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Abstract: SARS-CoV-2 Spike protein was predicted by molecular docking to bind the host cell surface
GRP78, which was suggested as a putative good molecular target to inhibit Covid-19. We aimed to
confirm that GRP78 gene expression was increased in blood of SARS-CoV-2 (+) versus SARS-CoV-2
(−) pneumonia patients. In addition, we aimed to identify drugs that could be repurposed to inhibit
GRP78, thus with potential anti-SARS-CoV-2 activity. Gene expression studies were performed in 10
SARS-CoV-2 (−) and 24 SARS-CoV-2 (+) pneumonia patients. A structure-based virtual screen was
performed with 10,761 small molecules retrieved from DrugBank, using the GRP78 nucleotide binding
domain and substrate binding domain as molecular targets. Results indicated that GRP78 mRNA
levels were approximately four times higher in the blood of SARS-CoV-2 (+) versus SARS-CoV-2 (−)
pneumonia patients, further suggesting that GRP78 might be a good molecular target to treat Covid-19.
In addition, a total of 409 compounds were identified with potential as GRP78 inhibitors. In conclusion,
we found preliminary evidence that further proposes GRP78 as a possible molecular target to treat
Covid-19 and that many clinically approved drugs bind GRP78 as an off-target effect. We suggest
that further work should be urgently carried out to confirm if GRP78 is indeed a good molecular
target and if some of those drugs have potential to be repurposed for SARS-CoV-2 antiviral activity.
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1. Introduction

Coronaviruses mainly cause enzootic infections in birds and mammals but in some cases have
been capable of crossing the species barrier and infect humans [1]. Indeed, since 2002, β-coronaviruses
have caused three zoonotic outbreaks [1]. The Coronaviridae family includes the Severe Acute
Respiratory Syndrome (SARS) virus (SARS-CoV), the Middle East Respiratory Syndrome (MERS) virus
(MERS-CoV), and the recently found Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) [2].
The SARS-CoV-2 emerged as a zoonotic outbreak at the end of 2019, causing a disease named Covid-19
and being responsible for a pandemic within very few months [1].

SARS-CoV-2 is an enveloped virus with a positive-sense, single-stranded RNA genome [2]. This virus
enters host cells by receptor-mediated endocytosis [2]. The spike S glycoprotein allows the attachment
and virus internalization to the host cell [3], by binding to the host ACE2 receptor [4–7]. Cell entry
also depends on the host cellular serine protease TMPRSS2 [8,9]. SARS-CoV-2 then uses the host cell’s
machinery to produce more virus. The new viruses are assembled, enveloped and released from the
cells via exocytosis, to infect other cells [9].

Viral glycoproteins from other coronavirus (SARS-CoV and murine hepatitis virus (MHV))
induce endoplasmic reticulum (ER) stress during infection, as a result of incorrect protein folding or
accumulation in the ER lumen [10]. Cells can respond to ER stress by mediating an unfolded-protein
response, which requires the transcription of molecular chaperones responsible for protein folding
and repression of protein synthesis. Glucose Regulated Protein 78 (GRP78), also known as Binding
immunoglobulin protein (BiP) or heat shock 70 kDa protein 5 (HSPA5), is a HSP70 molecular chaperone
encoded by the HSPA5 gene. This molecular chaperone is usually located in the lumen of the ER but
can also be found at the cell surface, cytosol, mitochondria and nucleus. Cell surface relocation of
GRP78 is caused by either ER stress (e.g., in some viral infections or some types of cancer) or by GRP78
overexpression [11,12]. It has been described that in stressed cells of respiratory system, GRP78 is
overexpressed and translocated from the Endoplasmic Reticulum to the cell membrane [3].

