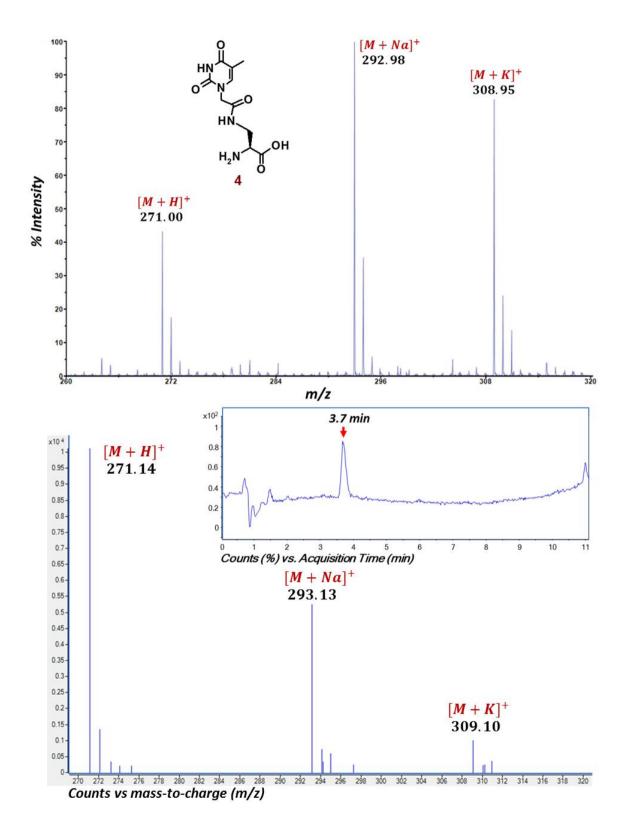
Supporting Information of the manuscript

Synthesis, antiproliferative activity and DNA binding studies of nucleoamino acid-containing Pt(II) complexes


Claudia Riccardi,^{a§} Domenica Capasso,^{b§} Angela Coppola,^a Chiara Platella,^a Daniela Montesarchio,^a Sonia Di Gaetano,^c Giovanni N. Roviello,^c Domenica Musumeci^{a,c,*}

^a Department of Chemical Sciences, University of Napoli Federico II, 80126, Napoli, Italy;
^b CESTEV, University of Naples Federico II, 80145 Naples, Italy;
^c CNR, Institute of Biostructure and Bioimaging, 80134 Napoli, Italy

*Correspondence to:

Domenica Musumeci, *Department of Chemical Sciences*, *University of Napoli Federico II*, *Via Cintia*, *21*, *I-80126 Napoli*, *Italy* E-mail address: <u>domenica.musumeci@unina.it</u> Phone: +39-081-674143;

§ These authors contributed equally to this work

Figure S1: DAP(T)-OH MS characterization. MALDI-TOF mass spectrum of **4** using α -cyano-4-hydroxycinnamic acid (CHCA) as matrix (up); ESI mass spectrum from LC-ESI-MS analysis of **4** dissolved in H₂O/CH₃CN (9:1, v/v), injected on a ZORBAX C18 column (1.8 µm, 50 x 4.6 mm) and eluted as follows: 5 min isocratic elution with 10% CH₃CN in H₂O (0.05 % TFA), then gradient to 95 % CH₃CN in 10 min. TIC chromatogram of **4** is reported in the inset (*t*_R = 3.7 min) (bottom).

