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Abstract: As the world endures the coronavirus disease 2019 (COVID-19) pandemic, the conditions
of 35 million vulnerable individuals struggling with substance use disorders (SUDs) worldwide have
not received sufficient attention for their special health and medical needs. Many of these individuals
are complicated by underlying health conditions, such as cardiovascular and lung diseases and
undermined immune systems. During the pandemic, access to the healthcare systems and support
groups is greatly diminished. Current research on COVID-19 has not addressed the unique challenges
facing individuals with SUDs, including the heightened vulnerability and susceptibility to the disease.
In this systematic review, we will discuss the pathogenesis and pathology of COVID-19, and highlight
potential risk factors and complications to these individuals. We will also provide insights and
considerations for COVID-19 treatment and prevention in patients with SUDs.
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1. Introduction

The novel coronavirus 2019, now officially termed as SARS-CoV-2, causes the coronavirus disease
2019 (COVID-19) by infecting the respiratory system [1]. The disease was first detected and reported in
Wuhan, China, in December 2019 [2], and has now spread to over 150 countries on all continents except
Antarctica. According to the World Health Organization (WHO) Coronavirus Disease Dashboard,
the global tally of coronavirus cases has approached 13.5 million, with a death toll of over 580,000 [3] at
the time of writing (15 July 2020). The United States alone has counted over 3.4 million infections and
over 131,000 deaths, contributing more than a quarter of both overall infections and deaths globally
(John Hopkins University Coronavirus Resource Center) [4]. The WHO characterized the COVID-19
as a pandemic on 11 March 2020 [5]. The fatality rate of the disease is particularly high among patients
who are older and who have underlying health issues, such as cancer, diabetes, and compromised lung
function or lung disease.

The United Nations (UN) reported that 35 million people worldwide suffer from substance use
disorders (SUDs) [6]. In the U.S., the number of individuals experiencing SUDs is 20.3 million [7].
A large number of individuals with SUDs have underlying health conditions, particularly cardiovascular
and lung diseases and hepatitis C or HIV-1 infections. Together with complicated socioeconomic
issues, these populations are particularly vulnerable to COVID-19 [8]. Despite the fact that researchers
and clinicians around the world have collected and disseminated tremendous amounts of data on
COVID-19, we have very little knowledge of the interactions and comorbidity of COVID-19 and SUD.
In this review, we will analyze relevant COVID-19 and SUD literatures, and highlight the susceptibilities
and vulnerabilities for individuals with SUD.
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SARS-CoV-2 is known to attack the respiratory tract and could lead to severe lung damage
or pulmonary fibrosis [2]. Smokers of tobacco and marijuana, and possibly people who vape [9],
are susceptible to chronic obstructive pulmonary disease (COPD) [10,11], which could cause severe
complications of COVID-19 and lead to a higher fatality rate [12,13]. Other substances of abuse,
such as opioids and methamphetamine, function increasingly through the brain and immune system
to indirectly affect the respiratory system. Opioid use disorder (OUD) tends to slow breath rate and
decrease blood oxygen content (hypoxemia). An extended period of hypoxemia is one of the major
causes of overdose fatality. COVID-19, which shrinks lung capacity, could heighten the condition
caused by opioid overdose [14,15]. Methamphetamine may contribute to pulmonary hypertension and
edema through cardiomyopathy and restricted blood circulation [16]. Many substances of abuse also
impair the bidirectional interactions between the brain and immune responses, resulting in an increase
in the infection rates among individuals with SUDs. Some drugs exert proinflammatory effects in
the central nervous system (CNS), leading to neuroinflammation. The buildup of proinflammatory
cytokines and chemokines in the CNS may exaggerate the already excessive inflammatory response in
the peripheral tissues of COVID-19 patients.

In addition to pathological risks that patients with SUDs are facing, highly risky behaviors can
put them into even greater jeopardy in the pandemic. Suicide mortality associated with SUDs is
significantly higher compared to the general population across all categories, including age, gender,
income, and education, and the relative risk of suicide is more prominent in women. People with
multiple alcohol, drug, and tobacco use disorders are at a particularly heightened risk of suicide [17].
In a position paper, the International Society of Addiction Medicine (ISAM) Practice and Policy Interest
Group noted that people with SUDs suffer from serious health complications, including chronical
infections, weakened immune systems, various respiratory, cardiovascular, and metabolic disorders,
and a range of psychiatric comorbidities. While they are stigmatized and marginalized with limited
access to healthcare, the difference in perceived danger and risk-taking behaviors may put people
with SUDs at a higher rate of mortality [18]. Due to the lack of research on SUDs and COVID-19,
the group also put together recommendations for health service providers and policymakers regarding
the comorbidity of COVID-19 infection and SUDs [18].

2. SARS-CoV-2 Infection and COVID-19 Pathogenesis

Coronaviruses are named for their crown-like spikes protruding from the surface of the virion,
and can be classified into four genera, known as α, β, γ, and δ. There are seven known coronaviruses
that can infect humans. Four of them, α-coronaviruses 2229E and NL63, and β-coronaviruses OC63
and HKU1, infect people on a regular basis and cause common cold symptoms. The other three,
all belonging to the β-coronavirus subfamily, are believed to have originated from bats and evolved
through jumping animal species to become new human coronaviruses [19,20]. These include the
SARS-CoV, the coronavirus that caused severe acute respiratory syndrome (SARS) outbreak in 2003,
the MERS-CoV, the coronavirus that caused Middle East Respiratory Syndrome (MERS) outbreak in
2012, and the SARS-CoV-2, the novel coronavirus that is causing the current COVID-19 pandemic
railing the whole world.

Like all other coronaviruses, SARS-CoV-2 contains a single-strand (ss) RNA genome. The sequence
of the 29,903 nucleotides (nt) long SARS-CoV-2 genome was first reported by Chinese scientists and
made publicly available on GenBank with accession number MN908947 [21]. The genome organization
of SARS-CoV-2 is similar to that of other representative β-coronaviruses. As illustrated in Figure 1a, it is
comprised of a 5′-untranslated region (UTR), and at least ten open reading frames (ORFs) that encode
non-structural and structural viral proteins, followed by the polyA tail at the 3′-end. The first ORF is
the 21,291-nt replicase gene, ORF1ab, encoding 16 non-structural proteins (NSP1-16). The subsequent
ORFs encode four structural proteins, spike (S), envelope (E), membrane (M), and nucleocapsid (N),
as well as several accessory proteins that do not participate in viral replication and transcription.
Structural proteins are important in maintaining viral structural and genomic stability. An illustration
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of SARS-CoV-2 viral structure is shown in Figure 1b. The S protein is responsible for infection and
transmission. Non-structural proteins, such as the RNA-dependent RNA polymerase (NSP12), have
functions in viral genome transcription and replication. The SARS-CoV-2 genome was found to have
79.6% sequence similarity to SARS-CoV, and shares 96% identity at the whole-genome level to a bat
coronavirus (Bat CoV RaTG13) detected in Rhinolophus affinis [20].
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Figure 1. (A) Architecture of SARS-CoV-2 genome. The ORF1ab will be translated into two overlapping
polyproteins, PP1a, consisting of NSP1-11, and PP1ab, consisting of NSP1-16, with the exception of
NSP11, which is part of NSP12 in PP1ab. The rest of the ORFs encode the four structural proteins, S, E,
M, and N, and several accessory proteins with unknown functions. (B) Structure of SARS-CoV-2 virion.
The lipid bilayer. embedded with S, E, and M proteins, capsulizes the single-stranded genomic RNA,
which is stabilized by the N protein. The S protein is responsible for the recognition of host cell ACE2
receptor to gain cell entry.