Cell surface GRP78 is known to play a role in the infection of host cells by several virus, such as
MERS-CoV, Ebola, Dengue, Japanese Encephalitis virus, Coxsackievirus A9 (CAV9) and Borna Disease
Virus (BDV) [13]. In addition, four regions of the SARS-CoV-2 Spike protein were predicted by
molecular docking to bind the host cell surface GRP78 [14]. Molecular docking prediction suggests that
when the virus is approaching the target cell expressing cell-surface GRP78, binding is more favorable
between region IV (C480–C488) of the SARS-CoV-2 spike protein and the GRP78 substrate binding
domain (SBD) [14]. Even though these molecular docking studies still lack experimental validation in
cells, they suggest that inhibiting this interaction could possibly decrease the rate of viral infection.
This molecular docking study, together with the abovementioned literature on other viruses, made us
hypothesize that GRP78 might be a molecular target to inhibit SARS-CoV-2 infection.

Consequently, inhibitors of this putative interaction might be useful not only to prevent infection
but also to contribute to treat this disease. For example, it was recently found that inhibition of the SRC
tyrosine kinase blocks cell surface GRP78 [15]. This raises the possibility of repurposing SRC inhibitors
and other drugs that are inhibitors of cell surface GRP78 for the treatment of Covid-19.

Indeed, as there are no specific therapies approved for the treatment of Covid-19, one of the
strategies that has been widely used is the repositioning of clinically approved drugs, as they have
known safety profiles and are readily available for clinical trials [16,17]. This approach has the advantage
of possibly providing fast and safe drug leads. In fact, small-molecules approved for other human
diseases, such as immunosuppressants, inhibitors of RNA synthesis and HIV protease inhibitors,
amongst others, have reasonable supporting evidence for being considered for further studies regarding
treatment of Covid-19 [18]. Curiously, there has been conflicting data on the use of hydroxycloroquine
for the management of critically ill patients with Covid-19 [19,20].

In this work, to further suggest that GRP78 is a possible drug target for Covid-19 patients, we
performed GRP78 gene expression studies in the blood of SARS-CoV-2 (+) versus SARS-CoV-2 (−)
pneumonia patients. Moreover, to identify drugs that are potential inhibitors of GRP78, we performed
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a structure-based virtual screen using 10,761 small molecules retrieved from DrugBank, using GRP78
nucleotide binding domain (NBD) and SBD as targets.

2. Results

2.1. GRP78 Gene Expression Studies

GRP78 gene expression studies were conducted in SARS-CoV-2 (−) and SARS-CoV-2 (+) pneumonia
patients. The vital parameters of those two groups of patients were also analyzed. The median values
and gender distributions were similar in the SARS-CoV-2 (−) and SARS-CoV-2 (+) pneumonia groups
(p = 0.838 and p = 0.928, respectively). The median values of fever, sPO2, CURB-65 Score, pneumonia
severity score, systolic and diastolic blood pressure were similar in both groups (p = 0.589; p = 0.926;
p = 0.956 and p = 0.056) (Table 1).

Table 1. Vital and clinical parameters of the groups.

Parameters SARS-CoV-2 (-) Pneumonia
(n = 24) Median (IQR)

SARS-CoV-2 (+) Pneumonia
(n = 10) Median (IQR) p-Value

Gender Male 14 (41.17%) 6 (60%) p1 = 0.928

Female 10 (58.83%) 4 (40%)

Age 52.5 (37–75.75) 60.5 (36.5–72.5) p2 = 0.838

Fever (◦C) 36.85 (36.525–37.675) 36.7 (36.27–37.35) p2 = 0.589

sPO2 95 (92.25–97) 95 (93–97.25) p2 = 0.926

Sys. BP (mm/Hg) 127 (110–140.75) 128 (110–142.5) p2 = 0.956

Dias. BP (mm/Hg) 80 (70.5–88.75) 70 (61.5–80) p2 = 0.056

PSI Score 76.5 (38.25–113) 82.5 (51–118) p2 = 0.642

CURB-65 Score 1 (0.5–2) 1 (1–2) p2 = 0.341
◦C Celsius degree; sPO2, partial oxygen saturation; Sys. BP, systolic blood pressure; Dias. BP, diastolic blood
pressure. p1 value is derived from fisher exact test. p2 values are derived from Mann Whitney U test. PSI; Pneumonia
severity Index.