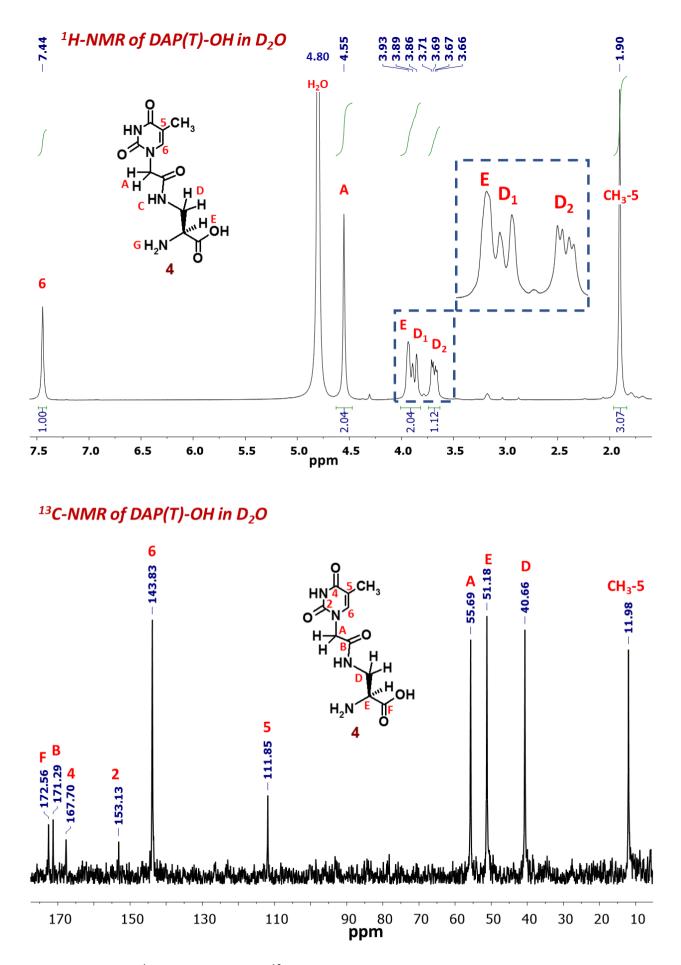


Figure S2: ¹H- (400 MHz) and ¹³C-NMR (100 MHz) spectra of DAP(T)-OH in D₂O.

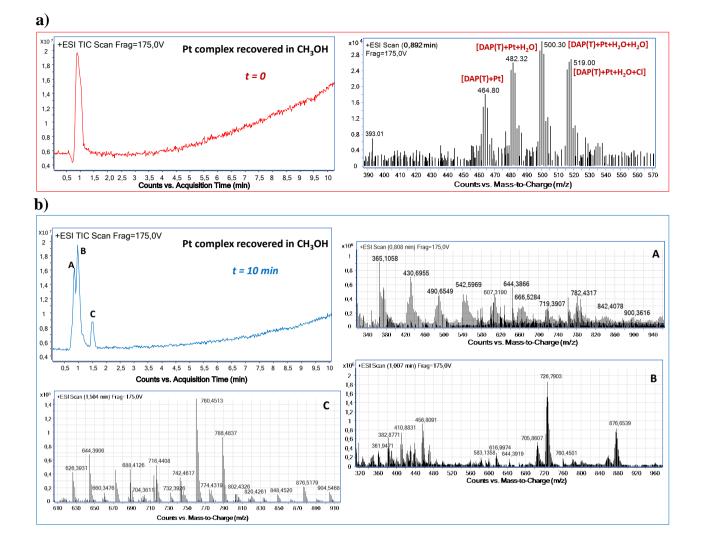
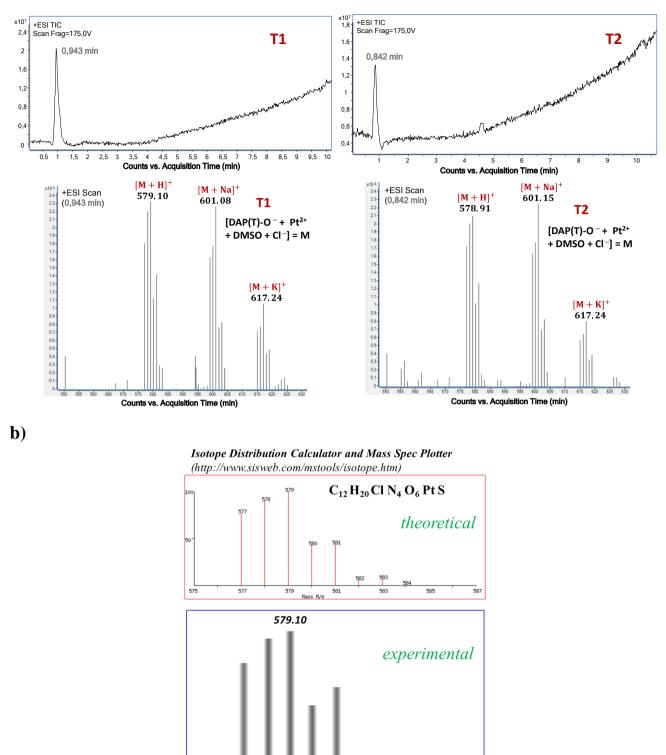