Similar to SARS-CoV, SARS-CoV-2 recognizes the angiotensin converting enzyme 2 (ACE2)
receptor by its S protein and utilizes it for cell entry [20,22]. The heavily glycosylated S protein triggers
virus cell entry by fusing the receptor binding domain (RBD) on the S1 subunit to the host ACE2
receptor, engaging the transition of S2 subunit to a stable post-fusion conformation [23]. Cryo-electron
microscopy (EM) structures of the pre-fusion [23] and post-fusion structures [24] of the S protein have
been reported. The SARS-CoV-2 S protein has been shown to have a much higher binding affinity to
the ACE2 than the SARS-CoV S protein [23,25]. The S protein contains 22 N-linked glycans, and the
complex glycosylation is likely to play a role in shielding and camouflaging for immune evasion of the
virus [26,27]. The S protein is activated by type II transmembrane serine protease (TMPRSS2), a host
protease co-expressed with ACE2 on the cell surface [24,28]. In cells not expressing TMPRSS2, other
proteases, such as cathepsin B/L, may activate the S protein and facilitate viral entry [29].

Upon cell entry, SARS-CoV-2 has a similar life cycle and pathogenesis as other β-coronaviruses,
including SARS-CoV and MERS-CoV [30]. Upon ACE2 receptor binding, the virus fuses its membrane
with the host cell plasma membrane, releasing its genomic RNA into the cytoplasm. Since the viral
RNA is similar to the human messenger RNA (mRNA), it triggers the host ribosome to start translating
the viral RNA and producing viral proteins. The viral replicase ORF is translated into two overlapping
polyproteins, PP1a (NSP1-11) and PP1ab (NSP1-16), which require extensive processing. NSP5,
the 33.8-kDa main viral protease (Mpro), also referred to as the 3-chymotrypsin-like protease (3CLpro),
performs the function by autolytic cleavage of the protease itself, and then subsequently digests the
polyproteins into 16 non-structural proteins. NSP12, known as the RNA-dependent RNA polymerase
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(RdRp), together with NSP7 and NSP8, carries out the critical process of the viral RNA synthesis,
and is central to the viral replication and transcription cycle. The N-terminal non-structural protein,
NSP1, has been shown to bind to the 40S small ribosomal subunit, shutting down all host cell protein
production by blocking the mRNA entry tunnel. NSP1 binding to ribosomes and blocking host cell
translation effectively inhibits type-I interferon (IFN-I)-induced innate immune response by turning off

the retinoic acid-inducible gene (RIG)-I antiviral sensor [31]. The inhibition of the IFN-I-induced innate
immunity allows the assembly of viral particles inside the host cell. The newly produced structural
proteins, S, M, and E, are inserted into the endoplasmic reticulum (ER) or Golgi membrane, while the
N protein associates with the newly synthesized viral RNA to stabilize the genome. The viral particles
are assembled into the ER-Golgi intermediate compartment (ERGIC), fuse with the plasma membrane,
and bud off the host cell. The released virions will further infect more cells. The functions of other
NSPs are not fully understood. A comparative structural genomics study revealed a possible functional
intra-viral and human-virus interaction network of NSPs [32]. Recurrent mutations in the SARS-CoV-2
genome have been identified in some NSPs and the S protein, suggesting ongoing adaptations of the
coronavirus through transmission [33]. Particularly, the D614G mutation in the S protein makes it
more stable, and the virus becomes more infectious and transmissible [34,35]. This mutated virus is
the dominant form in Europe and North America since March 2020 [36].

3. Vulnerability of Substance Use Disorders (SUDs) in COVID-19

Underlying medical conditions can put individuals at increased risk for severe illness from
COVID-19. The comorbid conditions include COPD, cardiovascular diseases, other chronical respiratory
diseases, diabetes, obesity, and cancer. According to a large-scale study with 72,314 cases conducted by
the Chinese CDC, case-fatality and mortality rates are significantly increased in patients with comorbid
conditions comparing to those with no underlying conditions (Table 1) [12]. In a study in New York
City, the epicenter of the COVID-19 pandemic in the U.S., comorbid conditions are highly associated
with hospitalization and severity of the illness (Table 2) [37].

Table 1. COVID-19 Fatality and Mortality Rates on Comorbid Conditions in China.

Comorbid Conditions Case Fatality (%) Mortality (per 100,000 Population)

Overall 2.3 150

None 0.9 50

Hypertension 6.0 380

Diabetes 7.3 450

Cardiovascular diseases 10.5 680

Chronic respiratory diseases 6.3 400

Cancer 5.6 360
* Source: China CDC, http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea8db1a8f51.

Table 2. COVID-19 hospitalization and critical illness on comorbid conditions in New York City.

Comorbid Conditions Not Hospitalize
N (%)

Hospitalized
N (%)

No Critical Illness
N (%)

Critical Illness
N (%)

Total cases 2104 1999 932 650

Tobacco use (current or former) 358 (19.5) 520 (26.0) 237 (25.5) 173 (26.6)

Obesity (BMI ≥ 30) 304 (14.4) 796 (39.8) 378 (40.6) 260 (40.0)

Cardiovascular conditions 344 (16.3) 891 (44.6) 391 (42.0) 306 (47.1)

Hypertension 241 (11.5) 742 (37.1) 320 (34.3) 257 (39.5)

Diabetes 111 (5.3) 503 (25.2) 213 (22.9) 176 (27.1)

Asthma or COPD 106 (5.0) 206 (10.3) 91 (9.8) 71 (10.9)

* Source: reference [37].

