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Abstract: Nanocarriers are defined as structures and devices that are constructed using nanomaterials
which add functionality to the encapsulants. Being small in size and having a customized surface,
improved solubility and multi-functionality, it is envisaged that nanoparticles will continue to create
new biomedical applications owing to their stability, solubility, and bioavailability, as well as controlled
release of drugs. The type and physiochemical as well as morphological attributes of nanoparticles
influence their interaction with living cells and determine the route of administration, clearance, as
well as related toxic effects. Over the past decades, biodegradable polymers such as polysaccharides
have drowned a great deal of attention in pharmaceutical industry with respect to designing of drug
delivery systems. On this note, biodegradable polymeric nanocarrier is deemed to control the release
of the drug, stabilize labile molecules from degradation and site-specific drug targeting, with the main
aim of reducing the dosing frequency and prolonging the therapeutic outcomes. Thus, it is essential
to select the appropriate biopolymer material, e.g., sodium alginate to formulate nanoparticles
for controlled drug delivery. Alginate has attracted considerable interest in pharmaceutical and
biomedical applications as a matrix material of nanocarriers due to its inherent biological properties,
including good biocompatibility and biodegradability. Various techniques have been adopted
to synthesize alginate nanoparticles in order to introduce more rational, coherent, efficient and
cost-effective properties. This review highlights the most used and recent manufacturing techniques
of alginate-based nanoparticulate delivery system, including emulsification/gelation complexation,
layer-by-layer, spray drying, electrospray and electrospinning methods. Besides, the effects of the
main processing and formulation parameters on alginate nanoparticles are also summarized.
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1. Introduction

Nanomaterials have recently received much attention as drug carriers. In particular,
nanoparticle-based nanoparticles [1,2], lipids [3,4], magnetic nanoparticles [5,6] and liposomes [7]
have been widely studied in drug delivery systems. Among all, polymeric nanoparticles have been
widely investigated due to their unique physicochemical properties [8]. The natural and synthetic
polymers are versatile materials and are preferred for many applications, including the pharmaceutical
industry [9].

Naturally-derived polymers are superior to synthetic ones due to their biodegradability,
biocompatibility and biological activity. Hydrogel-based natural polymers such as alginate, collagen
and gelatin can be used to deliver hydrophilic drugs due to their ability to absorb large amounts of water
while maintaining their structures. The water absorption ability is related to the hydrophilic groups

Pharmaceuticals 2020, 13, 335; doi:10.3390/ph13110335 www.mdpi.com/journal/pharmaceuticals

http://www.mdpi.com/journal/pharmaceuticals
http://www.mdpi.com
https://orcid.org/0000-0003-4831-5784
https://orcid.org/0000-0002-8839-5048
http://dx.doi.org/10.3390/ph13110335
http://www.mdpi.com/journal/pharmaceuticals
https://www.mdpi.com/1424-8247/13/11/335?type=check_update&version=2


Pharmaceuticals 2020, 13, 335 2 of 34

such as –OH, –COOH, –CONH –SO3H and –CONH2 that are contained in the hydrogel matrices [10].
Besides, the chelating, biocompatible, immunogenic and mucoadhesive properties of alginate make it
as an attractive polymer in drug and cell delivery systems [11,12]. Alginates are considered among the
most biosynthesized polymers, where 70% of annual alginate production is allocated to pharmaceutical
and biomedical applications and the remaining is used in the food industry [13,14].

After alginate evolution in the 1980s and their spread as microparticles for encapsulation purposes,
several studies were carried out to synthesize nano-sized alginate particles [15,16]. Gelling properties
of alginate and its remarkable processing ease have grown its importance in drug delivery, cell
immobilization, food industry and research perspectives [17,18]. Furthermore, it is considered as an
environmentally friendly polymer that can undergo recycling and degradation. Alginate nanomaterials
represent a fast-developing field, particularly for the pharmaceutical and food industry as well as
academia. The gelling property makes alginate polymer as one of the most frequently used in drug
delivery [19].

The physicochemical properties of alginate, such as viscosity, thermo-stability, sol-gel
transformation, pH-responsivity, as well as drug release can gain better insight into their potential
applications. Many factors could impact the properties of alginate nanoparticles, such as alginate,
surfactant and crosslinker concentrations, stirring time and speed as well as pH value [20]. In this
review, different aspects related to the formulation and processing parameters using various techniques
for preparation of alginate nanoparticles were discussed with regard to the size, encapsulation efficiency,
zeta potential and drug release profile.

2. Alginate Polymer

Over the last decades, researchers were extensively utilizing natural polymers, especially in
the pharmaceutical [21] and food industry [22,23] due to their advantages such as biocompatibility,
biodegradability and low cost [11]. Alginate is an anionic polymer that typically obtained from
brown marine algae. It is an unbranched polysaccharide copolymer consisting of alternating of
d-mannuronate (M) and l-guluronic (G) blocks linked together by 1,4-glycosidic linkages (Figure 1A).
Divalent cations, such as Ba2+ and Ca2+, can quickly form so-called egg-box complexes with G block
to create alginate hydrogel through gelation phenomenon (Figure 1B) [24]. Hydrogelling ability of
alginate has broadened its applications in biomedical and pharmaceutical research to encapsulate
proteins and drugs for controlled release and targeted delivery. Hydrogel alginate matrix is a pH
responsive where it shrinks at low pH, thus, the payload is preserved for extended period of time.
Conversely, it swells and releases the encapsulated drug at higher pH values, offering a great carrier
for oral delivery.
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Figure 1. Chemical structure of alginate displaying the d-mannuronate (M) and l-guluronic (G) blocks (A), 
schematic representation of calcium binding to alginate to form an egg-box shape (B). 
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Figure 1. Chemical structure of alginate displaying the d-mannuronate (M) and l-guluronic (G) blocks
(A), schematic representation of calcium binding to alginate to form an egg-box shape (B).

3. Sources of Alginates, Extraction, and Purification Methods

Alginates are unbranched polysaccharide, present in the c + ell walls of brown algae as well as some
bacteria such as Azotobacter and Pseudomonas spp. [25,26]. Typically, the main sources of commercial
alginates are from Laminaria hyperborea, Laminaria digitata, Macrocystis pyrifera, Ascophyllum nodosum,
Eclonia maxima, Laminaria japonica, Lessonia nigrescens, Durvillea antarctica and Sargassum spp. [27].
Alginate chains are composed of units of β-d-mannuronic acid and α-l-guluronic acid of different
arrangement depending on their natural source with pKa range from 3.38 to 3.65. Alginate is precipitated
as an insoluble alginic acid in the low pH medium at room temperature [28]. Under alkaline extraction,
alginates are purified with sodium hydroxide, sodium carbonate, or gelatinous aluminum hydroxide
from the powdered brown algae. After purification, alginates are filtered and subsequently precipitated
with Ca2+ ions/ethanol or by means of acidification [27,29].

Essentially, in order to avoid a brown discoloration of the final product, depigmentation of algae
powder should take place prior to the extraction step. In addition, polyphenols are considered as
another impurity that alter the rheological properties of alginate by forming strong dipolar forces
with polysaccharides [30]. In order to render polyphenols insoluble during the extraction process,
algae powder is soaked in formaldehyde or in a mixture of formaldehyde and ethanol [27]. Finally,
polyphenolic levels in the final product are determined using fluorescence spectroscopy at 450 nm
wavelength [31].

4. Alginate Nanoparticles

The remarkable properties of alginate enable the flexibility to synthesize various designs of
particles such as nanoparticles and nanofibers. Nanosystem is a potential tool for controlling drug
stability, delivery and release, which may improve drug bioavailability as well as expand the choices
of drug administration routes [32]. Nanoparticles or ultrafine particles are defined as solid spheres
of size range from 10 to 1000 nm [33]. Pharmaceutically, nanoparticles are made of biocompatible
and biodegradable polymers of natural or synthetic origin, in which the pharmaceutical agent can
be entrapped in or diffused into the particle matrix during the synthesis process [34]. Nanofibers,
on the other hand, possess high surface area, controllable pore structure, diameter less than 1000 nm,
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and light weight compared to the conventional fibers [35,36]. The noticeable properties of nanofibers
render them highly useful in biomedical [37] and drug delivery applications [38] as well as skin tissue
engineering [39]. Figure 2 shows images of alginate nanoparticles/nanofibers produced by different
fabrication approaches using scanning electron microscope (SEM).
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Figure 2. Scanning electron microscopy images of alginate nanoparticles prepared by: (a) emulsification/

internal gelation, 1% w/w alginate, CaCO3:alginate mass ratios 0.1:1, pH 6 medium chain triglyceride
(MCT) oil [40]; (b) nanospray dryer, spray cap 7 µm, flow rate 7 mL/min, drying gas flow of
110 L/min with relative flow rate 100%, inlet drying gas temperature 120 ◦C and outlet temperature
35 ◦C [41]; (c) polyelectrolyte complexation, nisin-loaded nanoparticles alginate 250 mg/mL and
chitosan 250 mg/mL [42]; (d) evaporation method, zein-to-propylene glycol, alginate mass ratio
20:1 [43]; (e) layer-by-layer, paclitaxel, poly (lactic-co-glycolic acid) (PLGA) 10 mg/mL, alginate 5 mg/mL
and chitosan 5 mg/mL [44]; (f) emulsification/external gelation, alginate 0.03% w/v and CaCl2 18 mM [45];
(g) electrospray DNA plasmid loaded alginate nanoparticles, flow rate 0.1 mL/h, voltage 12.5 kV,
alginate 1% w/v, Tween 20 1% v/v, CaCl2 1.5% w/v, collector distance 4 cm and nozzle size 30 G [46];
(h) nanofiber produced by electrospinning, alginate 1.74% w/w, voltage 12 kV, needle 27 G, flow rate
0.6 mL/h and distance 12 cm [47].