Figure S3: ¹H- (500 MHz) and ¹³C-NMR (125 MHz) spectra of DAP(T)-OH in DMSO-d₆.

Figure S4: a),b) LC-ESI-MS analysis of the methanol-recovered Pt complex, dissolved in H₂O/CH₃CN (9:1, v/v), injected on a ZORBAX C18 column (1.8 μ m, 50 x 4.6 mm) and eluted as follows: 3 min isocratic elution with 5 % CH₃CN in H₂O, then gradient to 50 % CH₃CN in 10 min. **a)** Pt complex immediately injected (t = 0) after its dissolution (single peak at $t_R = 0.89$ min); **b)** Pt complex injected 10 min after its dissolution (three peaks at $t_R = 0.81$, 1.01, 1.50 min).

Figure S5: a) LC-ESI-MS analysis of **T1** (left) and **T2** (right) complexes dissolved in H₂O/CH₃CN (9:1, v/v), injected on a ZORBAX C18 column (1.8 μ m, 50 x 4.6 mm) and eluted as follows: 3 min isocratic elution with 10 % CH₃CN in H₂O, then gradient to 95 % CH₃CN in 10 min ($t_R = 0.94$ and 0.84 min, for **T1** and **T2**, respectively); **b)** Comparison between theoretical and experimental mass isotope distribution of the peak at 579 m/z corresponding to the [M-H]⁺ species of the complex **T1**.

a)

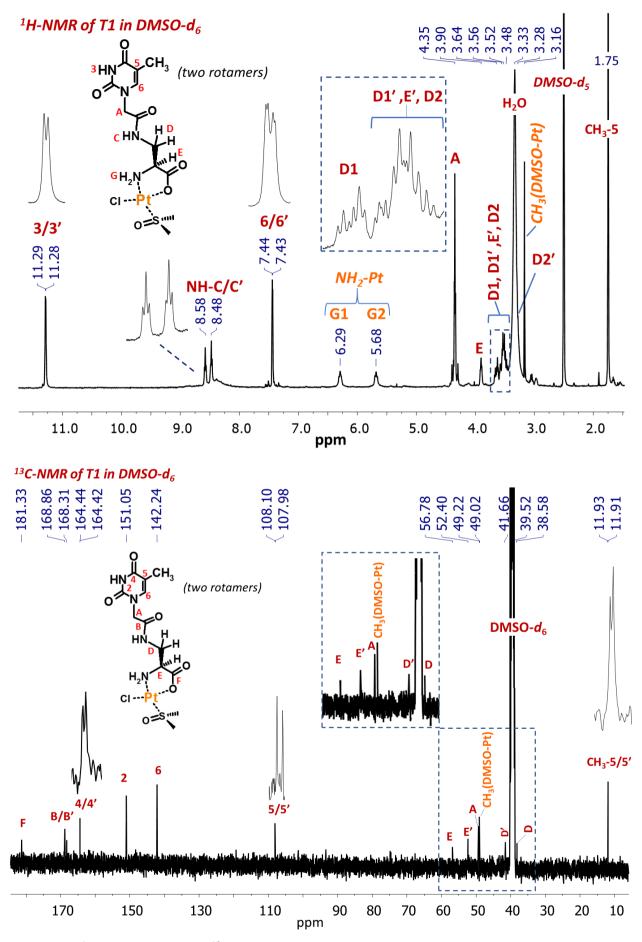


Figure S6: ¹H- (400 MHz) and ¹³C-NMR (125 MHz) spectra of T1 in DMSO-d₆. Enlargements of selected areas are also reported.