http://weekly.chinacdc.cn/en/article/id/e53946e2-c6c4-41e9-9a9b-fea8db1a8f51
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A nationwide case-control study in Korea also confirmed that diabetes, hypertension, and chronic
respiratory disease, among others, were associated with severe COVID-19 [38]. Individuals with
SUDs commonly experience respiratory and cardiovascular disorders, including hypertension and
COPD, and have undermined immune systems, making them particularly vulnerable in COVID-19.
A significant portion of individuals with SUDs have underlying medical conditions, and are more
likely to be marginalized. According to a recent study in British Columbia, Canada, among 19,005
individuals who had one or more non-fatal overdose events between 2015 and 2017, 10,649 (56.0%)
had a record of receiving social assistance, and 5716 (30.0%) had no fixed address record. These
individuals with a history of overdose are more likely to have at least three known chronical conditions
associated with COVID-19 severity, including chronical pulmonary disease, diabetes, and coronary
heart disease, with adjusted odds ratios (ORs) to be 2.01, 1.24 and 2.08, respectively, with reference to
people without an overdose [39]. During the COVID-19 pandemic, risks of abusing substances and
addictive behaviors are also increasing. The stress and social isolation associated with the response
to COVID-19 increases the risk of alcohol abuse and misuse, which is known to suppress immune
systems and cause emotional dysregulation [40]. A study in China showed that relapses of alcohol and
smoking abuse were prominent (18.7% and 25.3%, respectively), and 32.1% of regular drinkers and
19.7% of regular smokers increased alcohol and cigarette consumption [41].

SARS-CoV-2 can attack and damage human organs through two major events: direct viral attacks
against target organs and abnormal immune responses and inflammation [42]. Initial evidence focuses
on the damage to the respiratory system and the lung, and is correlated with clinical symptoms of
the patients [2,12,20,21]. The identified viral entry receptor, ACE2, is abundantly expressed in the
epithelial cells along the respiratory tract and the lung alveoli [29,43,44]. High level expression of ACE2
receptors is also reported in organs and tissues outside the respiratory system, including the heart,
kidney, and intestine [45]. Therefore, these organs are the potential targets of and could be damaged
by SARS-CoV-2. As mentioned earlier, smoking of tobacco and marijuana directly impairs respiratory
system. Other substances of abuse can cause cardiovascular diseases, which amplify respiratory and
pulmonary complications. We will discuss these complications in the next section.

More severely, ACE2 is abundantly expressed in vascular endothelial cells [45]. Several clinical
cases have been reported to indicate direct involvement of vascular endothelial cells in COVID-19
pathology at different organs, suggesting that the damages to the lung, heart, kidney, liver, small
intestine, and bowel, are actually caused by endotheliitis (endothelialitis). Direct viral infection of
endothelial cells induces inflammation and inflammatory cell death at the endothelium (Figure 2) [46].
Comparing lung tissues from deceased patients of acute respiratory distress syndrome (ARDS)
associated with influenza and COVID-19, the lungs from COVID-19 patients displayed distinctive
vascular impairments of the pulmonary vessels. Most significantly, viruses were found inside the
endothelial cells of the lung tissues from COVID-19 patients, which disrupted cell membrane, caused
prevalent thrombosis with microangiopathy, and induced elevated intussusceptive angiogenesis [47].
A greater number of ACE2+ endothelial cells were found in COVID-19 patients, correlating to
changes in endothelial morphology, including disruption of endothelial cell junctions, cell swelling,
and detachment from the basal membrane. The presence of the SARS-CoV-2 virus inside the endothelial
cells, together with the induced inflammation, may directly contribute to the endothelial injury [46,47].
Although there are no reported cases yet, one potential target of SARS-CoV-2 infection is the brain
microvascular endothelial cell (BMVEC). BMVECs line up the microcapillary beds and form the
blood-brain barrier (BBB) together with brain astrocytes and pericytes. The BBB prevents pathogens
and toxins from trespassing into the brain side. Tight-junction (TJ) protein complexes, composed of
occludin, claudins, junctional adhesion molecules (JAMs) and membrane-directed scaffolding protein
zonulae occludentes (ZO), form a physical inter-endothelial barrier that strictly controls migration of
molecular and cellular contents from the circulation into the brain (Figure 2) [48,49]. High expression
of efflux pumps and stereospecific solute transporters at the endothelium additionally limits molecules
from crossing the barrier [50–52]. The BBB plays an essential role in protecting the brain from pathogen



Pharmaceuticals 2020, 13, 155 6 of 29

invasion. Viral infection of BMVECs could result in endothelial dysfunction, leakage, and even rupture,
and is detrimental to the BBB integrity. The damaged BBB allows the virus to migrate into the brain
side, and infect neuronal tissues [53]. Another possible route of CNS invasion could be through
invading the peripheral nerve terminals and then entering the CNS via trans-synaptic transfer [54].
The first case of meningitis associated with SARS-CoV-2 has been reported, in which viral RNA was
detected in the cerebrospinal fluid (CSF) of the patient [55]. Clinical evidence from Wuhan, China
showed that more than 1/3 of COVID-19 patients had neurological symptoms, and CNS involvement
was linked to the prognosis and severity of the disease [56,57]. Substances of abuse have been shown
to severely compromise the endothelial barrier at the BBB, leading to increased BBB permeability and
possibly intensified brain damage in COVID-19 (Figure 2).
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Figure 2. Schematic illustration of vascular endothelial junctional architecture. SARS-CoV-2 infects
vascular endothelial cells through the surface-expressed ACE2 receptor. The internalization of the
virus can cause endothelial cell death, reactive oxidative species (ROS), and the release of various
proinflammatory cytokines. Excessive inflammation, and potentially cytokine storm, induces the
loosening of the tight junction complex and cytoskeletal remodeling, leading to vascular leakage
and coagulation. Various substances of abuse exert similar effects at the brain endothelial junctions,
disrupting the BBB and allowing viral infection in the CNS.

The other aspect of COVID-19 pathology involves abnormal immune responses, which could
exaggerate into a cytokine storm [58,59]. SARS-CoV-2 dramatically promotes host cell kinase activities,
including casein kinase II (CK2) and p38, and stimulates production of diverse cytokines [60].
Evidence has shown that COVID-19 elevates proinflammatory cytokines and chemokines, including
tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6, granulocyte-colony stimulating factor
(G-CSF), interferon γ (IFN-γ)-induced protein-10 (IP-10), monocyte chemoattractant protein-1 (MCP-1),
and macrophage inflammatory proteins-1α (MIP-1α) [61–63]. Although there has been no reported
evidence, it is possible that pattern recognition receptors, such as toll-like receptors (TLR3, TLR7,
and TLR8), RIG-I, and nucleotide-binding oligomerization domain (NOD)-like receptors (NLRP1,
NLRP3, and NLRP12), are also activated by COVID-19 through innate immunity [64]. It has been
reported that IL-6 was significantly increased in severe COVID-19 cases, and its level was closely
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correlated with the severity of patients [65]. Human bronchial epithelial cells infected with SARS-CoV-2
showed elevated expression of type I and type III IFNs and IL-6 [44]. Furthermore, type I interferon,
IFN-α, stimulates the expression of ACE2, the molecular target of SARS-CoV-2, in primary human nasal
epithelial cells [43]. Type III interferon, IFN-λ, has been shown to disrupt the lung epithelial barrier by
direct inhibition of lung epithelial proliferation and repair, contributing to COVID-19 pathogenesis
in the lower airways [66]. The upregulation of IL-6 and other proinflammatory cytokines was also
observed in SARS cases [67] and influenza infection [68]. Substances of abuse can induce high level of
expression of proinflammatory cytokines and chemokines in the CNS and cause neuroinflammation,
which can worsen inflammatory responses in COVID-19. Details will be discussed in the next section.