The small size and large surface area of nanoparticles increase the dissolution rate and solubility of
poorly soluble drugs. Nanoparticles can enhance the targetability of the encapsulant to specific sites of
the body/tissue/cells, whether paracellularly or transcellularly [48]. The relationship between the rate
of dissolution and particles size as well as surface area is explained by Noyes–Whitney Equation (1) as
follows [49]:

dc
dt

=
D × A (Cs – C)

h
(1)

where dc/dt = dissolution rate, D is the diffusion coefficient of the substance, A is the surface area of
exposed solid, Cs and C represent the concentration of the dissolved substance at a given time t and
the solubility concentration of the substance, respectively, and h is the thickness of the diffusion layer.

Also, nanoparticles enhance the solubility, dissolution rate and bioavailability of poorly soluble
drugs by promoting the interaction propensity with the medium, owing to their large surface area [50].
Several researchers had developed and characterized nanoparticles-based natural polymers [51],
lipids [52], polysaccharides [53] and synthetic biodegradable polymers over the last ten years [54]. Due to
the unique physicochemical properties of alginate polymer among various natural polysaccharides,
the ability to encapsulate foods, drugs and proteins into alginate nanoparticles has attracted the interest
of many researchers [14]. Alginate-based nanocarrier seems to have all optimal requirements to be
a successful drug delivery system due to its biodegradability, biocompatibility, protection effect of
oral drugs against harsh gastrointestinal environment, controllable release, water solubility (avoiding
the effect of noxious solvents during processing), availability and low cost [55]. Various studies
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have focused on enhancing the low intestinal penetration, gastrointestinal degradation and low
bioavailability of orally administered insulin utilizing alginate nanoparticles as an oral drug delivery
system [56,57]. On top of that, the application of alginate nanoparticles in cancer treatment has gained
wide attention due to the ability to deliver anti-cancer therapeutics in sufficient manner at target
site, promoting the bioavailability as well as reducing drug dosage and its side effects to the normal
tissues [58,59]. Alginate nanoparticles have been also used for targeted antibiotic delivery applications
without inducing resistant strains of bacteria [60,61]. The applications and fields that utilized alginate
nanoparticles grew proportionally due to their useful properties and simple synthesis methods.

5. Alginate Nanoparticles Preparation Methods

Alginate nanoparticles are utilized as carriers to improve the bioavailability of drugs. Various
techniques have been proposed to synthesize alginate nanosystem. Selection of the preparation
method is highly related to the nature of encapsulant, as well as the pre-determined attributes that
nanoparticles should meet. The following sections review the most common fabrication methods of
alginate nanoparticles and their effective variables.

5.1. Emulsification/Gelation

Emulsification/gelation is defined as a gelation process of the emulsion droplets that consist of an
alginate solution dispersed in an oil phase to fabricate nanospheres [40]. Generally, this is a simple and
low-cost technique compared to the nozzle-based methods [62,63]. This technique consists of two main
stages: preparation of alginate-in-oil (w/o) emulsion, followed by gelation of the alginate emulsion
droplets in aid of a covalent or ionic crosslinker [16]. Gelation of alginate takes place through two
conventional ways: external and internal gelation [64]. For external gelation, crosslinker such as CaCl2
diffuses from the outer phase into the inner core of alginate emulsion droplets to react immediately
with carboxylic groups of α-L-guluronic acid. Typically, after gelation of alginate emulsion droplets by
adding the crosslinker, the emulsion is demixed (Figure 3) [16,19]. Emulsification/external gelation
outputs micro/nanospheres consisting of a soft core and a rigid outer matrix [65]. Internal gelation
technique on the other hand, depends on the release of cations from the inner core of alginate emulsion
droplets [66]. Basically, a water-insoluble calcium salt, such as CaCO3, is mixed with alginate before
emulsification (Figure 3). Gelation of alginate is initiated by increasing the solubility of calcium source
and/or lowering the pH of the emulsion from 7.5 to 6.5, where calcium ions begin to migrate from the
inner droplets to the outer part as shown in Equations (2) and (3) [67,68]. Internal gelation produces
symmetrical micro/nanospheres with large pores and low matrix density compared to that prepared
by external gelation [60,61].

2H+ + CaCO3→ Ca2+ + CO2 (2)

Ca2+ + 2Na+Alg−→ Ca2+(Alg−)2 + 2Na+ (3)

Paques et al., have prepared alginate nanospheres via w/o emulsification followed by internal
gelation using CaCO3 micro/nano particle. The concentration of alginate solution was at 1% w/w and
CaCO3 to alginate weight ratio at 0.1:1. Glucono delta-lactone (GDL) as an acidifier, together with
CaCO3 were dispersed in alginate solution. The final mixture was subsequently emulsified in the
continuous phase of the medium chain triglyceride (MCT) oil. The results showed that gelation time
and size of alginate spheres reduced proportionally to CaCO3 size from micro to nano-sized, while
higher alginate concentration has resulted in delaying of the gelation time. The mass ratios at 0.1:1 and
1.98:1 of CaCO3:alginate and GDL:CaCO3, respectively, with pH value around 6 were considered as
the optimum values in gel properties [40].

Another study has fabricated doxorubicin-loaded alginate nanospheres via w/o
emulsification/external gelation intended for breast cancer therapy. The formulation composed
of an aqueous phase (doxorubicin dissolved in alginate solution) mixed with an organic phase
(cyclohexane/dodecylamine) by stirring at 1200 rpm. The synthesized nanospheres exhibited particle
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size at 82.8 nm, polydispersity index at 0.204 and zeta potential at +7.2 ± 4.6 mV [69]. Total of 30% of
the payload released at pH 5.5 over the course of 4 h followed by 90% released by 24 h at pH 7.4.
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Figure 3. Schematic presentation of alginate nanospheres preparation by means of emulsification
(external/internal) gelation method.

In the Spadari et al. study, miltefosine (antifungal drug) has been encapsulated in alginate
nanospheres by emulsification/external gelation method. Miltefosine was dissolved in an aqueous
alginate solution (1% w/w) followed by emulsification with sunflower oil (3% v/v) containing Span 80
as a surfactant. After sonication of the mixture in an ice bath, CaCl2 and Poloxamer 407 were added
dropwise to the emulsion as a crosslinker and surfactant, respectively. The mixture was sonicated
for 5 min, accompanied by stirring for 30 min. Subsequently, the system was centrifuged at 3000× g
for 5 min, discarding the supernatant followed by oil residues removal through complexation with
isopropanol. In order to obtain a homogeneous fine powder of alginate nanospheres, 500 µL of trehalose
(10% w/v) was applied prior to freeze-drying for 24 h. The dried nanospheres had a zeta potential of
−39.7 ± 5.2 mV with a mean particle size of 279.1 ± 56.7 nm, a polydispersity index of 0.42 ± 0.15 and
an encapsulation efficiency of 81.70 ± 6.64%. The study concluded that emulsification/external gelation
method had efficiently encapsulated miltefosine in alginate matrix with an enhanced antifungal effect
for treatment of Galleria mellonella infection and reduced drug toxicity [70].

5.2. Emulsification-Solvent Displacement Technique

Emulsification-solvent displacement method was first described in 1997 when Quintanar et al.,
proposed a new way to prepare concentrated pseudolatex nanoparticles using acceptable solvents [71].
This process involves emulsifying an organic solution of the polymer and drug (water-saturated) in
an aqueous phase of a stabilizer (solvent-saturated) through conventional stirrers, accompanied by
direct displacement of solvents under rapid evaporation using vacuum and/or temperature (e.g., rotary
evaporator). Compared to conventional solvent evaporation method, emulsion homogenization step
is avoided in emulsification-solvent displacement approach to produce nanoparticles. This method
depends on the aggregation of the polymer and drug through a rapid diffusion of the solvent from the
internal into the external phase [72].

In the study of Dai et al., zein nanoparticles were synthesized through Pickering emulsions of zein
and propylene glycol alginate (PGA) via solvent evaporation method. Firstly, PGA was mixed with
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ethanolic zein solution at various mass ratios of 1:1, 5:1, 10:1, 20:1 and 40:1, then ethanol was evaporated
by rotary evaporator followed by freeze drying for 3 days to obtain solid zein-PGA nanoparticles.
The results showed that the nanoparticle size was significantly reduced at 10:1 mass ratio, while higher
PGA concentration enhanced the sample stability as a function of strong electrostatic repulsion between
particles, promoting the production of stable Pickering emulsions [43].