The GRP78 mRNA levels in the blood were 56.41 ± 1.69 in the SARS-CoV-2 (+) pneumonia
group and 14.7 ± 0.95 in the SARS-CoV-2 (−) pneumonia group. Indeed, the GRP78 mRNA level was
found statistically significantly higher in SARS-CoV-2 (+) pneumonia group than in SARS-CoV-2 (−)
pneumonia group (p = 0.0001) (Table 2).

Table 2. GRP78 gene expression levels in the blood of SARS-CoV-2 (−) and SARS-CoV-2 (+)
pneumonia patients.

Patient Groups SARS-CoV-2(−) Pneumonia (n = 24) SARS-CoV-2(+) Pneumonia (n = 10) p-Value

Mean ± SD Median (IQR) Mean ± SD Median (IQR)

GRP-78 mRNA Levels 14.7 ± 0.95 14.7 (14.26–15.25) 56.41 ± 1.69 57.09 (54.09–57.69) * 0.0001

p-Value is derived from Student’s t test and it shows comparison between the groups. GRP-78, Glucose regulated
protein-78; SD, standard deviation. * 0.0001 means there is a statistically difference between the groups.

2.2. Virtual Screening Studies

When virtually screening the NBD of GRP78, 129 DrugBank molecules presented higher affinity
to GRP78 NBD (lower estimated ∆G) than control ATP (Table S1 on Supplementary data and Figure 1).
It was possible to validate the docking methodology for NBD, as the obtained docking pose for ATP
has superimposed with the co-crystallized ligand structure with an RMSD of 0.752Å.
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Figure 1. Docking studies on GRP78 nucleotide binding domain (NBD). (A) Three-dimensional (3D)
surface structure of GRP78 (pdb code 5e84) showing its nucleotide-binding domains (yellow circle).
(B) Crystallographic ATP, and (C) known drug Ponatinib, in 3D representation (left image) and respective
two-dimensional (2D) interaction scheme (right image). The polar and non-polar amino-acids are
shown in pink and green circles; hydrogen bonding is indicated by dotted arrows; with dotted lines
represent arene-hydrogen interactions; proximity contour are dotted lines surrounding the ligand,
indicating the shape of the binding site and available space to the more outward-facing parts of the
ligand; blue shadows in some amino acids indicate the receptor exposure differences by the size and
intensity of the quoits disks. The directions of the shadows indicate the directions of the amino acids
toward the ligands. The blue clouds around the ligand atoms indicate the solvent exposure.

Imatinib (a BCR-ABL inhibitor) was the top docking score drug (−9.26 kcal/mol) found to bind
to NBD (Figure 1A), presenting higher affinity than control ATP (Figure 1B), followed by FK-614
(−8.98 kcal/mol) and Selonsertib (−8.86 kcal/mol) (Table S1). Several other BCR-ABL inhibitors such
as Ponatinib (Figure 1C), Nilotinib, Bafetinib, Danusertib and Dasatinib were also retrieved in this
structure-based virtual screen. There are several residues involved in ATP binding [21] that were also
implicated in the interaction of test ligands and GRP78; for example, residues Thr-38 and Gly-227
established hydrogen interactions with two phosphate groups of ATP (Figure 1B) and also with fluoride
atoms of Ponatinib (Figure 1C).
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When virtually screening the SBD, results showed that 280 drugbank molecules were predicted to
bind more tightly to target GRP78 than SARS-CoV-2 region IV, such as Zilucoplan (−13.53 kcal/mol),
Obinepitide (−13.28 kcal/mol) and Corticorelin ovine triflutate (−13.07 kcal/mol) (Table S2 on
Supplementary Data). It has recently been predicted that the region IV (C480–C488) of the SARS-CoV-2
spike protein binds to GRP78 SBD [14] (Figure 2A). The surface-accessible region IV of the spike
protrudes to the outer side of the virus facing the target cell and establishing hydrophobic interactions
and an hydrogen bond (Figure 2B). Zilucoplan (Figure 2C) was predicted to be suitable to bind the
cell-surface GRP78, as it is a long molecule with several aromatic groups, expanding throughout the
target surface and establishing several hydrogen interactions (Figure 2C).
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Figure 2. Docking studies on GRP78 SBD. (A) 3D surface structure of GRP78 (pdb code 5e84)
(grey surface) bound to SARS-CoV-2 (red transparent surface); the C480–C488 section of the whole
SARS-CoV-2 spike (pdb code 6m0j) was aligned with the docked C480–C488 in order to allow an easier
visualization of the position of the spike towards the GRP78 target. Known peptide Zilucoplan is
shown in sticks for exemplification. (B) SARS-CoV-2 region IV, and (C) known drug Zilucoplan bound
to GRP78 SBD in 3D representation (left image, with arrows representing the direction of the peptidic
strand from the linear—I, II, III—to the macrocyclic segment—IV) and respective 2D interaction scheme
(right image). The polar and non-polar amino-acids are shown in pink and green circles; hydrogen
bonding is indicated by dotted arrows; proximity contour are dotted lines surrounding the ligand,
indicating the shape of the binding site and available space to the more outward-facing parts of the
ligand; blue shadows in some amino acids indicate the receptor exposure differences by the size and
intensity of the quoits disks. The directions of the shadows indicate the directions of the amino acids
toward the ligands. The blue clouds around the ligand atoms indicate the solvent exposure.