The bidirectional communication between the brain and the immune system plays a critical role in
COVID-19 pathogenesis. It has been well established that brain-immune interactions are widespread
and significant. For instance, the immune system produces hormones and neurotransmitters [69–71],
while the anterior pituitary cells in CNS produce proinflammatory cytokines, such as IL-6 [72].
Microglial cells are immune effectors in the CNS, which produce and secrete cytokines and
neurotrophic or neuron survival factors upon inflammation and injury [73]. For pathogen infections,
the innate immunity provides the first line of defense through recognition of pathogen-associated
molecular patterns (PAMPs), initiating nonspecific cellular and humoral responses and rapidly
activating nonspecific neural responses, including systemic hormonal responses through the
hypothalamic-pituitary-adrenal (HPA) axis (Figure 3) [74]. Consisting of the hypothalamus of the
brain, and endocrine organs, the pituitary and cortex of the adrenal glands, the HPA axis is responsible
for systematic inflammation control. The paraventricular nucleus (PVN) of the hypothalamus plays
the main governing role of the HPA axis, releasing a wide range of neuropeptides, including the
corticotrophin-releasing hormone (CRH) and arginin-vasopressin (AVP). These neuropeptides reach
the anterior pituitary (AP) to activate corticotrope cells to secrete adrenocorticotropic hormone (ACTH).
ACTH subsequently enables the synthesis and secretion of glucocorticoids in the zona fasciculata of the
adrenal cortex through melanocortin type 2 receptors [75]. The physiological feedback loop involves
releasing immune mediators and cytokines, such as IL-1, IL-6, and tumor-necrosis factors (TNFs), by
the innate immune system to activate neural responses, which amplify local inflammation to contain
and eliminate pathogen invasions. Upon pathogen clearance, the brain responds by activating the HPA
axis and releasing anti-inflammatory molecules, glucocorticoids, from the adrenal cortex. The release
of this final product of the HPA axis sends a signal to the immune system to terminate the inflammatory
responses, completing the hormonal negative-feedback loop. Glucocorticoids also negatively regulate
the HPA axis itself, restoring host homeostasis, including CNS and cardiovascular system, as well
as metabolic balances. The interplay between the nervous system and the immune system plays a
critical role in forming a cohesive and integrated early host response for pathogen clearance through an
optimized innate inflammatory response. Impairment of the HPA axis by various substances of abuse
could render the host highly susceptible to inflammation and even increased mortality from septic
shock from exposure to infectious and proinflammatory triggers, including COVID-19. Inappropriate
and excessive CNS responses could predispose the host to extreme inflammation, including cytokine
storm that has been observed clinically in influenza [68,76], SARS [77], and COVID-19 [59]. Excessive
activation of the HPA axis and the release of glucocorticoids by several substances of abuse will
suppress the activities of various immune cells, including macrophages, dendritic cells, and T cells,
and will inhibit activities of NK cells, B cells, and T cells (Figure 3) [74]. The immunosuppression
reduces antibody production, cytotoxicity, and T cell-mediated immune responses, and is linked to
higher incidences of pathogen infections, slowed recovery, and severe disease progression in COVID-19.
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Figure 3. Bidirectional communication between the brain and the immune system. The HPA axis:
upon activation (cytokines, pathogens, etc.), the hypothalamus in the brain produces CRH and AVP,
activating anterior pituitary, which secretes ACTH. ACTH circulates with general blood stream to reach
adrenal gland, which synthesizes the anti-inflammatory molecule, glucocorticoids. Glucocorticoids
suppress the immune system and the expression of proinflammatory cytokines, which concludes
the negative feedback and turns off the HPA axis. Glucocorticoids suppress the activities of various
immune cells, including macrophages, dendritic cells, and T cells, which are responsible for cytokine
release. The immunosuppression also involves inhibition of NK cells, B cells, and T cells for reduced
cytotoxicity, antibody production, and T cell-mediated immune responses. Substances of abuse alter
the HPA axis. Excessive production of glucocorticoids suppresses immune responses to viral infection,
leading to high incidences of infection and severe infection in COVID-19. Arrows indicate stimulation;
blunted arrows indicate inhibition.

4. Effects of Commonly Abused Substances on COVID-19

For individuals with SUDs, both the infection of vascular endothelial cells and the proinflammatory
immune responses of COVID-19 could pose severe risks. It has been well studied that substances of
abuse can cause irreversible BBB damage [78] and impair the HPA axis and immune responses [75].
To understand the vulnerabilities of SUDs in COVID-19 infection at the molecular level, we will examine
the brain-immune interactions and the HPA axis attenuation, neuroinflammation, immunosuppression,
and BBB impairment induced by most commonly abused substances in the comorbidity of COVID-19.
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4.1. Nicotine

Nicotine is available in the form of tobacco, which also contains many other types of chemicals.
Tobacco smoking is associated with arterial thrombosis and atherosclerosis in the heart, abdomen,
and neck [79], and is associated with increased risk of stroke, pulmonary disease, and emphysema [80].
As nicotine damages the lung directly, smoking is one of the leading causes of COPD. Smokers and
COPD patients are of high risk in developing severe disease and have a higher mortality rate in
COVID-19 [13]. Smoking can significantly worsen COVID-19 progression, with more critical conditions
and higher fatality [81]. Cigarette smoking increases the number of alveolar macrophages (AMs), the
innate immune cells in the lung by several fold. These cells secrete lysosomal enzyme, elastase, which
can damage connective tissue and parenchymal cells of the lung, one of the contributors to the COPD
pathogenesis [82].

Nicotine is also an important immune modulator. It significantly reduces antibody responses
and T-cell proliferation [83]. The immune suppression by nicotine, particularly the decrease in CD8+

T-cells that facilitate the rapid resolution of acute viral infections, increases the susceptibility of smokers
for viral infections [84]. Analysis of clinical data has indicated that smokers are twice as much as
non-smokers to contract the virus, have a more severe disease progression, and have higher mortality
rates [85].

Nicotine induces BBB leakage and increases BBB permeability by diminishing the expression of
tight junction proteins, including occludin, claudin-3, ZO-1, and JAMs [86–89]. Nicotine alters actin
cytoskeleton arrangement in the BMVEC, which also greatly increases BBB permeability, resulting
in a surge of bacterial invasion to the brain [90]. Nicotine induces oxidative stress, which can
progressively compromise the BBB integrity [91]. Nicotine increases gene expression of proinflammatory
cytokines, TNFα, IL-1β, and IL-18, and chemokines, CCL2, CCL8, and CXC3CL1, and suppresses
anti-inflammatory factors, Bcl6, IL-10, and CCL25 in the brain microvessels [92]. Nicotine’s detrimental
effects on the BBB and induced neuroinflammation are serious concerns for COVID-19.