5.3. Solvent Evaporation Technique

In this technique, the polymer and the hydrophobic drug are dissolved in a volatile organic
solvent [8]. The emulsion (o/w) is prepared by adding organic solution such as ethyl acetate,
dichloromethane or chloroform (oil phase) to the aqueous solution of surfactant under ultra-sonication
or rapid homogenization [73,74]. The organic solvent is then evaporated by means of continuous
stirring or high temperature under reduced pressure. The nanoparticles are then collected through
ultracentrifugation to remove the excess solvent, while free drug and surfactant are washed away
with distilled water (Figure 4A). Double emulsion (w/o/w) technique on the other hand, is commonly
used for encapsulation of hydrophilic molecules such as proteins, peptides and antigens (vaccines),
where aqueous drug phase is added to the oil phase of polymer and volatile solvent under continuous
stirring to prepare stable emulsion (w/o). The resulted emulsion is then transferred under the same
condition to the aqueous phase of surfactant to produce a double emulsion (w/o/w) (Figure 4B) [8].
Under the same condition, nanoparticles are hardened after solvent removal, while the physical and
chemical properties of the synthesized nanoparticle can be tuned by tailoring the emulsion properties,
such as surfactant concentration/type, o/w phase ratio, polymer concentration and evaporation rate
as well as processing parameters, including agitation rate and time, geometry of homogenizing tip,
and shape and volume of homogenizer vessel [75,76].
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In the study of K.S et al., zidovudine nanoparticles were prepared from alginate and stearic
acid polyethylene glycol via two-step emulsion solvent evaporation technique. This study aimed to
confer enhancement of the drug loading capacity, the drug release efficacy and the biocompatibility.
The organic phase consisted of a chloroform as a solvent, polyethylene glycol (0.2% w/v) and stearic
acid (100 mg in 25 mL), while zidovudine was dissolved into the alginate solution (1 mg/mL) to form
the aqueous solution. The first emulsion was prepared by dissolving polyethylene glycol (0.2% w/v)
and stearic acid (0.4% w/v) in chloroform at 55 ◦C. Zidovudine of different strengths (100 mg, 150 mg
and 200 mg) was dissolved in alginate (0.1% w/v) solution at 55 ◦C to form a double emulsion system,
stirred for 2 h in a fume hood to evaporate the organic solvent and solidify the nanoparticles. Then,
nanoparticles suspension was centrifuged (20,000 rpm), washed and dried by freeze-drying technique.
The optimized formulation produced particles size of 407.67 ± 19.18 nm, zeta potential of −42.53 mV
and encapsulation efficiency of 83.18 ± 22%. The drug release was examined in different dissolution
medium at pH 1.2 and 7.4. Initially, zidovudine nanoparticles exhibited a burst release around 36%
and 20% at pH 1 and 7.4, respectively within 2 h, followed by a prolonged release of 95% and 48%
within 28 h [77].

5.4. Complexation

The complexation method produces two types of nanoparticles with reference to the medium
used, where alginate nanoaggregates and nanocapsules are synthesized in an aqueous solution and on
the interface of oil droplet, respectively. In general, complexation of alginate takes place using divalent
ions like Ca2+ (available in calcium chloride), which act as a crosslinker and/or by incorporating of
oppositely charged polyelectrolytes such as chitosan [78] and polymethacrylate [79]. The production
of alginate nanoaggregates is attained by pre-gelation state, in which alginate solution is mixed with
calcium chloride in aqueous continuous phase. In addition, complexation of alginate is also feasible
by polyelectrolyte complex through mixing alginate and polycationic polymer such as chitosan and
polymethacrylate to obtain polyelectrolyte complex coated-alginate nanoparticles (Figure 5) [80,81].

Commonly, nanocapsule is synthesized through forming a shell on template droplets by polymer
deposition on their interface with subsequent solvent removal. The crosslinker is added to stabilize
the polymer shell by physical or covalent intermolecular forces (Figure 5). Briefly, this method
consists of an organic solvent mixed with a drug to be encapsulated to form the interior phase of
nanocapsule. This mixture is slowly added to an alginate solution that contains surfactant such as
Tween 80, where oil-in water (o/w) emulsion is prepared by means of sonication [82]. In addition,
chitosan can be synergistically included together with the crosslinker to promote the encapsulation
efficiency and reduce the porosity of the alginate nanocapsules [83]. Table 1 summarizes recent studies
of alginate produced by means of complexation method.
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Table 1. Example of polymeric nanoparticles formulation by complexation method.

Alginate
Concentration

(% w/v)
Components Drug Aims Mass Ratio pH

Mean
Particle

Size (nm)

Polydispersity
Index (%)

Zeta
Potential

(mV)

Encapsulation
Efficiency

(%)
Drug Release Reference

- CaCl2% w/v

Doxorubicin Site-targeting and
controlled release

- - - - [84]

0.04 0.39 350 0.481 65.0
0.05 0.39 479 0.139 68.0
0.06 0.39 490 0.273 71.0
0.08 0.19 3997 1 77.0
0.10 0.19 6638 1 84.0

0.30

CaCl2 0.10%
w/v

Span 80
Iron (1%)

Ferrous
sulphate

To protect ferrous from
oxidation oral iron

therapy
- ~5.0 20 ± 6 - −38.0 ± 4 95.0 ± 4

20% at pH 2.0 for 100 h
65% at pH 6.0 for 100 h
70% at pH 7.4 for 100 h

[85]

0.10 Chitosan (Cs)
0.08% w/v Crocin

To improve
bioavailability,
anticancer, and

antioxidant activity

- 4.70 236 0.476 - 38.16 30% at pH 1.2 for 48 h
50% at 6.8 for 48 h [86]

0.50 CaCl2 2% w/v Exemestane
To reduce and control

the release of
exemestane

- - 197 - −18.3 98.0 Maximum release
within 7 h at pH 7.4 [87]

0.06
CaCl2 0.05%

w/v
Tween 80

Curcumin
and

resveratrol

Site-targeting - - 12.53 ± 1.06 - −22.0 ±
2.17

49.30 ± 4.3 Curcumin 16.35 ±
3.8% for 24 h [88]

60.23 ± 15 70.99 ± 6.1 Resveratrol 87 ± 7%
for 24 h

0.30
Chitosan 0.08%

w/v
CaCl2

Doxorubicin Site-targeting and
controlled release

Alg:Cs 10:1
Alginate

(Alg) 5.30 ~300 0.2 −22.5 to
−25.0

~97
52% at pH 5.5 for 6 h
35% at pH 7.4 for 6 h [89]

Cs 4.50

0.1
CaCl2 0.1% w/v
Chitosan 0.1%

w/v

ε-polylysine
(ε-PL)

Evaluating the
possibility of Cs/Alg

nanoparticles as carriers
of ε-polylysine

Alg:Cs
4.93:1 Alg 5.14 Alg-Cs

276.38 0.24 −33.7
53.37

17.5% at pH 6.6 for 2 h
80% at pH 6.6 for 10 h
90% at pH6.6 for 25 h

[90]

Alg:ε-PL
100:8.55 - ε-PL-Alg-Cs

372.05 0.29 −30.3

-

Polyurethane-alginate
(PU:Alg)

CaCl2 0.5% w/v
Chitosan 1%

w/v

Insulin Enhancing potential of
oral insulin delivery PU:Alg 7:3 5.10 90–110 - +38.5 90.0

15% at pH 1.2 for 2 h
50% at pH 6.8 for 10 h
100% at pH 7.4 for 20 h

[91]

PDI: polydispersity index; EE: encapsulation efficiency; Alg: alginate; Cs: chitosan; ε-PL: ε-polylysine; PU: polyurethane; SGF: simulated gastric fluid; SIF: simulated intestinal fluid;
Ref: reference.
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5.5. Alginate as a Coating Material for Nanocarrier (Layer-by-Layer Approach)

Layer-by-layer is a bottom-up coating technique, in which the film is formed through construction
layers of micro/nanometric thicknesses to produce core-shell system. This method involves electrostatic
interaction between oppositely charged polyelectrolytes, where alternating adsorption of multi-layers
cationic and anionic polymers occurs on flat substrates. In addition, this technique enables drug to be
embedded between the layers, and hence promoting encapsulation efficiency and drug release control
propensity with the reference of the physiochemical properties of the polymeric carrier used [92].
Layer-by-layer process can be influenced by various factors, such as pH of the medium, saturation
adsorption time, polyelectrolyte concentration, adsorption temperature and salt concentration of
polyelectrolyte solutions as well as the type of the matrix and core used [93].