Pharmaceuticals 2020, 13, 132 6 of 13

3. Discussion

The SARS-CoV-2 Spike protein was recently predicted by molecular docking to bind the host
cell surface GRP78 [14]. Thus, GRP78 was suggested to function as a receptor for SARS-CoV-2.
In this work, we verified that GRP78 gene expression was increased in the blood of SARS-CoV-2
(+) versus SARS-CoV-2 (−) pneumonia patients. This is in agreement with some results previously
obtained by some of us, which showed that higher serum GRP78 protein concentrations were found
in the SARS-CoV-2 infected patients when compared to patients with pneumonia or controls [22].
GRP78 protein is a member of the HSP-70 protein family. It is known that, during Acute Respiratory
Syndrome Distress (ARDS), endothelial barrier dysfunction occurs in the lung tissue, the production
of heat shock proteins occurs and their release into the blood increases [23,24]. Indeed, it has been
demonstrated that HSP-70 proteins are released into the blood in severe traumas. Additionally, it was
revealed that HSP-70 protein levels were higher in ARDS cases [25]. Therefore, it is possible that
the high levels of GRP78 found in the blood of SARS-CoV-2 (+) patients could be derived from the
lung tissue. Further work will be necessary to confirm this hypothesis. Interestingly, another study
recently showed confirmatory proof for the presence of GRP78 protein in vitro in airway epithelial
cells, further allowing to hypothesize that GRP78 may be a receptor for SARS-CoV-2, facilitating initial
host cell infection [26]. Therefore, our results, together with the ones published by the abovementioned
studies, allow to hypothesize that GRP78 may be a receptor for SARS-CoV-2, and therefore, a good
molecular target to treat Covid-19.

Remarkably, inhibiting GRP78 limited Dengue Virus infection [27]. Moreover, reduction of
GRP78 levels by small interfering RNAs blocked the entry of Japanese Encephalitis Virus into
cells [28]. Furthermore, decreasing GRP78 expression with siRNAs inhibited Ebola virus replication and
pre-treatment with the small molecule (-)-epigallocatechin gallate inhibited Ebola virus infection [29].

Therefore, we aimed to identify drugs that could be repurposed to inhibit GRP78, which thus
have potential anti-SARS-CoV-2 activity by possibly stopping or preventing SARS-CoV-2 infection.
The DrugBank database is a comprehensive, freely accessible, online database containing information
on drugs and drug targets [30], which can be a valuable source for the search of known drugs/bioactive
compounds with off-target anti-Covid-19 activity. This database was selected over other known
databases because it has links to almost all major biochemoinformatics and drug/pharmaceutical
databases [31], allowing an easy localization and acquisition of the desired molecules for further testing.

The inhibition of the interaction between the SARS-CoV-2 spike protein and the host cell receptor
by blocking GRP78 SBD is an interesting strategy to possibly identify drugs that decrease the rate
of viral infection [14]. Another potential mechanism of inhibition of SARS-CoV-2 infection might be
the inhibition of ATPase activity by binding to the GRP78 nucleotide binding domain (NBD) [32].
Therefore, a structure-based virtual screen was performed using 10,761 small molecules retrieved from
DrugBank, using GRP78 NBD and SBD as targets, and using ATP and SARS-CoV-2 peptide C480–C488
as controls, respectively.

