samples were separated, suspended in distilled water
and then introduced to the Zetasizer for PS measurement using a clear disposable zeta
cell at approximately 25◦ and an angle of the laser incidence of 173◦ or dropped on a
carbon-coated copper grid for TEM imaging. For TEM studies, the grid was placed in the
vacuum chamber of the electron microscope equipped with a LaB6-cathode and a Gatan
Orius SC1000 camera (Gatan Inc., Pleasanton, CA, USA) at a temperature of −170 ◦C,
using an acceleration voltage of 100 kV (JEOL-2100, JEOL Ltd., Tokyo, Japan) where
photomicrographs were captured using different magnifications.

2.7. Effect of γ-Sterilization

The optimal RV-ISM system was subjected to γ-sterilization in the presence of dry ice
to protect against the heating effect of γ-irradiation [35]. Following the USP recommenda-
tions, an effective sterilizing dose of 2.5 Mrad was used. The in vitro drug release profile,
injectability rate, rheological properties, and morphology of the optimal RV-ISM system
before and after γ-sterilization were compared. The similarity factor (f 2) was calculated to
compare the release profiles before (R) and after (T) sterilization. The following equation
was utilized

f2 = 50 × log


[

1 +
(

1
n

) n

∑
j=1

∣∣Rj − Tj
∣∣2]−0.5

× 100


where j is the time interval and n is the number of sampling intervals considered till both
test and reference approach 85% release [36,37]. All measurements were done in triplicate
and the data were reported as mean ± SD.

2.8. Cell Culture

EBTr (NBL-4) bovine normal tracheal cells (ATCC, Manassas, VA, USA) were cultured
in Eagle’s Minimum Essential Medium (EMEM) supplemented with Earle’s Balanced Salt
Solution (EBSS), 2 mM Glutamine, 1% non-essential amino acid and 10% heat-inactivated
FBS (Sigma-Aldrich Co., St. Louis, MO, USA) under humidified air and 5% CO2 at 37 ◦C.
The cells were sub-cultivated 3 times per week at a ratio of 1:4 by trypsinization followed
by an addition of fresh growth medium.

2.9. Cytotoxicity Studies

The toxicity of the materials used in the fabrication of the optimal RV-ISM system,
especially SAIB, was investigated by performing cytotoxicity studies. EBTr (NBL-4) cells
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were seeded into 96-well plates (Corning, Sigma-Aldrich Co., St. Louis, MO, USA) at
a density of 1 × 104 cells per well and left overnight for initial attachment. After 24 h,
the cells were treated with fresh media containing a series of concentrations (0.2, 0.4, 0.8
and 1 mg/mL) of drug-free-ISM of the optimal system and left for another 48 h. Cells
treated with fresh medium and 1% Triton-X were used as negative and positive controls,
respectively. An MTT (3-(4, 5-dimethyldiazol-2-yl)-2, 5-diphenyltetrazolium bromide) cell
proliferation and cytotoxicity assay kit (Sigma Aldrich, St. Louis, MO, USA) was used to
evaluate the cytotoxicity of the optimal drug-free ISM system by adding 10 µL of 5 mg/mL
MTT to each well, followed by incubation at 37 ◦C for 4 h. The culture media containing
MTT were then removed and 100 µL of DMSO were added to each well. The plates were
shaken for 20 min followed by measuring the optical intensity at 570 nm using a Synergy™
HTX microplate reader (BioTek, Winooski, VT, USA). Each experiment was performed in
triplicate and cell viability was expressed as the percentage of viable cells relative to the
positive control using Cell viability (%) = 100 As/Ac; where As is the absorbency of the
samples and Ac is the absorbency of the control.

2.10. In Vivo Pharmacokinetic Studies
2.10.1. Study Design

The in vivo studies were carried out to compare the pharmacokinetic (PK) profile of
RV from the optimal RV-ISM system to that of a simple RV solution following SC and IM
injections of single doses in rabbits. In this study, twelve male albino rabbits (body weight;
3.0–4.0 kg) were randomly assigned to four treatment groups of three rabbits each (n = 3)
using a non-blind, four-treatment, randomized parallel design. The four treatments were as
follows: Group 1 (SC control) received a SC injection of RV solution; Group 2 (IM control)
received an IM injection of RV solution; Group 3 received an SC injection of the optimal
RV-ISM system (SC RV-ISM); and Group 4 received an IM injection of the optimal RV-ISM
system (IM RV-ISM). The rabbits were supplied by the Laboratory Animal Center at the
Faculty of Pharmacy, Cairo University, Egypt and were housed in four cages with free
access to water and food and 12 h cycles of day and night. All animal experiments were
performed according to ethical principles and the study protocol was approved by the
Research Ethics Committee (REC) for Animal Subject Research at the Faculty of Pharmacy,
Cairo University, Cairo, Egypt (Approval No. 2355) operating according to the CIOMS and
ICLAS international guiding principles for biomedical research involving animals of 2012.
Furthermore, all animal experiments comply with directive 2010/63/EU.