In the study of Liu et al., nanoliposomes were coated with alginate and chitosan via layer-by-layer
method to improve liposomal stability and prevent leakage of the payload [94]. In order to form the
first layer, anionic nanoliposomes were added into chitosan solution (0.6% w/v) and then incubated for
1 h under gentle stirring. The subsequent layer was deposited by dropping chitosan-nanoliposomes
into alginate solution (0.5% w/v) using the same procedure. The size, polydispersity index and
zeta potential of the prepared nanoliposomes were around 89 nm, 0.26 and −6.3 mV, respectively.
On the other hand, the final formulation of coated nanoliposomes exhibited larger mean size at
330 nm, polydispersity index at 0.37 and zeta potential at −15.8 mV in pH 5.5. The enzymatic
digestion stability test demonstrated that coated nanoliposomes have conferred lipolytic degradation
resistance and delayed release of encapsulant in simulated gastrointestinal conditions compared to
coat-free nanoliposomes.

In order to control doxorubicin release for antitumor activity, Chai et al., have prepared
alternative multilayer of chitosan (cationic polymer) and alginate (anionic polymer) on the surface of
doxorubicin-loaded PLGA nanoparticles. The influences of temperature, polyelectrolyte polymers
concentration and NaCl concentration on the multilayer growth were investigated. Doxorubicin PLGA
nanoparticles were prepared via double water in-oil-in-water (w/o/w) emulsion-solvent evaporation
method. Subsequently, chitosan and alginate were alternately deposited on the nanoparticle surface to
form multilayers of polyelectrolyte. It was found that, increasing polyelectrolyte or NaCl concentration
as well as the adsorption temperature, the coat weight of the multilayer film was intensified. The initial
burst release was significantly reduced as a result of employing layer-by-layer technique, while lowering
the pH of dissolution medium conferred an increase of doxorubicin release [95].
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Wang et al., have modified paclitaxel-PLGA nanoparticles prepared via solvent evaporation
method by depositing chitosan and alginate layer-by-layer to improve the drug burst release tendency.
After chloroform removal (volatile solvent) from w/o single emulsion, chitosan solution (0.5% w/v) was
added dropwise into the emulsion under continues stirring to adsorb the first coat layer on the surface
of nanoparticles by electrostatic force. In order to form a second coat layer, alginate solution (5 mg/mL)
was added to PLGA-chitosan nanoparticles solution and ultrasound sonicated for 10 min. Three types
of nanoparticles (PLGA, PLGA/chitosan and PLGA/chitosan/alginate) were separately prepared and
characterized with regard to mean size, zeta potential, encapsulation efficiency and loading capacity.
The particle size, encapsulation efficiency and loading capacity were increased proportionally after
depositing each layer. The values of zeta potential of the above-mentioned nanoparticles were
−2.72 ± 0.17 mV, +17.36 ± 0.84 mV and −10.62 ± 0.38 mV, respectively. The drug release study was
carried out in PBS buffer (pH 7.4), and paclitaxel nanoparticles exhibited low initial burst release and
prolonged release properties [44]. Khan et al., have investigated the influence of alginate/chitosan
coat complex on the sustained release and bio-accessibility of resveratrol-zein nanoparticles [96].
The average particle size and zeta potential of initial nanoparticles were increased from 16.9 to ~72 nm
and from +15.01 to +43.01 mV, respectively, while the effect on the encapsulation efficiency was negated.
Besides, the release of resveratrol was sustained under simulated gastrointestinal condition, and its
bio-accessibility was improved significantly.

5.6. Spray Drying

Spray drying is one of the common techniques of micro and nanoparticle production where a
liquid is atomized to droplets and dried using a hot gas [97]. In 1872, Samuel Percy was the first person
to patent a spray drying technique that has been developed concerning its safety and productivity [98].
The production of nanoparticles using spray drying process is based on the removal of moisture
from sprayed wet droplets by using a heated atmosphere. The working principle of a spray dryer
includes four basic steps: emulsifying, dissolving or dispersing the drug in solvent (i), atomization
of the solution into a spray using specific nozzle (ii), drying the sprayed droplets by drying gas (iii),
and collecting the product (iv) [99]. The drying gas is introduced via an air dispenser from top of the
chamber. At a constant flow rate and appropriate temperature, the feed solution is atomized into the
drying gas chamber, in which the wet fine droplets are dried by moisture vaporization. Dry particles
are collected through electrostatic particle collector that confers the particle surface charged and deflects
by an electric filed. The collector consists of a rounded stainless still tube linked to a high voltage
supplier (anode) and a grounded star electrode (cathode) inside the tube. Finally, the exhausted gas is
passed through outlet filter that traps free particles from the gas (Figure 6) [100].

Alfatama et al., prepared three types of nanoparticles for oral delivery of insulin via spray drying
technique. Simple alginate, alginate-C18 and alginate-stearic acid were used to obtain spherical
nanoparticles with particle size of 513 nm, 522 nm, 619 nm, insulin encapsulation efficiency of 44.4%,
44.9%, 76.7% and polydispersity index of 0.54, 0.74, 0.33, respectively. The processing parameters used
were as follows: air flow rate 2–2.5 m/s, solution feed rate 4 mL/min and atomizing air pressure 6 bar.
The inlet temperature and outlet temperature were 60 ◦C and 23 ◦C, respectively [57]. Shehata and
Ibrahima, on the other hand, have encapsulated metformin hydrochloride into nanoparticles consisting
of alginate/gelatin with 1:3 ratio using nano-spray dryer. The prepared nanoparticles exhibited a
mean diameter around 850 nm, polydispersity index 0.14, yield 81% and encapsulation efficiency
90%, employing nano-spray parameters: spray cap 7 µm, flow rate 7 mL/min, flow of drying gas
110 L/min with relative flow rate 100%, inlet drying gas temperature 120 ◦C, outlet temperature 35 ◦C,
and actuator 60 kHz to form droplets through vibration membrane. The obtained dried nanoparticles
manifested good flowability with an angle of repose around 31◦ due to their spherical shaped, however
the reduced yield was attributed to the nanoparticles powder that stuck to the scraper and the electrode
in the collection chamber [41].



Pharmaceuticals 2020, 13, 335 12 of 34

Pharmaceuticals 2020, 13, x FOR PEER REVIEW 12 of 35 

 

release of resveratrol was sustained under simulated gastrointestinal condition, and its bio-accessibility 
was improved significantly. 

5.6. Spray Drying 

Spray drying is one of the common techniques of micro and nanoparticle production where a 
liquid is atomized to droplets and dried using a hot gas [97]. In 1872, Samuel Percy was the first 
person to patent a spray drying technique that has been developed concerning its safety and 
productivity [98]. The production of nanoparticles using spray drying process is based on the 
removal of moisture from sprayed wet droplets by using a heated atmosphere. The working principle 
of a spray dryer includes four basic steps: emulsifying, dissolving or dispersing the drug in solvent 
(i), atomization of the solution into a spray using specific nozzle (ii), drying the sprayed droplets by 
drying gas (iii), and collecting the product (iv) [99]. The drying gas is introduced via an air dispenser 
from top of the chamber. At a constant flow rate and appropriate temperature, the feed solution is 
atomized into the drying gas chamber, in which the wet fine droplets are dried by moisture 
vaporization. Dry particles are collected through electrostatic particle collector that confers the 
particle surface charged and deflects by an electric filed. The collector consists of a rounded stainless 
still tube linked to a high voltage supplier (anode) and a grounded star electrode (cathode) inside the 
tube. Finally, the exhausted gas is passed through outlet filter that traps free particles from the gas 
(Figure 6) [100].  

 
Figure 6. Schematic presentation of the conventional spray-drying technique. 

Alfatama et al., prepared three types of nanoparticles for oral delivery of insulin via spray drying 
technique. Simple alginate, alginate-C18 and alginate-stearic acid were used to obtain spherical 
nanoparticles with particle size of 513 nm, 522 nm, 619 nm, insulin encapsulation efficiency of 44.4%, 
44.9%, 76.7% and polydispersity index of 0.54, 0.74, 0.33, respectively. The processing parameters 
used were as follows: air flow rate 2–2.5 m/s, solution feed rate 4 mL/min and atomizing air pressure 
6 bar. The inlet temperature and outlet temperature were 60 °C and 23 °C, respectively [57]. Shehata 
and Ibrahima, on the other hand, have encapsulated metformin hydrochloride into nanoparticles 
consisting of alginate/gelatin with 1:3 ratio using nano-spray dryer. The prepared nanoparticles 
exhibited a mean diameter around 850 nm, polydispersity index 0.14, yield 81% and encapsulation 
efficiency 90%, employing nano-spray parameters: spray cap 7 µm, flow rate 7 mL/min, flow of 
drying gas 110 L/min with relative flow rate 100%, inlet drying gas temperature 120 °C, outlet 

Heater

Drying gas flow

Drying 
chamber

Collecting 
electrode

Nozzle

Grounded electrode

Filter
TOUT

TIN

Feeding 
solution

Dried particles

̴

Drying gas

Droplet

Figure 6. Schematic presentation of the conventional spray-drying technique.