4.2. Alcohol

The history of fermentation production and the use of alcohol can be dated back to 10,000 BC.
Although light-to-moderate consumption may arguably have positive health benefits, particularly
in lowering cardiovascular risks [93,94], high dose alcohol can have severe neurotoxic effects and
cause dementia [95]. Alcohol has been linked to liver damage, inflammation of the pancreas and
stomach, and neurodegenerative disorders. High alcohol consumption changes gene expression of
immune response genes in the brain region frontal cortex [96]. Proinflammatory signaling is also
connected to high alcohol intake [97]. Binge alcohol (blood alcohol content B.A.C ≥ 0.08%) elevates
expression of proinflammatory cytokines, IL-1β and IL-6, and chemokine CCL-2 (MCP-1) [98]. Binge
alcohol can also damage various organs, including the gut, liver, and brain [99], and lead to spleen
atrophy in a hippocampus-mediated fashion [100]. As suggested in a comparative risk assessment
using the margin of exposure (MOE) benchmark, alcohol is considered to have the highest risk of
mortality [101]. The alcohol-induced inflammatory cytokine release could expose COVID-19 patients to
excessive inflammatory responses. The spleen damage by alcohol could weaken the immune response
in COVID-19 by reducing the production of antibodies and lymphocytes against the virus [102].

Alcohol can induce BBB disruption by decreasing the expression of tight junction proteins and
increasing mitogen-activated protein kinase (MAPK) activities [103]. Alcohol may also stimulate
inositol 1,4,5-triphosphate receptor (IP3R)-operated intracellular Ca2+ release, activating myosin light
chain kinase (MLCK). The heightened kinase activities lead to the phosphorylation of cytoskeletal and
tight junction proteins, compromising the BBB integrity [104]. Alcohol-mediated oxidative stress in
BMVEC can also activate MLCK that alters cytoskeleton and tight junction protein structures, causing
BBB leakage [105]. Disruption of the BBB associated with chronic alcohol use could increase the
possibilities of invading pathogens, including SARS-CoV-2, to infiltrate the brain.
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4.3. Marijuana

Marijuana, also known as cannabis, is the most frequently used illicit substance of abuse in
the U.S. Currently, 11 states and the District of Columbia have legalized the recreational use of
marijuana, and 16 states have decriminalized marijuana use and possession. The use of marijuana
for medical purposes is legal in 33 states. It is, however, illegal under federal law to use and possess
marijuana. It is classified as a Schedule I substance by the US Drug Enforcement Administration
(DEA), indicating a high potential for abuse and no accepted medical use, despite the fact that
medical marijuana has been well established [106,107]. Two cannabinoids, ∆9-tetrahydrocannabinol
(THC) and cannabidiol (CBD), are the main active ingredients in marijuana. Cannabinoids act on the
endocannabinoid system (ECS), which is composed of two cannabinoid receptors, CB1, expressed in
most neuronal cells, and CB2, expressed predominantly in immune cells [108]. THC is the component
that produces psychotropic effects through stimulating the CB1 receptor and mediating the inhibition
of neurotransmitter release [109]. CBD is considered to regulate immune response, such as cytokine
release, and blood pressure, with little to no psychotropic side effects, as CBD only binds to CB2 but
not to CB1 receptors [109]. THC can also activate CB1 receptor in the cardiovascular system, which has
been associated with adverse cardiovascular events, including myocardial infarction, cardiomyopathy,
arrhythmias, stroke, and cardiac arrest [110].

Both THC and CBD are lipophilic, allowing them to readily pass through the BBB and enter
the CNS. THC is an immunosuppressor. It has been reported to suppress antibody response and
T lymphocytes activities. It prevents macrophage and macrophage-like cells, such as microglia,
from migrating towards the nodes of microbial invasions. It also suppresses proinflammatory factors
and promotes anti-inflammatory activities [111]. THC downregulates proinflammatory cytokines,
IL-1α, IL-1β, and TNFα. By dampening immune responses to invading pathogens, THC could make
the host more susceptible to viral infections, such as HIV-1 [111] and possibly COVID-19. Other harmful
effects of marijuana include cardiovascular, cerebrovascular, and neurological complications, such as
stroke, cognitive dysfunction, and behavioral problems [112]. Some evidence suggested a link between
smoking marijuana and risk of COPD [113], one of the major risk factors for COVID-19 complications,
but the risk is only significant if the individuals also smoked tobacco [114]. On the contrary, a study,
which has not been peer-reviewed at the time of preparation of this article, showed the beneficial effect
of CBD in preventing COVID-19 by modulating ACE2 expression and downregulating serine protease
TMPRSS2 [115].

4.4. Opioids

Opioids, including illegal drug heroin, synthetic drug fentanyl, prescription pain-killing drugs
oxycodone (OxyContin®), hydrocodone (Vicodin®), codeine, and morphine, are effectors on the
endocrine system [116]. They act as immune suppressors that impair the function of macrophages,
natural killer (NK) cells, and T-cells, and are associated with higher risks of infectious diseases, such as
pneumonia [117]. The endogenous opioid system (EOS), comprising three naturally occurring opioid
peptides (β-endorphins, dynorphins, and enkephalins) and three classes of opioid receptors, µ (MOR),
δ (DOR), and k (KOR), are tightly linked to substance abuse and the development of addiction, and are
responsible for systemic infection [118]. Activation of opioid receptors in the brain stem could lead
to respiratory depression and overdose fatality [119]. Respiratory depression is a leading factor to
hypoxemia in COVID-19 complications. Morphine desensitizes the HPA axis and inhibits the release
of anti-inflammatory glucocorticoids through potentiating proinflammatory cytokine, IL-1β [120].
Inhibition of endogenous glucocorticoid and activation of IL-1β by opioids could significantly increase
the severity and inflammatory response of COVID-19 in patients with OUD. It has been shown
that individuals with OUD are more susceptible to opportunistic infections [121], disposing these
individuals at a higher chance of contracting the virus in COVID-19.
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4.5. Cocaine