2.10.2. Drug Administration and Dosing

IM and SC injections of RV solution were prepared by dissolving RV in NMP to result
in a concentration of 25 mg/mL. The optimal RV-ISM system and RV solution were injected
in the Hind limb muscles (Gluteal/Quadriceps) of the rabbits, either IM or SC, using a
syringe with a 21-gauge needle. The volume of the injection was equivalent to 27.75 mg
RV, which represents the monthly dose translated from human to rabbits based on the
allometric scaling of the body surface area [38,39].

2.10.3. Blood Sampling

Blood samples (3 mL) were withdrawn from the middle ear vein of each rabbit using
syringes with 26-gauge needles at predetermined time intervals post administration of a
treatment, into heparinized glass tubes. Blood samples were withdrawn first at 0.5, 1, 2,
3, 5, 7, 10 and 24 h and then each following day until the drug blood concentration could
no longer be detected. The plasma was immediately separated from the blood cells by
centrifugation at 5000 rpm for 15 min, pipetted into glass tubes and stored frozen at −20 ◦C
until analysis by liquid chromatography-mass spectrometry (LC/MS/MS).
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2.10.4. Sample Preparation and LC-MS/MS Analysis

Plasma concentrations of RV following each treatment were determined using a
selective, sensitive, and accurate LC-MS/MS method that was developed and validated
before use. All chemicals and reagents used were of analytical grade and solvents were of
HPLC grade. Before analysis, 20 µL of the internal standard stock solution (100 ng/mL of
torsemide) was added to the plasma samples (200 µL) and vortexed. RV and the internal
standard was extracted by a liquid/liquid extraction technique through mixing with 500 µL
ethyl acetate. The mixtures were vortexed for 3 min and then centrifuged at 5000 rpm.
The supernatants were transferred into small glass tubes, evaporated under vacuum
(Eppendorf 5301, Hamburg, Germany), then reconstituted with 200 µL of mobile phase.
The isocratic mobile phase was a mixture of 80% acetonitrile and 20% 0.02 M ammonium
acetate in water. The reconstituted samples were analyzed using liquid chromatography
with tandem mass spectrometry LC/MS/MS (Shimadzu, Tokyo, Japan) equipped with
a Sunfire column (dimensions: 50 × 4.6 mm, particle size 5 µm; Waters Corp., Milford,
MA, USA) and operating at a flow rate of 1 mL/min. All analyses were carried out at
room temperature. Multiple reaction-monitoring mode was utilized to detect ions of RV
(250.79 Da and 206.30 Da) and torsemide (348.98 Da and 263.90 Da). The output data were
processed using Analyst Software V 1.4.2 (AB Sciex Pte. Ltd., Woodlands, Singapore). The
utilized LC-MS/MS assay was validated for linearity with R2 of 0.9916 and a minimum
quantification level of 0.1 ng/mL.

2.10.5. Pharmacokinetic Analysis

PK characteristics from plasma data following administration of the four treatments
were estimated for each rabbit via non-compartmental PK analysis using Kinetica 2000
software (version 3.0, Kinetica, San Francisco, CA, USA). The observed maximum plasma
concentration (Cmax, ng/mL) and the time to reach Cmax (Tmax, h) were estimated directly
from the plasma concentration-time profile. The elimination rate constant (k, h−1) was
estimated from the terminal elimination line using the log-linear regression analysis and
the half-life (t1/2, h) was calculated as t1/2 = 0.693/k. The area under the curve, AUC0–t
(ng h/mL), was determined as the area under the plasma concentration time curve from
time zero up to the last measured time point using the trapezoidal rule. The area under
the curve from time zero to infinity, AUC0–∞ (ng h/mL) was calculated as AUC0–∞ =
AUC0–t + Ct/k where Ct is the last measured concentration at time t and k is the terminal
elimination rate constant estimated by log-linear regression analysis on data virtually
assessed to be a terminal log linear phase. The mean transit time (MTT, h) was calculated
from AUMC0–∞/AUC0–∞ where AUMC0–∞ is the area under the first moment curve.