In another study by A. El-Missiry et al., ellagic acid nanoparticles were synthesized using
calcium-alginate via nano-spray drying and followed by ionotropic gelation with calcium ions.
Alginate and ellagic acid were used at mass ratio 1:1 with alginate concentration at 0.025% w/v.
The spray drying condition used: inlet temperature 120 ◦C and an air flow rate 135 L/min. The obtained
nanoparticles were weighted and added into calcium chloride solution (0.1% w/v) as a crosslinker.
The results showed that the nanoparticles mean size was around 670 nm [101].

De Cicco et al., have encapsulated gentamicin sulfate into alginate pectin nanoparticles via
nano-spray dryer technique after adjusting feed rate and nozzle spray mesh size. The process
conditions and parameters used: inlet temperature 90 ◦C, air flow 100 L/min, feed rate 9.5 mL/min,
relative spray rate 100% and nozzle size 4.0 µm, 5.5 µm or 7.0 µm. Modulating nozzle size has directly
impacted the particles size and particles size distribution proportionally, while the feed rate has
affected the particles size distribution only in symmetrical manner. Apparently, the above-mentioned
parameters had no significant effect on the encapsulation efficiency [102]. In the pharmaceutical
industry, spray drying technique plays a significant role in manufacturing of drug powders and
other therapeutic products, and this technique, in particular, can produce a high drug encapsulation
efficiency and operate under sterile conditions [103,104]. It has also become an attractive technique in
other industries such as cosmetics [105], food [106], and photoluminescence [107].

5.7. Electrospray

Electrospray technique exhibits unique advantages to develop micro- and nanoparticles due to
the friendly single step approach, the ability to control the particle size, the low amount of solvents
and the yield control [108]. This technique is booming in the research and industry fields because of its
ability to produce monodisperse droplets from nano-size to hundreds of micrometers, depending on
the processing parameters [109,110]. Several researchers have successfully employed this technique
to encapsulate macromolecular bioactive agents such as cells [111], proteins [112], nucleic acids [46]
and others. Firstly, a liquid is pumped slowly through a thin metal needle using a syringe pump by a
constant flow rate. Then, high voltage is applied on the needle to increase the acceleration of exited
liquid away from the needle and overcome the surface tension of droplets. Finally, the droplets at the
tip of the needle are converted into fine nano/micro-sized spray and form a cone called the Taylor
cone (Figure 7) [113]. The size of the final droplet can be controlled by modulating the processing
parameters, such as the flow rate, voltage, needle size, and the distance between the needle and the
surface of the collector, and formulation parameters, such as materials concentration, crosslinkers,



Pharmaceuticals 2020, 13, 335 13 of 34

and surfactants. This method offers many advantages, such as using small input materials to get high
yield of nanoparticles and thus avoiding waste of expensive substances, a single continuous one-step
approach, and low cost, while the disadvantage is associated with time consuming [114].Pharmaceuticals 2020, 13, x FOR PEER REVIEW 14 of 35 
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Tsai and Ting have synthesized alginate and alginate/chitosan bilayer nanoparticles via electrospray
technique. Central Composite Design-Response Surface Methodology (CCD-RSM) was applied to
investigate the influence of flow rate, applied voltage, needle distance and alginate concentration on
the particle diameters. The results reported that the size of alginate nanoparticles was significantly
influenced by the applied voltage and the concentration of alginate solution, whereas the effects of
the distance between the needle to the surface of the receiving medium and flow rate were negated.
The optimum parameters produced alginate nanoparticles with size 279.17 ± 16.33 nm and zeta
potential −57.3 ± 0.15 mV via modulating the flow rate, collector distance, applied voltage and alginate
concentration are 0.6 mL/h, 20 cm, 27 kV and 3% w/v, respectively. Finally, chitosan/alginate bilayer
nanocarrier were synthesized using chitosan as a core and alginate as a shell. Electrospray nozzle
comprising two concentric stainless-steel needles (coaxial needle) was utilized to produce nanocarrier
with dual layer, in which, the outer needle diameter 0.96 mm (for shell), while the inner needle diameter
0.52 mm (for core). The processing parameters were as follows: concentration of chitosan and alginate
solutions at 2% w/w and 3% w/w, respectively, the distance of collector 20 cm, and voltage 27 kV. Taylor
cone structure consisted of two solutions was determined experimentally to be at ratio 1:11 of chitosan
solution (core) and alginate solution (shell). The final results showed that chitosan/alginate nanocarrier
were produced by electrospray technique with mean size particles 112.1 ± 35.2 nm, polydispersity
0.42 ± 0.06 and zeta potential +21.82 ± 2.23 mV [115].

In another study, B. Alallam et al., have formulated alginate nanoparticles as a carrier for plasmid
DNA by means of electrospray technique [46]. The study reported that the particle size of the
nanoparticles reduced significantly from 1500 nm to 420 nm as a function of voltage rise from 9 kV to
12 kV. This can be advocated that higher voltage brings about stronger coulombic forces which intensify
repulsion between adjacent droplets, producing smaller droplets size. Furthermore, the effect of flow
rate of atomized solution was also investigated and reported a decrease in particle size from 533 nm to
463 nm upon acceleration the flow rate from 0.1 mL/h to 0.5 mL/h. In order to find the optimum ratio
between flow rate and applied voltage, the interaction effect was examined using Minitab software.
The suggested parameters from the design were the highest voltage (12.5 kV) with the lowest flow
rate of 0.1 mL/h. This can be explained by the uneven spread of the emulsion at the tip of the needle,
caused by high flow rate, resulted in uncontrolled atomization and formation of large particles [116].
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5.8. Electrospinning

Electrospinning is a simple technique that produces nanofibers via electric fields to extract
ultrafine fiber from polymer solution or melt [117]. This technique has attracted high attention in
regenerative medicine, tissue engineering and industrial fields due to the ease of controlling the
formed fiber properties such as the shape, size, and porosity. In addition, the nanofiber has been
also applied in drug delivery system such as protein, antibiotics, DNA, RNA, living cells and growth
factors, because it offers a high surface-to-volume ratio and ability to control drug loading and release
profiles [118,119]. Electrospinning setup normally comprises of a syringe pump, high voltage power
supply and collector that separated at a defined distance. In general, electrospinning process is
considered as a sister technology with electrospray technique (Figure 8) [120]. The major difference
between both techniques is the polymer concentration, in which high concentration can be used in
electrospinning to obtain a more stable jet as well as elongation takes place by whipping instability
mechanism [121]. The essential parameters that affect diameter of the electrospun and morphology of
nanofibers are: needle diameter, distance between needle and collector, flow rate, solvent volatility and
applied voltage [122]. Table 2 represents examples of previous research studies of alginate nanofibers
synthesized via electrospinning method.
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Table 2. Preparation of alginate nanofiber by electrospinning technique.

Formulation Voltage
(kV)

Needle Size
(Gauge)

Flow Rate
(mL/h)

Distance
(cm)

Fibers
Diameter (nm) Reference

Sodium alginate 3% w/w
Polyethylene oxide 3% w/w

Triton X-100 0.5% w/w
Dimethylsulphoxide 5% w/w

25 - 0.7 18 97.4 [123]

Sodium alginate 2% w/v
Polyvinyl alcohol 14% w/v

Nano-hydroxyapatite
11 21 0.32 17 270 [124]

Sodium alginate 1.5% w/w
Polyethylene oxide 1.5% w/w

18 23 2 6

288

[125]Sodium alginate 1.5% w/w
Polyethylene oxide 1.5% w/w
Carboxyl multi walled carbon

nanotubes

280
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Table 2. Cont.

Formulation Voltage
(kV)

Needle Size
(Gauge)

Flow Rate
(mL/h)

Distance
(cm)

Fibers
Diameter (nm) Reference

Polyethylene oxide 3% w/w
Sodium alginate 2% w/w 10.5 180 µm 0.25 14 300 [126]

Sodium alginate 1.74% w/w
Triton X-100 1.1% w/w

Polyethylene oxide 0.43% w/w
Dimethyl sulfoxide 5.43% w/w

12 27 0.6 12 240 [47]

Sodium alginate 2% w/v
olyvinyl alcohol 10% w/w 26 25 0.48

0.6 10 62
180 [127]

6. Limitations of Alginate Nanofabrication

Despite the rapid progression and verities of techniques to synthesize alginate nanoparticles, it is
still less striking compared to synthetic polymers due to extensive molecular weight variations
and source-related properties [128,129]. Alginate purity determines the biocompatibility of
the prepared nanoparticles, thus the presence of hazardous contaminants such as endotoxins,
polyphenolic compounds, proteins and heavy metals, may cause an immune response in the site of
administration [130]. In the market, alginates are available in different grades, purities, and qualities,
based on the manufacturer and source [131]. Moreover, the difference in M/G blocks ratios of alginate
has been correlated to innate immune system stimulation as a result of the presence of cytokines in
response to high M block (β-d-mannuronic acid) content [132].