Interestingly, the BCR-ABL inhibitor Imatinib was the top docking score drug found in this virtual
screening on GRP78 NBD. In agreement with this, a high-throughput screen of FDA-approved drugs
identified Imatinib as an inhibitor of both SARS-CoV and MERS-CoV [33]. In addition, this study showed
that the anti-SARS-CoV activity of Imatinib occurred at the early stages of infection, after internalization
and endosomal trafficking, by inhibiting fusion of the virions at the endosomal membrane. This study
also showed that Abelson tyrosine-protein kinase 2 (ABL2) was found necessary for efficient SARS-CoV
and MERS-CoV replication in vitro. Most interestingly, a randomized non-comparative phase 2 pilot
clinical trial will start soon to test the value of Imatinib mesylate as an early treatment of Covid-19
disease in aged hospitalized patients. The description of this clinical trial states that “The EC50 of
imatinib for the inhibition of the virus is under investigation but we now have a first estimates with
EC50 close to 2.5 microM. This plasmatic concentration is achievable with imatinib 800 mg/dL” [34].

Several other BCR-ABL inhibitors such as Ponatinib, Nilotinib, Flumatinib, Bafetinib, Danusertib
and Dasatinib were also retrieved in this structure-based virtual screen. In addition, other BCR-ABL
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inhibitors (not listed in Table S1 due to docking scores higher than ATP) such as GNF-2, Tozasertib,
Revastinib, or Bosutinib, presented highly negative free energy of binding, lower than some of the
known GRP78 NBD inhibitors such as honokiol [35], hkh40a [36], VER-155008 [37], isoliquiritigenin [38]
or epigallocatechin gallate [32], suggesting that in general this class of compounds is worth testing for
further understanding the molecular mechanism of GRP78 modulation.

Several other protein kinase inhibitors were identified, such as Sorafenib (VEGFR, PDGFR and RAF
inhibitor) [39], Dacomitinib (EGFR inhibitor) [40], Neratinib (HER2 inhibitor) [41], Ponatinib (FGFR,
PDGFR, SRC, RET, KIT and FLT1 inhibitor) [42], Gedatolisib (PI3K/mTOR inhibitor) [43], Danusertib
(aurora kinase inhibitor) [44], Glesatinib (c-Met inhibitor) [45], Tivozanib (VEGFR inhibitor) [46],
Pyrotinib (HER2 and EGFR inhibitor) [47] or Olaparib (PARP inhibitor) [48], among others.

Interestingly, two of these drugs are inhibitors of SRC (Bosutinib and Ponatinib) and were
previously patented as also being capable of blocking cell surface GRP78 expression [15].

As there is no available crystallographic complex of GRP78-SARS-CoV-2, the validation of the
docking onto SBD was achieved by comparison with available data in the literature (SARS-CoV-2
residues 486–788 are facing GRP78 Phe-451 and Ser-452, while SARS-CoV-2 residues 483–484 are facing
Thr-428) [14]. The SARS-CoV-2 C480-C488 loop has a rigid and well defined structure that is preserved
along molecular dynamics simulations, which allows the establishment of several stable interactions
with targets such as ACE-II [49]. The SARS-CoV-2 segment C480–C488 was sectioned from the spike
structure (pdb code 6m0j) and the docking protocol used was the same that was applied to the other
ligands: it was treated as flexible and it was kept as a cyclic peptide during the docking simulation
(due to a disulphide bond between Cys-480 and Cys-488) [50]. In fact, the cyclic form has already been
described for other peptides, such as Pep42, as being determinant for GRP78 recognition due to the
stabilization of hydrophobic interactions by the rigid cyclic structure [13]. Interestingly, Zilucoplan,
Obinepitide and Corticorelin ovine triflutate were found to have lower free energy of binding (higher
affinity) to GRP78 SBD than SARS-CoV-2 (C480–C488), which suggests that these compounds may
compete with the virus spike for binding, thus preventing the internalization of SARS-CoV-2 and
consequent infection. Interestingly, the compound with the highest binding affinity docked onto SBD
was Zilucoplan, a macrocyclic peptide, such as SARS-CoV-2 C480-C488 loop [14] and known GRP78
inhibitor Pep42 [13]