2.11. Statistical Analysis

All in vitro experiments were performed in independent triplicates and values are
presented as mean ± SD unless otherwise noted. Statistical significance of experiments’
results was assessed by Student t-test (two-tailed; p < 0.05). For in vivo studies, statistical
inferences were based on untransformed values for Cmax and AUC variables and observed
values for t1/2. The non-parametric Signed Rank Test (Mann–Whitney’s test) was used
to compare Tmax between the four treatment groups. The one-way analysis of variance
(ANOVA) F-test was used for testing the equality of several means. For multiple compar-
ison, the procedure used was the Least Significant Difference (LSD). Statistical analyses
were carried out using SPSS (SPSS® Statistics software program, version 17.0, International
Business Machines Corp., Armonk, NY, USA) or Design-Expert® software (Version 12.0,
Stat-Ease Inc., Minneapolis, MN, USA).

3. Results and Discussion
3.1. Design of Experiments and Preparation of RV-ISM Systems

The quality target product profiles (QTPPs) were set up considering the quality
characteristics of an injectable RV-ISM system capable of overcoming the limitations of the



Pharmaceuticals 2021, 14, 66 9 of 21

current RV treatments such as limited oral bioavailability, frequent dosing, adverse effects
associated with oral administration, poor patient adherence and serious administration
errors. This can be achieved by administering a well-tolerated IM or SC injection of an in
situ-forming drug depot capable of controlling the release of RV over an extended period,
thus resulting in an optimal systemic therapeutic response and superior clinical outcome
for the patient. RV-ISM systems were successfully prepared using the o/o emulsification
technique known to yield ISM with small monodisperse particles with relative ease [13].
SAIB, a highly lipophilic water-insoluble sugar and an FDA-approved food additive, was
used as a non-polymeric matrix former in the fabrication of RV-ISM systems to test its
ability to control the drug release in situ, while making use of its undeniable favorable
properties, such as its high solubility in a wide range of organic solvents which result in
the formation of low-viscosity solutions compared to more common polymers, in addition
to its biocompatibility, biodegradability, in vivo tolerability and low cost [23]. The more
expensive and more viscous PLGA is, an FDA-approved biodegradable and biocompatible
copolymer, the more widely it is used in the fabrication of drug delivery systems (DDS)
that enhance the pharmaceutical characteristics of many drugs [40]. The attractive features
of PLGA-based DDS, such as small size, high structural integrity, colloidal stability, ease of
fabrication, controlled release capability and surface functionalization, make them very
attractive therapeutic delivery vehicles [41,42]. PLGA was used in the fabrication of RV-ISM
systems with or without SAIB to study its influence on the CQAs of the prepared systems.
NMP was selected as the organic solvent of the internal phase as it is biodegradable, safe to
use in parenteral formulations and possesses high solvation power for RV, SAIB and PLGA.
The ratio of the internal to the external phase was fixed to 1:3 (v/v) to form emulsions with a
high physical stability and to prevent phase inversion and/or the formation of a flocculated
system upon storage while still having the rheological properties that allow them to be
easily injected. The nonionic surfactants/stabilizers used in the preparation of RV-ISM
systems, such as PF 68 and sorbitan monostearate, are FDA-approved pharmaceutical
ingredients known to have good surfactant properties that make their use favorable in
many parenteral formulations. The addition of surfactants in the internal/external phase
is important to allow easy formation of uniform globules during the emulsification step
and prevent aggregation. Entrapment of drugs inside the globules and prevention of drug
adhesion to the surface of the globules is also facilitated by the use of surfactants, which
can minimize burst drug release.

The response data of the 11 experimental runs (systems), including two replications
(F8) using the previously described experimental design, are presented in Table 2.

3.2. Determination of Q1 and T50% for RV-ISM Systems

The individual effects of the two independent factors (X1 and X2) and their interac-
tions (X1×2) on the three selected responses were statistically analyzed using multiple linear
regression analysis and ANOVA was employed to model the data and develop a mathe-
matical expression in the form of a second order polynomial equation, as described below:

Y = β0 + β1X1 + β2X2 + β11X2
1 + β22X2

2 + β12X1X2

where Y is the response, β0 is the intercept coefficient, β1, β2, β11, β22, β12 are the linear,
quadratic and interaction regression coefficients, and X1 and X2 are the studied factors at
the specified levels. This equation is used to predict the response for the studied levels
of each factor and identify the impact of each factor relative to the other studied factors
by comparing the regression coefficients. The predicted R2 values were in a reasonable
agreement with the adjusted R2 for all responses, indicating that the selected model has
predicted all response values with high efficiency (Table 3). The adequate precision, which
measures the signal-to-noise ratio, was greater than 4 (the desirable value) for all responses
which indicates the ability of the model to describe, navigate and predict data within the
design space [43].
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Table 3. Output results of the experimental design.