On the other hand, many studies have reported a poor encapsulation efficiency and high burst
drug release of alginate nanoparticles [86,90,133]. This can be attributed to the hydrophilicity and high
porosity of alginate nanoparticles leading to instability and swelling at biological fluids as well as
leakage of entrapped drugs during the preparation process [18,134]. Different chemical modification
approaches have been implemented to overcome these limitations, improving the mechanical strength
of alginate nanoparticles and to confer a hydrophobic character of alginate [135,136]. However,
this usually involves chemical reagents such as aldehydes, which may require purification prior
to clinical uses [137]. Moreover, the use of organic solvents for alginate derivation may influence
the physiochemical and biological characteristics of the encapsulant [138]. In addition, some of the
preparation methods of alginate nanoparticles including emulsification-solvent displacement and
solvent evaporation are mediated by organic solvents [128].

7. Factors Influencing Alginate Nanoparticles’ Characteristics: Particle Size, Size Distribution,
Encapsulation Efficiency and Drug Release

7.1. The Influence of Alginate Concentration

Yasmin et al., have highlighted the effect of alginate concentration on the size, size distribution
and encapsulation efficiency of nanospheres prepared by means of emulsification/external gelation
method. The results revealed that alginate concentration has a significant effect on the mean diameter
of nanospheres, in which alginate concentration 3% w/v and 5% w/v resulted in nanospheres with size
range 700 nm to 900 nm, respectively. Further, high alginate concentration 5% w/v was associated
with improved encapsulation efficiency of bovine serum albumin loaded-nanospheres. The results
also showed that high alginate concentration is effective in reducing the initial burst release from
86 ± 3.62% to 74 ± 1.53%, while the effect of alginate concentration on the total protein release was
negated [139]. Similar results were reported by Sarei et al., whereby direct proportional relationship
between alginate concentration and size, encapsulation efficiency and polydispersity index of the
prepared nanospheres was found, while a slow drug release was attainable. This phenomenon was
observed and explained extensively, advocating the use of high alginate concentration produces high
solution viscosity and low shear stress that lead to larger emulsion droplets [140]. In another study,
Mokhtari et al., have analyzed the influence of alginate concentration on nanoparticle’s attributes



Pharmaceuticals 2020, 13, 335 16 of 34

prepared by emulsification/internal gelation technique. They have reported an increase in particle size
from 512 nm to 4303 nm and encapsulation efficiency from 5.26% to 7.62%, when alginate concentration
was raised from 0.5% w/v to 1% w/v, respectively [141]. This may be explicated by higher alginate
concentration induced more forces in alginate droplets that may resist droplets breakdown and hinder
the diffusion of drug from alginate droplets to the oil phase during preparation process [142]. Besides,
nanocarriers, being relatively large in size and hydrophilic in nature, possess small specific surface
area and are less prone to burst or premature release [143].

Novitasari et al., have synthesized alginate-chitosan nanoparticles by means of ionic gelation
technique using calcium ions. The influence of the processing parameters was assessed using full
factorial design to predict the effect of each factor and their interactions on the responses. Based on
the results, high alginate concentration led to an increase in particles size and polydispersity index
and improved encapsulation efficiency of the nanoparticles. With reference to the interaction effect
among all factors (alginate, calcium chloride and chitosan concentration), the lowest particles size
(200 nm) and polydispersity index (0.27) with encapsulation efficiency around 35% were attainable by
reducing both alginate and chitosan concentrations while maintaining high value of calcium chloride
concentration [144]. Similar findings were also reported by Zimet et al., when Nisaplin® loaded alginate
nanoparticles have been prepared by means of ionic gelation/complexation method [145]. The results
showed an increase in particle size from 86 nm to 204 nm, zeta potential from −33.2 mV to −38.7 mV
and a decrease in encapsulation efficiency from 35.6% to 30.5% when alginate concentration was
increased from 0.03% w/v to 0.07% w/v, respectively. Encapsulation efficiency was directly proportional
to Nisaplin®: alginate mass ratio of the nanoparticles.

Mansourpour et al., have applied factorial models to examine the influence of alginate concentration
on the size and polydispersity index of nanoparticles produced by ionotropic gelation. Higher alginate
concentration resulted in particles with larger size and higher polydispersity index, in which the
effect of alginate concentration was driven by other independent factors namely, CaCl2 and cationic
β-cyclodextrin concentrations [146]. Furthermore, Rahaiee et al., have investigated the effects of
alginate and chitosan concentrations to optimize the characteristics of the prepared nanoparticle via
ionic gelation method. The influence of alginate concentration on the size and encapsulation efficiency
of the nanoparticles was dominated compared to other factors. Simultaneous rise of alginate and
chitosan concentration rendered encapsulation efficiency to drop, but this was reversible by mere
reducing chitosan concentration. This can be attributed to the competition of the drug and chitosan on
the binding sites onto alginate moieties. On the other hand, the nanoparticle size was reducible by
decreasing the concentration of alginate [133]. Another study by Govindaraju et al., indicated the role
of alginate on curcumin loaded alginate nanoparticles synthesized by ionotropic gelation method [147].
They have reported that high alginate concentration was associated with a significantly increased
zeta potential from +150 ± 1.15 mV to +200 ± 2.15 mV and a slightly changed size and encapsulation
efficiency of the prepared nanoparticle. The positive value of zeta potential was elucidated by its
relationship with the absorbed amount of Ca2+ after alginate neutralization by CaCl2.

Based on the abovementioned studies, it can be concluded that alginate concentration has the
main influence on the size, polydispersity index and encapsulation efficiency of nanoparticles prepared
via ionic gelation method. This influence can be advocated by the extent of interaction between
the functional groups of alginate chains (COO−) and calcium ions. Higher alginate concentration
produces particles with larger size and wider polydispersity index as a result of increasing the number
of carboxylate groups and alginate chain layers which can intensify around calcium cations. This in
turn creates additional space for more drug to be entrapped, and thus improves the encapsulation
efficiency, as summarized in Table 3 [45,148].
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Table 3. The influence of alginate concentration on the properties of its nanoparticles.

Alginate Concentration
(% w/v) Preparation Method Drug Mean Particle

Size (nm)
Polydispersity

Index (%)
Zeta Potential

(mV)
Encapsulation
Efficiency (%) Reference

3 Emulsification/external
gelation Protein

700 - - 47 [139]
5 900 51

0.50 Emulsification/internal
gelation

Peppermint 512 - - Increase [141]
1 4303

0.05 Ionic
gelation/complexation Crocin Increase - - Increase [133]

0.30

0.1 Ionic
gelation/complexation Timolol Maleate

473.1 0.37 ± 0.05 - 33.71 ± 4.7 [144]
0.5 489.3 0.51 ± 0.1 39.01 ± 2.8

0.03 Ionic
gelation/complexation Nisaplin®

86 - −33.2 35.6 [145]
0.07 204 −38.7 30.5

0.1 Emulsification/external
gelation Doxorubicin

39.2 0.19 - 92.2 [148]
0.2 149.6 0.38 98.4

0.01 Ionotropic
pre-gelation/complexation Insulin Increase Increase - - [146]

0.1

0.6 Ionotropic gelation Curcumin
105 - 150 ± 1.15 94 ± 4.2 [147]

0.8 107 200 ± 2.15 92 ± 3.6

1.0 Electrospray - 315.9 ± 37.5 0.24 ± 0.10 - - [115]
2.0 348.2 ± 63.9 0.28 ± 0.03

PDI: polydispersity index; EE: encapsulation efficiency; Ref: references.
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7.2. The Influence of Surfactant

Mokhtari et al., highlighted the effect of variant concentrations of Tween 80 as a surfactant with
hydrophile-lipophile balance (HLB) of 4.3 used to aid the encapsulation of peppermint phenolic extract
in alginate nanospheres via emulsification/internal gelation method. The results indicated that higher
surfactant content produced nanospheres with lower particles size and higher encapsulation efficiency
as a result of decreasing the surface tension to promote breakdown extent of alginate droplets [141].
Another study by Elgegren et al., indicated the role of surfactant on sacha inchi (Plukenetia volubilis L.)
oil-loaded alginate nanoparticles synthesized by emulsification/external gelation with complexation
process. They have reported that high Poloxamer 407 concentration was associated with decreased
both size and polydispersity index of the prepared nanoparticles [149]. Moreover, incorporation
of Polysorbate 80 (10% v/v, 20% v/v, and 40% v/v) has rendered a rise in particle size, while the
encapsulation efficiency peaked at medium concentration of the surfactant [147]. Similar results were
also reported by Scolari et al., in which rifampicin-ascorbic acid-loaded alginate nanoparticles coated
with chitosan were fabricated by ionic gelation/complexation method. The results reported a significant
increase in particle size when the Tween 80 concentration increased from 0.25% w/v to 0.5% w/v [150].