GRP78 has high affinity for hydrophobic or hydrophilic regions of protein substrates such as that
of the SARS-CoV-2 spike [14]. Hence, compounds with high affinity to this GRP78 binding pocket
could theoretically compete with the virus spike for binding [51]. As GRP78 may act as a co-receptor
for virus internalization by association with other molecules on the cell surface, as previously reported
for other virus [52,53], the compounds retrieved on the virtual screening may be potential inhibitors
of internalization of SARS-CoV-2, thus preventing infection. Interestingly, a recent study showed by
molecular docking that some natural products (such as phytoestrogens and estrogens) also seem to
bind SBD GRP78. The author of this study suggested that these natural products may interfere with
SARS-CoV-2 attachment to stressed cells [51].

Concerning the NBD, simulation studies have previously reported that after binding of a known
competitive inhibition to GRP78 ATP-binding site, the SBD adopts a conformation that has low
affinity for substrates, thus blocking transportation [54]. In fact, the binding of several inhibitors to
the ATP-binding site has already been revealed by several crystallographic studies [55]. Therefore,
the tested small molecules may block GRP78 ATPase activity by directly binding to the ATP-binding
site, thus impairing GRP78 function and theoretically avoiding SARS-CoV-2 infection.

Further in vitro testing will be performed in a near future to validate the in silico findings
herein presented. This will be relevant not only to identify drugs to possibly treat Covid-19 but
also other diseases in which GRP78 has been acknowledge as a good molecular target, such as
some cancers (particularly chemoresistant cancers), and atherosclerotic, thrombotic and auto-immune
diseases [11,56,57].
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4. Materials and Methods

4.1. Gene Expression Studies

4.1.1. Patients

A total of 34 patients (10 patients diagnosed with pneumonia but SARS-CoV-2 negative and
24 patients diagnosed with pneumonia and confirmed with SARS-COV-2 infection) who were admitted
to the emergency department of the Pamukkale University Hospital with symptoms of pneumonia
and SARS-COV-2 infection were included in the study. All SARS-CoV-2 positive patients were at
an early phase of the disease. Prior to the study, ethical approval numbered 60116787-020/26598
was obtained from Pamukkale University Ethics Committee. All the procedures were in compliance
with the Helsinki Declaration. All the patients were informed about the study and a written consent
form was obtained from all patients wishing to participate in the study. Researchers analyzed only
deidentified (anonymized) data.

The measured vital parameters (body temperature, sPO2, and blood pressure) of the patients
were recorded in the emergency service. Pneumonia severity index (PSI Score) and CURB-65 scores
of patients were calculated as known in the literature. PSI score and CURB-65 score were used to
determine the clinical status of the patients.

4.1.2. Gene Expression Analysis

Gene expression analysis of glucose regulating protein 78 (GRP78) was analyzed in 10 patients
with pneumonia and 24 patients with SARS-COV-2 infection. Blood samples were collected from
individuals to PaxGene tubes. RNA was extracted with Human Blood RNA Purification Kit (GMBiolabs,
Taichung City, Taiwan) according to the procedure recommended by manufacturer. The mRNA level
was studied from the blood samples taken when the patients applied to the emergency room.

Conversion of total RNA to single-strand complementary DNA (cDNA) was done with High-Capacity
cDNA Reverse Transcription Kit (Applied Biosystems Inc., Foster City, CA, USA) with random
primers. PCR reactions were performed with the Taq®Man Universal PCR Master Mix (15 µL,
Applied Biosystems, individual Taq®Man Gene Expression Assays) by using 5 µL of diluted cDNA,
1 µL 200 nmol/L of the labeled probe, and 1.5 µL pre-developed primer-probe sets for GRP78 (Applied
Biosystems assay ID Hs99999174_m1) was used [58]. Based on the CT value and the corresponding
standard curve, the mRNA quantity of each sample was calculated by determining the ratio between
the amounts of the gene of interest and GAPDH. Primers and probe sequences for GAPDH are available
from the authors on request.