Response Model Equation
(p-Value)

Lack of Fit
(p-Value)

Adjusted
R2

Predicted
R2

Adequate
Precision Significant Terms

Q1 (%) Quadratic
(p = 0.011) 0.6951 0.9333 0.8236 18.3

X1 (p = 0.0004)
X2 (p = 0.0053)

X1×2 (p = 0.0058)

T50% (days) Quadratic
(p = 0.0011) 0.0978 0.9334 0.7685 17.19 X1 (p = 0.0002)

Rate of injection
(mL/min)

Linear
(p = 0.0003) 0.1305 0.8421 0.7177 16.19 X1 (p = 0.0003)

X2 (p = 0.0028)

Parenteral sustained release systems are designed to act as reservoirs for the incor-
porated actives to release them over a long period ranging from hours to months with a
minimal initial burst drug release. These systems could be modulated to exhibit different
drug release patterns and delivery characteristics by varying several formulation variables.
All RV-ISM systems demonstrated desirable controlled drug release characteristics in vitro
compared to the drug solution, which clearly indicate the capabilities of SAIB, PLGA and
their mixture to enclose the drug for an extended period approaching 30 days [44]. The
in vitro release profiles of RV over 30 days from the prepared RV-ISM systems as per the
experimental design in comparison to RV release from its solution in NMP are shown in
Figure 1A–C.

Figure 1. In vitro release profiles of RV from the prepared RV-ISM systems as per the experimental design in phosphate-
buffered saline (PBS, pH 7.4) at 37 ◦C (A) F1–F3 systems prepared using PLGA, (B) F4–F6 systems prepared using SAIB and
(C) F7–F9 systems prepared using SAIB/PLGA 1:1, in comparison to RV solution in NMP. Data points are mean ± SD (n = 3
except for F8 n = 9).

Two responses were extracted from the in vitro release data: Q1 and T50%. Q1 is
considered an indicator for the extent of the initial burst drug release while T50% is used as
an indicator for the degree of sustainment of drug release. The graphical analysis of the
effects of the studied factors on Q1 and T50% of RV-ISM systems are shown in Figure 2A,B.
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Figure 2. Response surface plots for the effect of MF/D and S/P ratios on: (A) Q1 (%), (B) T50% (days), and (C) rate of
injection (mL/min).

Q1 ranged between 13.3% and 31.1%, as demonstrated in Table 2, which indicates
the ability of the prepared RV-ISM systems to control the initial burst release to different
extents. These values were in good correlation with previous release findings reported
by Vintiloiu et al. regarding the incorporation of dispersed hydrogen tartrate salt of RV
into an in situ-forming oleogel implant and were significantly better when compared to
release findings obtained from the same study upon incorporation of dissolved RV in the
implant [12].

As shown in Figure 2A and Table 3, the two tested formulation variables showed a
significant impact on Q1 with p-values of 0.0004 and 0.0053 for the ratios of MF/D and S/P,
respectively. Moreover, the ANOVA test showed a significant two-factor interaction for
the effect of MF/D and S/P ratios (X1×2) on Q1 (p = 0.0058), indicating the rather complex
statistical model for Q1. The following quadratic equation was utilized to describe the
analyzed data:

Y1 = 15.32 − 4.65 X1 + 2.57 X2 − 3.08 X1×2 + 2.28 X1
2 + 3.09 X2

2

According to the statistical analysis, the ability of the prepared RV-ISM systems to
control the initial burst release (Q1) was significantly improved by increasing the MF/D
ratio and decreasing the S/P ratio, as demonstrated in Figure 2A. Increasing the MF/D
ratio limited the initial burst release, which might be due to the significant hydrophobicity
of both SAIB and PLGA that rendered the matrix more resistant to water permeation and
drug diffusion [45,46]. The effect of S/P ratio on Q1 was more prominent at the lowest level
of MF/D ratio, such that the highest percentage of the initial burst release was observed
when the highest S/P ratio, i.e., when the microparticles were fabricated using SAIB alone,
was combined with the lowest MF/D ratio which was 4:1. On the other hand, the effect of
the MF/D ratio was more significant at the highest level of the S/P ratio. These findings
indicate that SAIB, as a non-polymeric matrix former, was less effective in reducing the
initial burst release from the prepared RV-ISM systems when compared to polymeric
PLGA. This could be due to the formation of a less viscous internal phase when SAIB
is used alone, which during emulsification into the external oily phase may allow more
rapid drug diffusion compared to PLGA, leading to drug dissipation to the outer phase
and/or distribution near the surface of the internal phase droplets. Lower viscosity of
the internal organic phase is also expected to decrease the magnitude of SAIB-SAIB and
SAIB-oil hydrophobic interactions, which might result in the formation of smaller droplets
and redistribution of the drug at the internal/external interface, leading to a higher initial
burst release during the sol/gel (solidification) transformation process.