Within a single assembled system, Baghbani et al., have investigated the effect of surfactant
(Tween 20) and co-surfactant (Span 60/Poloxamer 188) on the nanoparticles attributes prepared by
emulsification/external gelation method. Mere use of Tween 20 at low concentration (0.1% v/v) was
undesirable as it did not inhibit the separation of the emulsion phases, while at higher surfactant
concentration (0.3% v/v), smaller particle size and polydispersity index, improved encapsulation
efficiency and delayed manner of drug release were achieved. Besides, the effect of co-surfactant
inclusion (Span 60 or Poloxamer 188) at three different concentrations (0%, 0.15% w/v and 0.3% w/v)
coupled with 0.3% v/v Tween 20 on the particle size, entrapment efficiency, and drug release kinetics of
doxorubicin-loaded alginate nanodroplets was also investigated. The particle size was decreased and
then increased upon using higher strength of Span 60 or Poloxamer 188 in the formulation from 0% to
0.15% w/v. Using high Span 60 concentration impacted the encapsulation efficiency and cumulative
drug release negatively at a fixed concentration of Tween 20, while the effect was negated upon varying
the amounts of Poloxamer 188. This can be explained by the hydrophobic nature of Poloxamer 188
that covers the oil nanodroplets more efficiently and reduces drug release by retarding the degradation
of alginate through neutralizing the acidity produced as a result of its degradation [148].

The large size and low encapsulation efficiency of nanoparticles associated with low concentration
of surfactant can be explained by the production of unstable droplets and high propensity of coalescence,
as a results of irregular surface tension due to incomplete covering of the particle surfaces. On the
other hand, high levels of surfactant lead to similar effects as above in addition to higher polydispersity
index. This can be advocated by higher interaction tendency between polymers or hydrophilic chains
of different particles [150,151]. In addition, reduced encapsulation efficiency upon increasing the
amount of surfactant was also observed, it may be attributed to the reduction in the spaces within
polymeric chains (as a result of generating reverse micelles inside it) as well as losing the entrapped
drug during preparation as a function of low surface tension of droplets. Table 4 represents recent
examples of the effect of surfactant on the nanoparticle’s attributes [141].
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Table 4. The influence of surfactant type/concentration on alginate nanoparticles.

Surfactant Surfactant
Concentration

Method of Nanoparticle
Preparation Drug Loaded Mean Particle

Size (nm)
Polydispersity

Index (%)
Encapsulation
Efficiency (%) Reference

Tween 20
0.20% v/v

Emulsification/external
gelation Doxorubicin

102.4 0.25 87.2
[148]0.30% v/v 39.2 0.19 92.2

0.40% v/v 93.5 0.26 85.4

Span 60
co-surfactant

0% w/v 51.8 0.23 93.5
[148]0.15% w/v 42.3 0.26 84.6

0.30% w/v 95.1 0.24 76.2

Poloxamer 188
co-surfactant

0% w/v 51.8 0.23 93.5
[148]0.15% w/v 35.6 0.29 92.1

0.30% w/v 48.4 0.30 90.8

Poloxamer 407

0.10% w/v

Emulsification/external
gelation complexation Sacha inchi oil

900

-

Decrease 0.1 to
0.3% w/v

Increase 0.5 to 1%
w/v

[149]
0.20% w/v 1050
0.30% w/v 1000
0.50% w/v 700

1% w/v 800

Polysorbate 80
10% v/v

Ionotropic gelation Curcumin Increase -
92

[147]20% v/v 94
40% v/v 91

Tween 80
0% w/v

Ionic gelation Rifampicin
Ascorbic Acid

450
- - [150]0.20% w/v 250

0.40% w/v 700
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7.3. The Influence of CaCl2 Concentration

Mokhtari et al., evaluated the effect of CaCl2 concentration on the size and encapsulation efficiency
of peppermint phenolic extract-loaded nanospheres prepared by means of emulsification/internal
gelation. The results reported a decrease in the mean particle size and enhancement of encapsulation
efficiency as a function of increasing the molarity of CaCl2 [141]. For the development of metronidazole
loaded chitosan-alginate nanoparticles, Sabbagh et al., applied a full factorial design to achieve the
optimum concentration of CaCl2 and other factors related to ionotropic pre-gelation process. The study
reported that high concentration of CaCl2 led to formation of smaller particle size and improved
loading efficiency as well as reduced zeta potential [152]. Similar findings were also observed by
Ahdyani et al., in which timolol maleate-loaded chitosan-alginate nanoparticles were prepared via
ionic gelation technique. The results indicated reduction in particle size when CaCl2 concentration
was increased from 0.05% w/v to 0.25% w/v (Table 5) [144].

Table 5. The influence of CaCl2 concentration on alginate nanoparticles.

CaCl2
Concentration

(% w/v)
Preparation Method Drug Particle

Size (nm)
Polydispersity

Index

Zeta
Potential

(mV)

Encapsulation
Efficiency (%) Reference

0.05 Emulsification/
internal gelation

Vegetable Oils 361 - - 5.10 [141]
0.15 140 6.66

0.05 Ionic gelation/
complexation

Timolol
Maleate

473 0.37 - 33.71 [144]
0.25 200 0.27 35.23

3.0 Ionotropic
pre-gelation/
complexation

Metronidazole Decrease - Less
negative

- [152]
6.0

0.5 Ionotropic gelation/
complexation Insulin Increase Increase - - [146]

3.0

The crosslinking process has a significant impact on the physiochemical properties of alginate
hydrogel, in which the carboxylic groups of alginate backbone interact preferentially with calcium ions
to form a stable three-dimensional network [146,153]. The higher cross-linking concentration induces
shorter polymer chain and more network density of gel matrix, resulting in smaller size and size
distribution as well as improved drug release extent of alginate particles [154]. Besides, the decrease in
calcium cationic ions improves zeta potential of particle surface to be more negative, conferring better
stability, drug loss retardation, and high encapsulation efficiency [80,155].

7.4. The Influence of Crosslinking Time

The effect of varying crosslinking times on the properties of bovine serum albumin-loaded alginate
nanospheres, prepared via emulsification/external gelation method was assessed [139]. The results
demonstrated that prolonging gelation time from 1 min to 10 min led to a slight reduction of the
particle size and initial burst release profiles, while encapsulation efficiency was improved (43 ± 7.50%
to 51 ± 8.09%), however, further lengthening of the processing time exhibited a counteractive effect.
This can be attributed to the completion of alginate gelation within 10 min, whereas a shorter stirring
time was insufficient [156,157]. On the other hand, longer crosslinking time resulted in diffusing
more Ca2+ ions into alginate nanospheres that led to an increase in viscosity of the alginate phase,
increased porosity, more junction zones and, hence a leakage of drug molecules from the alginate
droplets to the medium [158,159].The effect of the complexation time was examined at 90 min, 120 min,
and 180 min with respect to the particle size and entrapment efficiency to produce streptomycin-loaded
alginate-chitosan nanoparticles via ionotropic complexation method. It was found that the lowest
particles size (374 nm) and the highest encapsulation efficiency (93.32%) were achieved at complexation
duration of 90 min [160]. However, the effect of complexation time on the encapsulation efficiency
of trans-cinnamaldehyde nanoparticles prepared by combination of ionic gelation and complexation
techniques, according to Loquercio study, was negated, while the mean particle size (294.78 nm) was
reducible by increasing the crosslinking duration from 45 min to 90 min [20].
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Another study was conducted to evaluate the particle size of insulin nanoparticles synthesized
via emulsification/internal gelation. Similar trend of results was observed where the reduction of
particle size (442 nm to 317 nm) was enabled by applying ultrasonication for 15 min, after which
the size started to expand [161]. To enable a marked reduction of particle size, it was envisaged that
ultrasound sonication brought about emulsion droplet breakdown by means of cavitation phenomena,
yet lengthening this process time rendered the coalescence of emulsion droplets as a result of elevating
the medium temperature and hence larger particle size [162].

The short stirring duration may not be adequate to generate intensive electrolyte interactions that
compact the polymer chains on the nanoparticles surface [163]. This may lead to the production of larger
particles with exposed pores that could result in the loss of the encapsulant during preparation [18,164].
On the other hand, longer stirring time might cause aggregation of polymer molecules on the surface
of nanoparticles and reduction of free spaces within alginate matrix [157].

7.5. The Influence of Stirring Rate

J. Emami et al., have evaluated the effect of stirring rate from 500 rpm to 2000 rpm on the mean
particle size, encapsulation efficiency and drug release profiles of glipizide-loaded alginate-chitosan
nanoparticles using ionotropic controlled gelation technique. The results showed a negative influence
on average particles size and encapsulation efficiency of alginate nanoparticles, while drug release
was remarkably prolonged by increasing the stirring rate [165]. Similar findings were reported by
other researchers in which the nanoparticle diameter decreased from 627 nm to 236 nm as a function of
intensifying stirring rate from 500 rpm to 1000 rpm [166].

In another study, Samprasit et al., have prepared mangostin-loaded chitosan-alginate nanoparticles
via ionotropic gelation method. It was found that an increase of stirring speed from 1000 rpm to 1400
rpm has resulted in a significant decrease in nanoparticle mean size [167]. Mohamed and Laraba-Djebari
have also prepared calcium alginate nanoparticles as vaccine delivery by means of ionic gelation method.
The concentration of alginate, CaCl2 and the time of homogenization remained constant, while the
homogenization rate varied from 500 to 1500 rpm. The results indicated that higher homogenization
extent conferred a significant decrease in the size of the nanoparticles from <1000 to 85–300 nm [168].