4.1.3. Statistical Analysis

Data were analyzed using SPSS 17 (IBM Corp., SPSS Inc., Chicago IL, USA) statistical software
package. While mean values, standard deviations and medians (IQR) were provided as continuous
variables, categorical variables were presented in number and percentage. Mann-Whitney U-test was
used to compare the independent group differences when the parametric test assumptions were not
met. Student’s t test was used to compare the independent group differences when the parametric
test assumptions were met. Differences between categorical variables were analyzed by Chi-square
analysis. A p-value < 0.05 was considered statistically significant in all analyses.

4.2. Molecular Docking Virtual Screening

4.2.1. Preparation of Receptor and Ligands

The 3D structure of GRP78 was obtained from the Protein Data Bank (PDB code: 5e84) at 2.99 Å
resolution [59] and loaded to Molecular Operating Environment (MOE®) version 2014 from Chemical
Computing Group (CCG) [60]. The preparation of the target protein involved the following steps:
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removal of all water molecules and ATP; addition of hydrogen atoms; calculation of atomic partial
charges according to the Amber12:EHT force field. 10,761 small molecule drugs 3D structures were
obtained from the DrugBank database (Version 5.1.5) [30]. The molecule wash function was used to
generate meaningful protonation states by deprotonating strong acids and protonating strong bases.
Energy minimization of all molecules was performed using the Amber12:EHT force field at a RMSD
gradient of 0.01 kcal/mol.Å. The existing chirality was preserved and partial charges were calculated
according to the standard parameters of the force field.

4.2.2. Molecular Docking

The docking of DrugBank database molecules into the nucleotide-binding domain (NBD) and
the SARS-CoV2 binding domain (SBD) of GRF78 was performed using MOE-Dock implemented on
MOE. The default placement method, triangle matcher algorithm, was selected for pose generation
by aligning the ligand triplets on the alpha sphere triplets of the receptor. Two rescoring functions,
including London dG and GBVI/WSA dG, were utilized for pose scoring. Results were ranked
according to their S score (kcal/mol).

5. Conclusions

In spite of all the efforts that have been made worldwide, there is still no drug available to
effectively treat Covid-19. SARS-CoV-2 mainly affects the host by binding to membrane receptors
through its spike glycoprotein. One of the suggested putative receptors was GRP78. Here, we showed
that GRP78 gene expression in blood was higher in SARS-CoV-2 (+) versus SARS-CoV-2 (−) pneumonia
patients, providing further indication that GRP78 might be a good molecular target to treat Covid-19.
Therefore, interfering with this interaction could theoretically be a possible approach to avoid the viral
infection and propagation. We suggest that further work should be urgently carried out to confirm if
GRP78 is indeed a good molecular target to treat Covid-19.

Virtual screening tools can be used to rapidly identify known drugs that could be repurposed to act
as GRP78 inhibitors, and thus, theoretically have potential as anti-SARS-CoV-2 drugs. Indeed, our in
silico data identified several GRP78 inhibitors, which may be good candidates for anti-SARS-CoV-2
activity. A total of 409 compounds were identified with potential to block the theoretical binding of the
viral Spike protein with the host GRP78, which therefore have potential to stop or prevent infection.
The most promising identified drugs that could be repurposed were: Imatinib, FK-614 and Selonsertib
(GRP78 NBD binders); Zilucoplan, Obinepitide and Corticorelin ovine triflutate (GRP78 SBD binders).
Since these preliminary results were only based on in silico work, future in vitro testing is necessary to
confirm the antiviral activity of these compounds against SARS-CoV-2.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/13/6/132/s1,
Table S1: Results of the docking of DrugBank compounds onto GRP78 (NBD) (only molecules with lower docking
scores than control ATP are presented). Table S2: Results of the docking of DrugBank compounds onto GRP78
(SBD) (only molecules with lower docking scores than control region IV (C480-C488) from SARS-CoV-2 spike are
presented).
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