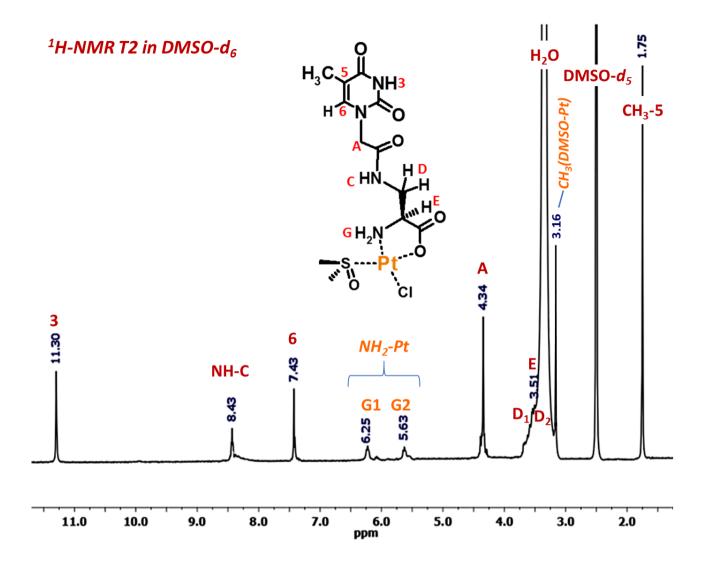


Figure S7:¹H-NMR spectrum (400 MHz) of T2 in DMSO-d₆.

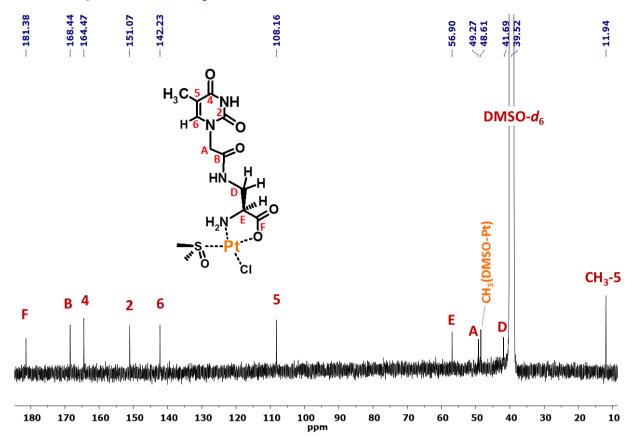


Figure S8: ¹³C-NMR (100 MHz) spectrum of T2 in DMSO-d₆.

Table S1: Direct ${}^{1}H \rightarrow {}^{13}C$ correlations based on the observed cross peaks in the bidimensional HSQC spectra of DAP(T)-OH, **T1** and **T2**.

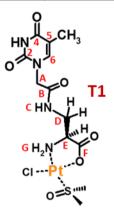
HSQC DA] n	
7.42 (H-6)→	142.31 (C-6)	
4.32 (A) →	49.16 (A)	
3.55 (D1),	39.62 (D)	H-A_O
3.33 (D2) →		H B H
3.30 (E) →	54.04 (E)	
1.74 (CH₃-5)	11.87 (C-5)] [ml
		GH_N ^E

	4	
HSQC	Г2	
7.43 (H-6) →	142.23 (C-6)	
4.34 (A) →	49.27 (A)	
3.55 (D1),	41 69 (D)	
3.29 (D2) →	41.69 (D)	
3.51 (E) →	56.90 (E)	
1.75 (CH₃-5) →	11.94 (C-5)	
3.16 (CH₃-DMSO)→	48.61	
	_	

он

	H ₃ C 5 NH
0 ⁻² N ² 6 A B T1	
	GH ₂ N E F
0=\$	SPt

HSQC T1			
7.44 (H-6)/	142 24 (C 6)		
7.43 (H-6′) →	142.24 (C-6)		
4.35 (A) →	49.22 (A)		
3.64 (D1),	20 E0 (D)		
3.49 (D2) →	38.58 (D)		
3.56 (D1'),	41.66(D')		
3.28 (D2′) →	41.00(D)		
3.90 (E) →	52.40 (E)		
3.52 (E′) →	56.78 (E')		
	11.93 (C-5)/		
1.75 (CH₃-5) →	11.91 (C-5')		
3.16 (CH₃-DMSO)→	49.02		


Table S2: ${}^{1}\text{H} \rightarrow {}^{1}\text{H}$ correlations based on the observed cross peaks in the bidimensional COSY spectra of DAP(T)-OH, **T1** and **T2**.