The kinetics of drug release from the prepared RV-ISM systems were also subjected to
statistical analysis according to different models. The release kinetics were found to best
fit the Higuchi model except for F1 and F2 systems, which followed a zero-order kinetic
pattern, further indicating that the studied formulation variables were critical and had a
significant effect on the release kinetics.
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The ability of the different RV-ISM systems to sustain the drug release for a long period
was assessed by calculating the T50% values from their release profiles. The average T50%
values ranged from 7 to 15 days, as reported in Table 2. The polynomial equation describing
the correlation between the tracked independent variables and T50% was as follows:

Y2 = 12.95 + 2.47 X1 − 0.53 X2 + 0.27 X1×2 − 0.8 X1
2 − 2.15 X2

2

As presented in Table 3 and graphically illustrated in Figure 2B, the MF/D ratio was
the only factor having a significant effect on the T50% response (p-value = 0.0002). The sta-
tistical analysis showed that using a higher MF/D ratio was associated with significantly
longer T50% values, which is consistent with the Q1 results in that higher amounts of matrix
former(s) render the matrix more resistant to water permeation, resulting in slower drug
diffusion. These results also suggest that SAIB, PLGA or their mixture have a similar
sustainment effect once the microparticles are formed. Similar results were observed by
Vintiloiu et al., who developed in situ oleogel implant containing RV [12].

3.3. Determination of the Rate of Injection

Syringeability, which is the force required to discharge the injected system through
the syringe needle, is a critical quality attribute for any injectable pharmaceutical product
for ease of administration. The matrix former type as well as its inherent viscosity, its
concentration as well as the type of oil used in the formation of ISM systems have been
reported to play a significant role in the syringeability of the final product [19].

The average rate of injection of the prepared RV-ISM systems ranged from 0.6 and
1.38 mL/min as demonstrated in Table 2. As shown in Figure 2C and Table 3, the two tested
formulation variables showed a significant impact on the rate of injection with p-values
of 0.0003 and 0.0028 for the ratios of MF/D and S/P, respectively. The rate of injection
equation obtained from the analysis was

Y3 = 1.04 − 0.25 X1 + 0.17 X2

According to the statistical analysis, a decreasing MF/D ratio and an increasing S/P
ratio significantly enhanced the injectability of the system. The inverse relation between
MF/D ratio and the rate of injection could be attributed to the overall increase in the
viscosity of the system as the amount of the incorporated matrix former is increased [47].
On the other hand, SAIB was found to have a higher rate of injection when compared to
PLGA, which might be due to the relatively lower viscosity of SAIB solution compared to
PLGA as previously discussed and reported [22]. These results were also consistent with
the results obtained for Q1 and T50% responses.

3.4. Selection of the Optimal RV-ISM System

The response surface analysis of the CCD was used to predict the optimum levels of
the studied factors for the preparation of the optimal RV-ISM system. The RV-ISM system
was optimized to have the lowest Q1, the longest T50% and the fastest rate of injection.
The highest desirability value (0.741) for the simultaneous optimization of all responses
is shown in Figure 3, which was depicted in the system prepared using 11.71:1 (w/w)
MF/D ratio and 1.64:1 (w/w) S/P ratio (62.12% SAIB). The optimal RV-ISM system selected
by the statistical design was prepared and characterized for its release profile and rate
of injection. The optimal system released 100% of its drug content throughout a release
period of 30 days, released 15.51% of the drug within the 1st day (Q1), showed an observed
T50% of 13.09 days and had an observed rate of injection of 1.012 mL/min. These observed
results deviated from the predicted values by 5.3%, 2.56% and 0.29% for Q1, T50% and rate
of injection, respectively as shown in Table 4.
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Figure 3. Optimization of RV-ISM systems showing the response surface plot for the effect of using
MF/D in the ratio 11.71:1 and S/P in the ratio 1.64:1 on the desirability value.

Table 4. Optimized parameters along with predicted and observed values of responses.

Variables Values Responses Predicted Values Observed Values

X1
11.71:1
(w/w) Y1 (Q1) 14.774% 15.518%

X2 1.64:1 (w/w) Y2 (T50%) 13.436 days 13.09 days
Y3 (Rate of
injection) 1.009 mL/min 1.012 mL/min

Based on these results, it can be concluded that the optimal RV-ISM system, guided by
QbD, provides a promising formulation for the easy fabrication of a readily injectable ISM
system that can control the drug release with a minimal initial burst release; therefore, it
was selected for further investigation.