From the previous studies, it can be concluded that stirring speed impacted the particle size
significantly. This phenomenon can be evidently observed by transfer of mechanical energy of different
stirring rates, in which the breaking energy is increased upon rising the stirring speed, resulting in
smaller particles size [169,170]. The variability in the drug release profiles can be indicated by the
variance in the particle size [171,172]. Smaller particles have a faster drug release tendency due to their
large surface-to-volume area, as well as shorter diffusion pathways that transfer the payload to the
outer dissolution medium [148].

7.6. The Influence of pH

In general, the complex of anionic and cationic ions occurs based on the electrostatic interactions
between charged molecules [173]. The strength of the polyelectrolyte complex is influenced by the pH value
of the solution [174]. In order to find the optimum pH value that offers the highest number of ionized or
protonated groups required for interaction, the pH range should be investigated [175]. The pKa value of
alginate is between 3.4 and 4.4 (depending on its source). At pH > pKa, the carboxylate groups of alginates
are ionized (Alg-COO−) and electrostatically linked to calcium ions and cationic polymers [92]. Furthermore,
the negatively charged carboxylate groups are predominant at weak acid medium around pH = 5 [85].
While, amino groups (NH2) of chitosan are protonated (NH3

+) at pH below its pKa (6.5), it allows chitosan to
coacervate with anionic polymers such as alginate [176]. As shown in Table 6, alginate-chitosan nanoparticles
with small size and high encapsulation efficiency were produced at halfway between pKa of these species
(pH ~ 4.8). Besides, intensifying of electrostatic interactions is represented by zeta potential values, in which
high negative values indicate an absence of free cationic groups on the surface of nanoparticles, that correlated
to high encapsulation efficiency and drug loading propensity [161].
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Table 6. The influence of pH on the prepared alginate nanoparticles.

Drug Preparation
Method Formulation Composition pH Particle Size

(nm)
Encapsulation
Efficiency (%)

Zeta Potential
(mV) Reference

Crocin Ionic gelation Alginate 0.025% w/v
Chitosan 0.04% w/v

5.16
4.74

341
268

30.7
33.1 - [133]

Insulin Ionotropic
pre-gelation

Alginate
Chitosan

Cationic β-cyclodextrin
4.90 150.82 93.2 - [146]

Blank/ε-polylysine Ionic gelation Alginate 0.1% w/v
Chitosan 0.1% w/v 5.14 276.38 54.18 −33.7 [90]

Blank/doxorubicin Ionic gelation Alginate 0.3% w/v
Chitosan 0.075% w/v 5.30 352 90 −32 [89]

Curcum Layer-by-layer Chitosan layer 200 mL
Alginate layer 150 mL

3.0
5.0
7.0

- -
+1
−30
−27

[92]

Curcumin diethyl
diglutarate

o/w Emulsification
and ionotropic

gelation

Alginate 0.6 mg/mL/pH = 4.9
Chitosan/pH = 4.6

Pluronic®F-127 (surfactant)
- 215 85 −24.1 [177]
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7.7. The Influence of Alginate: Chitosan Mass Ratio

Table 7 represents recent examples of nanoparticles prepared from alginate/chitosan blends via
different approaches. It can be evidently noticed that higher amounts of chitosan produce larger
particles as well as lower encapsulation efficiency. This can be explained by the higher affinity of
amino groups of chitosan to M residues than G residues of alginate [133,163,178]. Hence, reducing the
alginate:chitosan ratio may lead to a competition between amino groups and cationic Ca2+ ions on the G
block binding sites after saturation of the binding sites of M residues of alginate. This may bring about
particles aggregation which could have a negative impact on the encapsulation efficiency and loading
capacity, as well as an increase in particles size and zeta potential. On the other hand, decreasing the
alginate:chitosan ratio can minimize the electrostatic attraction between them, suppresses encapsulation
ability and drug release control as well as increase the particle size [133,179].

Table 7. Influence of alginate:chitosan (w/w) mass ratio on alginate nanoparticle.

Drug Preparation Method Mass
Ratio

Particle Size
(nm)

Encapsulation
Efficiency (%)

Zeta
Potential

(mV)
Reference

Nisin
Ionic gelation

8:2
40 15.9 −45.6 [145]

complexation 472 15.1 −29.8

Curcumin diethyl
disuccinate

Emulsification
ionotropic gelation

1:0.05 279 ± 71 38.7 ± 2.8 −27.8 ± 0.3 [180]
1:0.15 434 ± 17 17.1 ± 2.3 −19.8 ± 1.4

Insulin Alginate/chitosan core
shell nanoformation

3:1
-

63.0
- [91]3:2 71.0

3:3 77.0

lovastatin Ionic gelation
6:3 900 ± 101

- - [181]6.5:3 86 ± 3.7
7:3 220 ± 17.5

- Electrospray 11:1 112 ± 35 0.42 ± 0.06 - [115]
7:1 259 ± 68 0.34 ± 0.12

8. Comparison of Alginate Nanoparticles’ Synthesis Methods

Hydrophobic and hydrophilic molecules such as anti-cancer drugs (doxorubicin [89], crocin [86],
curcumin, resveratrol [88], exemestane [87]) were successfully loaded into alginate nanoparticles via
complexation method. Emulsification/gelation method on the other hand, is preferable to encapsulate
hydrophobic substances due to the presence of two phases. This method enables synthesis of relatively
small size nanoparticles as low as 39.2 nm [148]. In addition, nozzle-based methods such as spray
drying [106], electrospray [182] and electrospinning [183] are able to produce nanoparticles of reduced
polydispersity index and improved encapsulation efficiency due to the fact of single-step method
where drug loss is minimized. Table 8 summarizes the characterization and formulation/processing
factors that can be modulated to obtain an optimal formulation of alginate nanoparticles for specific
drug delivery system.
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Table 8. Summary of characterization and formulation/processing factors that influence the formation
and properties of alginate nanoparticles.

Preparation Method Nanoparticles
Size Range (nm)

Polydispersity
Index

Encapsulation
Efficiency (%)

Formulation and
Processing Factors Reference

Complexation 20 ± 6 nm to
372.05 nm 0.2 to 0.476 38.16% to 98.0%

Alginate concentration
CaCl2 concentration

pH value
Alginate: chitosan mass

ratio

[85–87,89,90]

Emulsification/gelation 39.2 nm to 407.67
± 19.18 nm

0.204 to 0.42 ±
0.15

81.70 ± 6.64%
to 92.2%

Alginate concentration
Type/concentration of
surfactant/cosurfactant

CaCl2 concentration
Stirring time

[69,70,77,148]

Spray dryer 350 nm to 670 nm 0.54 to 0.74 44.4% to 80%

Alginate concentration
Air flow rate

Solution feed rate
Inlet temperature

Outlet temperature
Nozzle spray mesh size

[41,101,102]

Electrospray 112.1 nm to 228
nm 0.17 to 0.43 ~99%

Alginate concentration
CaCl2 concentration

Nozzle size
Flow rate

Distance between needle
tip and collector
Applied voltage

[46,115]

Electrospinning 62 nm to 300 nm - -

Alginate concentration
Nozzle size
Flow rate
Distance

Applied voltage

[126,127]

9. Conclusions

Alginate possesses great biocompatibility and approved as food additive by the US-FDA, thus it
is a preferred candidate among pharmaceutical excipients for designing of advanced drug delivery
system for oral delivery. The high interest of the scientific community in alginate synchronized with
the revolution in therapeutics-driven by nanomedicine. The present spotlight review highlighted the
most recent studies of alginate as a platform to develop nanoparticles intended for oral administration.
The most elegant attributes are mucoadhesive and mucopenetration that promote the passage of
payloads through the gastrointestinal epithelium. This could be availed to improve local and
systemic delivery, enhance oral bioavailability, and control drug release. Even the research of alginate
nanoparticles is less profuse and has been limited to a few cargo substances compared to microparticles,
and various techniques have been adopted to design different types of nanocarriers. The selection of
the polymers and formulation technique mainly relies on the pharmaceutical excipients and application
goal, such as improving payload delivery and enhancing sustained release and site-targeting. Generally,
emulsification/gelation is a low-cost technique for producing small particles in large quantity, involving
preparation of alginate-in-oil (w/o), followed by gelation process. Polyelectrolyte complexation method
on the other hand, is the simplest and most common technique to prepare alginate nanoparticles, where
oppositely charged polyelectrolyte complex takes place. Moreover, layer-by-layer technique mainly
used in drug targeting delivery and controlled drug release systems. In addition, nozzle-associated
methods are based on extruding the polymer solution from the nozzle tip, including nano-spray
dryer, electrospray and electrospinning. Careful selection of recipe and processing parameters is
essential to formulate nanocarrier with tuned attributes. Additionally, future perspectives in polymeric
nanoparticles should concentrate on studies of employing new and most performing techniques to
develop advanced delivery systems, thereby expanding the applications of polymeric nanostructure in
pharmaceutical field. To conclude, alginate endures a great potential and its extensive implementation
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in the advancement of innovative nanocarrier delivery systems with translation possibility is a matter
of time.
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