Cocaine is a potent stimulant, and is the second most abused illicit drug after marijuana.
Cocaine can be abused in several forms, such as chewing the leaves of Erythroxylum coca tree,
injecting the water-soluble hydrochloride salt form, and smoking or snorting pure, freebase form,
called “crack”. One of the most significant pathophysiological effects of cocaine is its cardiotoxicity,
which has been well documented and extensively reviewed [122–126]. Cardiac arrhythmias and acute
myocardial ischemia or infarction (MI) are the leading causes of cocaine-induced sudden cardiac death.
Other cardiovascular diseases associated with cocaine include heart failure, cardiomyopathies, aortic
dissection, and endocarditis. Cocaine blocks voltage-dependent Na+ and K+ channels in the sinoatrial
node and the myocardium, depressing cardiovascular contractility [127]. Due to its function as an
ion channel blocker, cocaine has been effectively used as a local anesthetic [128]. Cocaine can also
induce binding and opening of L-type Ca2+ channels, causing the influx of Ca2+ in cardiomyocytes and
elevation of intracellular Ca2+ concentration. This second messenger pathway may also lead to cardiac
arrhythmia [129]. Clinically, cocaine increases myocardial oxygen demand by increasing heart rate
and hypertension, while it decreases the oxygen supply due to coronary vasoconstriction [130–132].
Cocaine impairs endothelial functions [133], sensitizes constrictor effects of catecholamines [134],
and causes microvascular diseases and thrombosis [135,136]. The cocaine-mediated oxygen imbalance
can be particularly detrimental in COVID-19, in which the coronavirus can cause hypoxemia because
of the diminishing of lung capacity.

Cocaine exerts its effect through binding to three monoamine transporters on nerve terminals:
the serotonin transporter (SERT), the dopamine transporter (DAT), and the norepinephrine transporter
(NET), with Ki of 0.14, 0.64, and 1.6 µM, respectively [137]. Upon binding to these transporters,
cocaine inhibits the reuptake of the neurotransmitters from the synaptic cleft, leading to prolonged
synapses and activation of postsynaptic receptors. Cocaine also binds directly to two classes of
neurotransmitter receptors, muscarinic acetylcholine and sigma receptors [138–140]. The interactions
with the transporters and the receptors form the molecular basis for cocaine neurotoxicity. Cocaine
stimulates the HPA axis, increasing the secretion of neuronal peptide CRH, which leads to subsequent
releasing of β-endorphin and ACTH. Through general circulation, ACTH reaches the adrenal glands
and promotes the biosynthesis of glucocorticoids [141]. Cocaine-induced stimulation of the HPA axis
and immune suppression can alter antibody formation, lymphocyte subset profile, and lymphocyte
proliferation. Cocaine suppresses responses to the proinflammatory cytokine, IL-6, and dampens
cytotoxic activation of macrophages, natural killer cells, and cytotoxic T lymphocytes [142]. Due to
compromised immune responses, cocaine abusers have considerably high incidences of viral infections,
including human immunodeficiency virus (HIV), influenza, and potentially SARS-CoV-2.

Cocaine can induce BBB dysfunction, disrupt neurovascular capillaries and basement
membrane [143], and increase BBB permeability [144–146]. The detrimental effects of cocaine on
the BBB are partially attributed to the loss of tight junction protein complexes, including ZO-1 and
JAM-2 [146–149]. Cocaine also increases the expression of matrix metallopeptidase (MMP)-1, which
contributes to the rearrangement of the cytoskeleton structure of the basement membrane [147,148].
The adverse effects of decreased tight junction protein complexes and remodeling of the basement
membrane fibers cause the BBB leakage and make it open to peripheral toxins and viruses, including
SARS-CoV-2. An increase in proinflammatory cytokine, TNFα, has also been reported in BMVECs
exposed to cocaine [150], which could be a concern for endothelial health in COVID-19.

4.6. Amphetamine, Methamphetamine (METH), and 3,4-Methylenedioxymethamphetamine (MDMA, Ecstasy)

d-Amphetamine and its synthetic derivatives, METH and MDMA, are addictive psychostimulants
associated with neuropsychiatric complications, including deficits in attention, memory, and executive
functioning [151,152]. Amphetamines mediate neurodegenerative changes in the brain, including
persistent loss of dopamine (DA) transporters [153–157] and receptors [158], loss of serotonin (5-HT)
transporters [159], and decrease in dopamine and serotonin level and its metabolites [160–162]. METH
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has been linked to various cardiac pathologies, including hypertension, tachycardia, and congestive
heart failure or cardiomyopathy [16]. Clinically, METH abusers commonly showed dilated and poorly
contracting left ventricles (LV) and substantially lowered left ventricular ejection fractions (LVEF) in
comparison to non-users [163]. METH-associated cardiac pathologies are a major cause of pulmonary
edema. The reduced lung capacity due to the fluid collection in the lungs and constriction of blood
vessels can severely complicate COVID-19 symptoms and negative prognosis.

Amphetamines stimulate the HPA axis and increase the plasma glucocorticoids through a
CRH-dependent mechanism involving serotonin [164–167]. The stimulation increases the production
of CRH and AVP in the PVN neurons, which, in turn, activates the production of ACTH in corticotropic
cells in the anterior pituitary gland. ACTH circulates through the systemic blood stream to reach
and activate the adrenal cortex to release glucocorticoids. The HPA axis is an essential component
of the response to pathogen infections. However, chronic activation of the HPA axis and markedly
increased glucocorticoid due to the recreational use of amphetamine, METH, and MDMA can be
harmful to the brain. Amphetamines modify brain expression of the genes and proteins associated
with the HPA axis, including the glucocorticoid receptor (GR) and the mineralocorticoid receptor (MR).
The remodeling of brain cells and disruption of the HPA axis are the hallmarks of depression and
anxiety/despair states associated with drug use [168,169]. As mentioned earlier, the disruption of the
HPA axis and the associated immune suppression could pose the drug abusers to a higher risk of viral
infections. SARS-CoV-2, known for its high infection rate, will be particularly harmful to individuals
with defective immune systems related to the use of addictive drugs.

Amphetamine-like psychostimulants can trigger inflammatory processes, compromise
neurogenesis in the brain, and damage the BBB integrity [170]. METH, for example, is strongly
associated with ischemic stroke and hypoxia [171,172]. Binge use of METH causes a sustained
reduction in global and cerebral blood flow [173,174]. METH is also known to damage the central
nervous system (CNS) by compromising the integrity of the blood-brain barrier (BBB) [175–177].
METH and MDMA can decrease the expression of tight junction proteins, including ZO-1, occludin,
and claudin-5. These drugs activate microglia and astrocyte to secrete proinflammatory cytokines and
chemokines, as well as vasoactive factors, and elevate expression of peptidases, such as MMP-1 and
MMP-9, to degrade tight junction proteins and modify BBB basement membrane structure [178,179].
METH abuse has been shown to increase brain infection of peripheral bacteria and viruses [180–182].
Similarly, MDMA has been shown to cause BBB dysfunction with increased BBB permeability [183],
and to excessively activate astrocytes and microglia [184]. It may lead to edema [183]. With BBB
dysfunction, it is almost certain that the risks of SARS-CoV-2 invasion into the brain will be immensely
heightened among individuals using or abusing these psychostimulants, and complications in these
patients are vastly expected.