3.5. Rheological Properties of the Optimal RV-ISM System

The rheological characteristics of the optimal RV-ISM system are of great importance
since they can affect viscoelasticity, spreadability, injectability, bioadhesion, tolerability,
in vitro release, in vivo release as well as in vivo PK. The rheological studies demonstrated
that the optimal RV-ISM system exhibited Non-Newtonian behavior characterized by
shear-thinning as shown by a drop in viscosity at an increasing rate of shear with a flow
index of 0.1755 (Figure 4A). The system exhibited a mainly pseudoplastic flow typical of
polymeric dispersions, with its curve beginning very close to the origin at low rates of
shear. The observed shear-thinning behavior allows for faster administration and might
enable the use of high-gauge needles, and hence reduce patient discomfort.
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Figure 4. Effect of γ-sterilization on the rheological properties of the optimal RV-ISM system: (A) Before sterilization
and (B) After sterilization; TEM of optimal RV-ISM system: (C) Before sterilization; and (D) After sterilization; and (E)
In vitro release profiles of the optimal RV-ISM system in PBS (pH 7.4) at 37 ◦C before and after sterilization. Data points are
mean ± SD (n = 3).

3.6. Particle size Determination and Morphological Characterization

The PS is an important parameter that can affect the drug release, injectability and
stability of RV-ISM systems. The solidified optimal RV-ISM system was examined us-
ing dynamic light scattering and TEM and characterized for particle size, shape, surface
morphology and homogeneity. The optimal RV-ISM system showed an average PS of
1.3 ± 0.1 µm. TEM micrographs showed spherical, smooth and uniformly shaped mi-
croparticles as illustrated in Figure 4C. The microparticles appeared to be well dispersed
with minimal aggregation and their size was within the range of 1 µm to 1.5 µm. The PS
determined by TEM was in a good alignment with the PS measurements obtained through
the Zetasizer. This might be due to the surface-active characteristics of PF68 and Span 60
used in the internal and external phases that facilitated the formation and stabilization of
the microparticles. The formation of a well-dispersed non-flocculated system is extremely
important in injectables as particle aggregation may alter the ease of injection, tolerability,
drug release characteristics and possibly the PK profile of the drug.

3.7. Effect of γ-Sterilization

The effects of γ-sterilization on the in vitro drug release, rate of injection, rheology and
morphology of the optimal RV-ISM system were investigated. The drug release profiles
before and after γ-sterilization were compared by a model-independent approach using
the similarity factor (f 2). Results showed that the mean release values from both profiles at
each time interval are not statistically significantly different, with an f 2 value of 73 ensuring
the equivalence of the two profiles (Figure 4E). It is worth noting that the in vitro drug
release profile from the optimal RV-ISM system showed a characteristic triphasic pattern.
The first phase was characterized by an initial burst release with about 15% of the drug
being released in the first 24 h, a second phase where drug release might be controlled
by its diffusion through the ISM matrix and finally a third phase starting from day 12
characterized by an increase in the rate of drug release probably due to matrix degradation
and erosion over time [48]. The flow rate of the sterilized RV-ISM system through a 19-
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gauge needle under a pressure of 70 mmHg remained at the level 1 mL/min, indicating
that the sterilization process did not alter the injectability of the system. Furthermore, no
change in the rheological characteristics of the sterilized RV-ISM system were observed, as
the optimal system retained its pseudoplastic flow with a flow index of 0.1779, as shown in
Figure 4B. Similar morphological characteristics were observed upon TEM imaging of the
sterilized system, including the size, regular spherical outline, smooth surface and absence
of aggregation (Figure 4D). All these findings confirmed the suitability of γ-sterilization
for maintaining the morphological, physical and pharmaceutical characteristics of the
developed optimal RV-ISM system.

3.8. In Vitro Cytotoxicity Studies

In this study, the optimal RV-ISM system was fabricated using 62.12% SAIB and 37.88%
PLGA. PLGA, an FDA-approved copolymer, is widely used in drug delivery and is known
by its good biocompatibility and biodegradability. On the other hand, SAIB is used as a
food additive and has been approved by US FDA at a daily intake of up to 20 mg/kg of body
weight [49]. However, the use of SAIB in a drug delivery system, such as the one developed
in this work, would require its biocompatibility and low toxicity with the surrounding
tissues at the local injection site. The cytotoxic potential of different concentrations of the
optimal drug-free ISM system on normal cell viability and proliferation, using an EBTr
(NBL-4) cell line, relative to cells treated with fresh medium and 1% Triton-X, as negative
and positive controls respectively, was assessed by performing an MTT assay.

MTT assay indirectly reflects the number of viable cells and is often used to determine
the cytotoxic effects of toxic substances on cells. As shown in Figure 5, treating the cells
with a drug-free optimal ISM system for 48 h did not result in any significant decrease in %
cell viability relative to the positive control, even when the cells were treated with a high
concentration of drug-free ISM systems (1 mg/mL), indicating the biocompatibility and
low cytotoxicity of the developed microparticles.

Figure 5. In vitro cytotoxicity results using EBTr cells treated for 48 h with different concentrations of
the optimal drug-free-ISM system. Data points are mean ± SD (n = 3).
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3.9. In Vivo Pharmacokinetic Studies

The in vivo characteristics of the optimal RV-ISM system were assessed and compared
to those obtained from RV solution by monitoring RV plasma levels following IM and SC
injection to rabbits using a parallel design. The mean plasma concentration time curves
obtained from the optimized RV-ISM system and RV solution are demonstrated in Figure 6,
while the mean PK parameters obtained from the four treatments are summarized in
Table 5. A remarkable difference in the rate of drug absorption from the optimal RV-ISM
system and RV solution was observed.

Figure 6. Mean (±SD) plasma RV concentrations following IM and SC injections of the optimal
RV-ISM system and RV solution to albino rabbits. Data points are mean ± SD (n = 3).

Table 5. Mean PK parameters of RV following SC and IM injection of the optimal RV-ISM system or
RV solution to rabbits.

PK Parameter
Optimal RV-ISM System RV Solution

SC Injection IM Injection SC Injection IM Injection

Cmax (ng/mL) 79.95 ± 7.26 79.25 ± 6.35 275.00 ± 4.26 289.77 ± 7.59
Tmax (h) * 1.00 1.00 1.00 1.00
AUC0–24

(ng·h/mL) 440.39 ± 12.70 465.69 ± 10.54 400.03 ± 6.21 394.65 ± 9.37

AUC0–∞
(ng·h/mL) 447.50 ± 9.33 473.32 ± 8.02 402.01 ± 8.95 396.37 ± 10.48

AUMC0–∞
(ng·h/mL) 2509.76 ± 25.66 2714.36 ± 32.33 517.70 ± 11.89 526.08 ± 3.94

kel (h−1) 0.18 ± 0.01 0.18 ± 0.08 1.22 ± 0.05 1.27 ± 0.04
t 1

2
(h) 3.78 ± 0.28 3.82 ± 0.32 0.57 ± 0.03 0.54 ± 0.05

MTT (h) 5.61 ± 0.47 5.73 ± 0.16 1.29 ± 0.10 1.33 ± 0.14
Data are the mean values (n = 3) ± SD; * Data are the median value.

The plasma profiles of the RV solution resulting from the IM and SC injection showed
significantly (p < 0.05) higher plasma concentrations up to 2 h post administration com-
pared to the optimal RV-ISM system followed by fast elimination and rapid decline in
RV concentrations in the subsequent time intervals. The IM injection of the RV solution
showed significantly higher RV plasma concentrations after 30 min compared to the SC
injection, which is expected, as the blood perfusion in the SC tissue is lower than in the
muscles resulting in a slower drug absorption with respect to the IM injection [50]. On the
other hand, the optimal RV-ISM system exhibited a sustained in vivo profile characterized
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by a significantly lower Cmax and a slowly declining curve that maintained RV plasma
concentration for a prolonged time. The initial rapid increase in RV concentration up to 1 h
could be due to burst drug release.

Results showed there was no difference in RV plasma concentrations at all time
points between the IM and SC injection of RV-ISM, indicating the rapid formation of the
microspheres upon injection regardless of the injection site, which is important to minimize
the initial burst release during the sol/gel transformation process in vivo. SC injections are
the most often used parenteral administration route due to the possibility of self-injection
by the patients, especially if the administration volume is small. The findings of the in vivo
study also showed that the bioavailability of the optimal RV-ISM system relative to the
RV solution was about 20% and 12% higher from the IM and SC injection, respectively.
This is an indication of the absence of any decline in RV bioavailability from the developed
sustained release formulation.