Neuroinflammation induced by METH and MDMA also plays a major role in BBB damage and
may deteriorate COVID-19 conditions. COVID-19 patients exhibit abnormal immune responses related
to high levels of proinflammatory cytokines, including TNFα and IL-6. METH significantly increases
the expression of TNFα and IL-6 in the hippocampus, frontal cortex, and striatum [185]. The expression
of these proinflammatory cytokines is linked to METH-induced microglial activation [186,187].
MDMA also elevates the expression of proinflammatory cytokines, such as IL-1β, in the brain [188].
The excessive expression of proinflammatory cytokines in brain tissues could further damage the
BBB and cause oxidative stress [78,189]. Neuroinflammation poses a major risk for individuals
with COVID-19.

4.7. Summary of Roles of Substances of Abuse in COVID-19

Substances of abuse may lead to COVID-19 complication and severity in several ways. Smoking
tobacco and marijuana could cause direct damage to the respiratory system, such as COPD.
Other substances mostly work through modulating brain and immune functions, including the
promotion of proinflammatory factors, suppression of immune responses, and impairment of the
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BBB. Neuroinflammation induced by several substances of abuse and inflammatory activities caused
by COVID-19 in the peripheral tissues may mutually intensify the adverse effects of one another,
leading to negative progression of the disease. With impaired HPA axis and immune imbalance, the
patients are highly susceptible to SARS-CoV-2 infections. Compromised BBB may pose a high risk
of viral infection in the brain tissue. Figure 4 sketches the possible pathological effects of commonly
abused substances on various tissues and systems and their connection to COVID-19 complications.
These adverse effects of these substances on the respiratory system, cardiovascular system, the immune
system, and the CNS, as well as their relations to the severity and negative prognosis of COVID-19,
are summarized in Table 3.
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Table 3. Connection of substances of abuse to COVID-19.

Substance Target System Pathology COVID-19

Tobacco
(Nicotine)

Respiratory system Main cause of COPD [10,11,82] Increased severity and
mortality [13,81]

Immune system

Immune suppression,
Decreased CD8+ T-cells [83,84] Higher infection rate [85]

Increased inflammatory cytokines (TNFα,
IL-1β, IL-18) and chemokines (CCL2,

CCL8, and CXC3CL1); decreased
anti-inflammatory factors, Bcl6, IL-10,

and CCL25 [92]

Increased inflammatory
cytokines and

chemokines, TNFα,
IL-1β, IL-6 [61–63]

CNS BBB leakage through loss of tight junction
proteins [86–89]

Endotheliitis and CNS
infection [53,55–57]

Alcohol
Immune system

Increased proinflammatory cytokines,
IL-1β and IL-6, and chemokine CCL-2 [98]

Increased inflammatory
cytokines and

chemokines, TNFα,
IL-1β, IL-6 [61–63]

Spleen atrophy [100].
Impaired production of

antibodies and
lymphocytes [102]

CNS
Increased BBB permeability through

cytoskeletal and tight junction
remodeling [103–105].

Endotheliitis and CNS
infection [53,55–57]

Marijuana
(THC, CBD)

Respiratory system Enhanced COPD with tobacco [113,114] Increased severity and
mortality [13,81]

Immune system
Immunosuppression; reduced antibody
response and T lymphocyte activities;

reduced migration of macrophage [111]

Increased infection and
reduced viral response

and clearance [111]

Opioids
(heroine,
fentanyl,

morphine)

Respiratory system Respiratory depression [14,15,119] Increased severity and
mortality [14,15]

Immune system
Desensitizing HPA axis; inhibiting

glucocorticoid release, increased IL-1β;
neuroinflammation [120]

Increased opportunistic
infections, excessive

inflammatory response
[117,118,121]

Cocaine

Cardiovascular
system

Cardiac arrhythmias and acute MI;
oxygen imbalance; microvascular diseases

and thrombosis [122–127,129–132]

Increased severity and
mortality [12,37,38]

Immune system

Stimulating HPA axis;
immunosuppression; defects in antibody

formation, lymphocyte proliferation,
macrophage and NK activation [141,142]

High incidence of viral
infection [142]

CNS
Increased BBB permeability due to loss of
tight junction proteins; rearrangement of

cytoskeleton structure [143–146]

Endotheliitis and CNS
infection [53,55–57]

Amphetamine,
METH,
MDMA

Cardiovascular
system

Hypertension, tachycardia, and
cardiomyopathy leading to pulmonary

edema [16,163];
Ischemic stroke and hypoxia; restricted

blood flow [171–174]

Increased severity and
mortality [12,37,38]

Immune system

Altered HPA axis, impairing GR and MR
expression, immunosuppression

[164–167]

Increased infection rate,
depression,

anxiety/despair [168,169]

Increased expression of TNFα, IL-1β, and
IL-6; neuroinflammation [185–188]

Excessive inflammatory
response [61–63]

CNS BBB damage due to loss of tight junction
protein; edema [175–179]

Endotheliitis and CNS
infection

[53,55–57,180–182]
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5. Strategies of Treatment and Prevention for Individuals with SUDs

5.1. General Approaches for Treatments and Vaccines

The therapeutic strategies for COVID-19 have been focused on repurposing existing drugs against
this novel coronavirus [190–192]. Among these repurposed drugs, the antimalaria drugs chloroquine
and hydroxychloroquine [193,194] are extremely controversial, including a retracted study [195] and a
terminated solidarity clinical trial by the WHO [196]. The U.S. Food and Drug Administration (FDA)
recently revoked its Emergency Use Authorization (EUA) to treat COVID-19 [197]. Other drugs include
the anti-HIV drugs lopinavir-ritonavir in combination with ribavirin [198–200], tumor chemotherapy
drugs, doxorubicin and paclitaxel [201], traditional herbal medicines [202], broad spectrum antiviral
drug niclosamide [203], Janus-associated kinase (JAK) 1 and 2 inhibitor, ruxolitinib [204], anti-influenza
drug favipiravir [205], antiviral drug remdesivir [206–208], and most recently, a commonly used
steroid, dexamethasone [209]. Many of these drugs primarily target the RdRp (NSP12) or the main
protease, Mpro. A cryo-EM structure of NSP12 in complex with its cofactors NSP7 and NSP8 has
been reported [210]. Remdesivir, the only proven effective drug against COVID-19 so far, is found
to potently inhibit RdRp in MERS-CoV [211] and SARS-CoV2 [212]. Ribavirin and Favipiravir also
function as RdRp inhibitors. The crystal structure of the Mpro with its inhibitor has been recently solved
and reported [213,214]. Due to its importance in viral production, and the lack of similar proteins
in human cells, the Mpro is considered an important drug target in treating COVID-19 [213,215,216].
Niclosamide and the anti-HIV combination drug lopinavir-ritonavir, are inhibitors of the main protease.
Structure-based design has led to the development of new inhibitors of the Mpro with desirable
pharmacokinetic properties and low toxicity [217]. The SARS-CoV-2 entry point, ACE2, and the
associated protease, TMPRSS2, are also considered potential drug targets [28].