It was noticed that the half-life of RV calculated from the plasma concentration data of
the optimal RV-ISM system was statistically significantly higher (3.82 h) compared to the
half-life calculated from the plasma concentration data of the RV solution (0.54 h). This
finding is not consistent with the pharmacokinetic theory in which drug absorption should
not alter the elimination of the drug [51]. This suggests that the optimal RV-ISM system
follows a flip-flop PK, with absorption being much slower than elimination of the drug
from the blood. This causes the absorption rate constant (ka) to be the rate limiting step (kel
> ka), making it slower and causing an increase in half-life [52]. These results also indicate
that the diffusion and release of RV from the oily RV-ISM depot at the injection site is the
rate-limiting step due to slower ka than kel. Flip-flop PK are widely reported for drugs
administered in modified-release dosage forms. For example, when a thermoreversible
poloxamer gel incorporating paclitaxel in liposomes was injected subcutaneously to mice,
it showed an apparent half-life of 15 h compared to a half-life of 2.4 h from the gold
standard Cremophor El paclitaxel intravenous injection, which was attributed to flip-flop
PK [53]. In another study, a long-acting naltrexone extended-release formulation, based on
microspheres incorporated into a biodegradable polymer matrix of polylactide-coglycolide,
was developed to have continuous exposure for 1 month for the treatment of alcohol
dependence following IM injection. The product was found to have a long apparent half-
life (5–8 days) for naltrexone, which was attributed to the slow release of naltrexone and
ka-limited elimination or flip-flop PK [54].

Flip-flop PK was further confirmed by the significantly higher mean MTT estimate
calculated from the optimal RV-ISM system (5.73 h) compared to RV solution (1.33 h),
which might be due to the significantly higher mean absorption time (MAT) taken by
the drug molecules to be absorbed into the systemic circulation from the optimal RV-ISM
system compared to the RV solution.

Although the optimal RV-ISM system was able to sustain the in vivo release and
the PK profile of RV, however, the achieved sustainment was not matching the in vitro
extended release profile, which lasted for a period of one month. Several scenarios might
be responsible for the observed lack of correlation between the in vivo and in vitro results.
One such scenario could be due to the susceptibility of SAIB to be rapidly metabolized
after injection by a non-specific esterase enzyme available in high concentration in blood
and/or tissue phagocytes [55,56]. SAIB was previously utilized to develop in situ-forming
implants of other drugs, such as ropivacaine, lornoxicam and risperidone; it was capable
of yielding a depot PK profile [21,26,44,57]. The faster in vivo release observed in this
study might also arise from the relatively small size of the injected microparticles from
the optimal RV-ISM system (ranging from 1 µm to 1.5 µm) compared to the much larger
marketed microparticles (ranging from 25 µm to 180 µm), which was possibly optimum
for opsonization followed by rapid phagocytosis and SAIB lysis by a non-specific esterase
enzyme into soluble sugar esters [58]. Alternatively, the lack of correlation could be
attributed to the observed shear-thinning rheological behavior of the system, which might
lose viscosity in vivo following injection due to the strong movement of the muscles in
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rabbits. Consequently, this might increase the possibility of dose dumping after the IM
injection [59,60].

Another explanation may arise from spontaneous external and internal morphological
changes of the microparticles during the initial period of burst release. It has been reported
that the in vivo performance of injectable long-acting formulations is extremely challenging
to predict based on in vitro release studies and that is why only about 20 injectable long-
acting depot products reached the market in the last 30 years [61].

These results suggest that further studies are needed to optimize the in vivo perfor-
mance of RV-ISM. Future investigations will focus on studying the effect of the microparticle
size and viscosity of the system on the in vitro-in vivo correlation. However, the optimal
RV-ISM system developed in this work could be a replacement or alternative for the daily
RV transdermal patch. Alternatively, the developed ISM system could be used as a delivery
platform that can be suited for various injectable therapeutic applications through IM or
SC administration.

4. Conclusions

Injectable RV-ISM systems were successfully prepared using SAIB and PLGA with a
sustained drug release pattern and a high rate of injection. A central composite design was
utilized as a QbD approach to optimize the formulation of RV-ISM systems. The optimal
RV-ISM system was characterized by a pseudoplastic rheological behavior, homogenous
spherical non-flocculated microparticles, good stability after δ-sterilization and low cyto-
toxicity. PK studies revealed that the optimal RV-ISM system showed a sustained in vivo
blood profile characterized by flip-flop PK when compared to an RV solution after IM and
SC injection. The observed in vivo sustainment did not match the in vitro release profile
in extending the drug release for a period of one month. These findings suggest that the
optimal RV-ISM system developed in this work was not capable to achieve the desired
in vivo depot release in its current form, but instead can be used to achieve a sustained
release therapy for a maximum of one day, which might be suitable for elderly patients
with difficulty in swallowing to replace oral administration or daily transdermal patch.
We also emphasize in this study the uncoupling of the in vitro release characteristics with
the in vivo release characteristics, which impose a big challenge in the development of
injectable controlled-release systems.
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