Tremendous research efforts have been put into identifying, isolating, and developing neutralizing
antibodies against SARS-CoV-2. The S protein, which plays a key role in recognizing and binding
to the ACE2 receptor to gain entry into the host cell, is the main focus for developing neutralizing
antibodies and vaccines against SARS-CoV-2 [24,25]. Neutralizing monoclonal antibodies isolated
from convalescent COVID-19 patients were found to block the RBD surface of the S protein from
binding to ACE2, and these antibodies showed effectiveness in reducing viral infection in animal
models [218–220]. The crystal structure of the RBD-bound antibody provided a clear picture on
inhibition of viral interaction with ACE2 [221]. The neutralizing antibodies isolated from SARS-CoV
patients seemed to cross-neutralize SARS-CoV-2 [222]. The RBD is not the only site that neutralizing
antibodies may block. A monoclonal antibody isolated from convalescent COVID-19 patients exhibits
high neutralization potency against SARS-CoV-2. This antibody does not bind to the RBD, but it tightly
associates with the N-terminal domain of the S protein [223]. A recombinant antibody fused with the
human ACE2 extracellular domain displayed desired neutralizing properties in vivo and in mice [224].
Single-domain camelid antibodies from a llama were found to cross-react and neutralize MERS-CoV,
SARS-CoV, and SARS-CoV-2 S pseudotyped viruses [225]. Cocktails of antibodies that simultaneously
bind to different epitopes of the RBD may provide more potent neutralizing power and significantly
reduce virus escaping through mutations [226–228].

Vaccines are crucial in combating the COVID-19 pandemic. The RBD of the S protein is, again,
the main target for vaccine development [229]. According to WHO “Draft landscape of COVID-19
candidate vaccines”, there are 13 candidates currently in clinical trials, and 128 candidates in preclinical
stage [230]. These vaccine candidates cover almost all technology platforms, including more traditional
non-replicating or replicating viral vector, inactivated or live attenuated virus, recombinant protein
subunit, to more recently developed nucleic acid (DNA or RNA), peptide, and viral-like particle [231].
There have been some encouraging results from clinical trials, including the first mRNA vaccine,
mRNA-1273 [232,233], and an adenovirus type-5 (Ad-5) vectored vaccine [234].
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5.2. Challenges for Individuals with SUDs

With the race to therapeutics and vaccines towards COVID-19, rarely have the efforts specifically
been directed at SUD complications in COVID-19. As we analyzed earlier, SUDs complicate and impair
the respiratory system directly, and can intensify the severity of the disease through cardiovascular
damage and immune abnormality. There are increasing concerns on capillary endothelial damage
or endotheliitis by COVID-19 and SUDs, including the harmful effects on the BBB integrity. If the
coronavirus is allowed to migrate across the BBB and to infect the brain, long-term neurological
degeneracy is expected, and the treatment will be deemed challenging. SUDs can weaken the immune
system, alter and disrupt the HPA axis, and stimulate neuroinflammation with heightened expression
of TNFα, IL-1β, and IL-6 in the CNS. Anti-TNFα therapy has been used in severe cases of autoimmune
inflammatory disease to control inflammation by downregulating IL-6 and IL-1β [235]. Anti-IL-6
antibody may also be beneficial in inflammation control [236]. These treatments could be helpful for
COVID-19 patients with SUDs.

Current antiviral drugs are designed to interfere with viral replication or viral protein processing.
For example, the most effective drug, remdesivir, which can shorten the recovery time by 30% [206],
inhibits viral RNA replication [212]. Neutralizing antibodies bind to RBD of the S protein, so the
virus cannot bind to ACE2. However, clearance of the virus is heavily dependent on the individual’s
immune system, including activating phagocytes and natural killer cells. As discussed earlier, several
substances of abuse, such as nicotine, marijuana, cocaine, and amphetamines, have shown to suppress
immune and antibody responses. Clinical cases indicated that antibody-secreting cells (ASCs), T
follicular helper (TFH) cells, as well as activated CD4+ and CD8+ T-cells, are critical to symptomatic
recovery from COVID-19 [237]. As a result, SUD-induced reduction of T-cell activation will dampen
the ability to efficiently clear the virus from the body. For vaccines to work efficiently, robust immune
responses are required. CD4+ and CD8+ T-cell responses are essential in protective antiviral immunity
by vaccination [238,239]. Due to the immunosuppression and reduction of T-cell responses, individuals
with SUDs may not develop sufficient protective antibodies against the virus. A clinical study suggested
that SARS-CoV-2 specific immunoglobin G (IgG) antibodies may last only 2-3 months before a steep
decline in both asymptomatic and mildly symptomatic COVID-19 patients [240]. Considering their
substantially undermined immune systems, the protective antibodies in patients with SUDs are very
likely to decline much quicker, making vaccines considerably less effective in these patients. There is a
potential risk, although no reported cases yet, that antibodies or vaccines may promote COVID-19
pathogenesis through antibody-dependent enhancement (ADE). While SUDs compromise the immune
system, virus-specific antibodies are likely to promote viral entry into various immune cells, including
monocytes, macrophages, and B cells [241,242], which may further deteriorate the immune response
towards the virus.

COVID-19 pandemic poses tremendous challenges for the treatment of SUDs [243]. The regulatory
and policy obstacles for patients with SUDs are intensified in the times of crisis, making it more difficult
for healthcare providers to address the needs of SUD patients with the availability of medications.
Physical and social distancing requirement renders the face-to-face group treatment and mutual support
groups inaccessible. These difficulties will disrupt the treatment of patients with SUDs when these
patients start to experience withdrawal symptoms. It has been called for relaxing rules and regulations
for these patients to receive treatment, and adopting the model of pharmacy-based addiction care by
integrating primary-care and pharmacy prescription, dispense, and management [243].

It is now widely accepted that COVID-19 may stay with us for some extended periods. People with
mild or no symptoms can transmit the pathogen as effectively as those with severe symptoms [244,245].
The complications and compromised immune systems associated with SUDs make drug abusers
particularly vulnerable to COVID-19. Therapeutics and vaccines currently under development do not
address the specific concerns and risk factors for these individuals. There are even greater challenges
for people with SUDs under COVID-19 pandemic, as they will experience a higher infectious rate,
limited access to healthcare system and support groups, inadequate food and housing, and increased
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likelihood of homelessness and incarceration. They may also face excessive discrimination, and have
higher chances of relapses and overdose death. The research community should heed to the challenges
and difficulties these individuals may experience in the pandemic, uncover scientific evidence to link
COVID-19 severity and mortality with substance use, and advance effective treatment and prevention
strategies for people with SUDs.
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