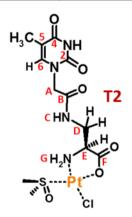

	200	SY DAP(T)-OH			o
8.39 (C) →	3.55 (D1)	3.33 (D2)	1		
7.42 (H-6)→	1.74 (CH ₃ -5)	5.55 (52)			
3.55 (D1) →	8.39 (C)	3.33 (D2)	3.30 (E)		0 N 6
3.30 (E) →	3.55 (D1)	3.33 (D2)			
3.33 (D2)→	8.39 (C)	3.55 (D1)	3.30 (E)		HN.
1.74 (CH ₃ -5) →	7.42 (H-6)				C D
		COSY T1			GH ₂ N ^E
8.58 (C) →	3.64 (D1)	3.49 (D2)			4
8.48 (C') →	3.56 (D1')	3.28 (D2')] °
7.44 (H-6)/	1.75/01/5				
7.43 (H-6′)→	1.75 (CH ₃ -5)			
6.29 (G1) →	5.68 (G2)	3.90 (E)	3.52 (E')		
5.68 (G2) →	6.29 (G1)	3.90 (E)	3.52 (E')		
3.90 (E) →	6.29 (G1)	5.68 (G2)	3.64 (D1)	3.49 (D2)] <mark>с</mark> ни́ _
3.64 (D1) →	8.58 (NH-C) 3.90 (E)	3.49 (D2)		D
3.56(D1′) →	8.48 (C')	3.52 (E')	3.28 (D2')		GH ₂ N
3.52 (E') →	6.29 (G1)	5.68 (G2)	3.56 (D1')	3.28 (D2')	
3.49 (D2)→	8.58 (C)	3.90 (E)	3.64 (D1)		ci Pt
3.28 (D2′)→	8.48 (C')	3.56 (D1')) 3.52 (E')		0=
1.75 (CH₃-5) →	7.43/				
1.75 (CH ₃ -5) 7	7.44 (H-6)				Q
					H₃C <mark>5</mark> 4 _{NI}
		COSY T2			│ _⊣ ᡛ _ᢂ ᢤ
8.43 (C) →	3.55 (D1)	3.29 (D2)			
7.43 (H-6)→	1.75 (CH₃-5)				
6.25 (G1) →	5.63 (G2)	3.51 (E)			C HN
5.63 (G2) →	6.25 (G1)	3.51 (E)			l i
3.55 (D1) →	8.43 (C)	3.51 (E)	3.29 (D2)		
3.51 (E) →	6.25 (G1)	5.63 (G2)	3.55 (D1)	3.29 (D2)	GH ₂ N
3.29 (D2)→	8.43 (C)	3.55 (D1)	3.51 (E)		-sp
1.75 (CH₃-5) →	7.43 (H-6)				0

Table S3: Long range ${}^{1}\text{H} \rightarrow {}^{13}\text{C}$ correlations based on the observed cross peaks in the bidimensional HMBC spectra of **T1** and **T2**.

HMBC T1					
11.29 (H-3)/	108.10 (C-5)/				
11.28 (H-3')	107.98 (C-5')				
7.44 (H-6)	164.44 (C-4)/	151 OF (C 2)	108.10 (C-5)/	40.22 (A)	
7.43 (H-6′) →	164.42 (C-4')	151.05 (C-2)	107.98 (C-5')	49.22 (A)	
4.35 (A) →	168.85 (B)/	151.05 (C-2)	142.24 (C-6)		
	168.31 (B')		142.24 (C-0)		
3.49 (D2) →	168.85 (B)	52.40 (E)			
3.28 (D2′) →	168.31 (B')	56.78 (E')			
	164.44 (C-4')/	142 24/6 6	108.10 (C-5)/		
1.75 (CH₃-5) →	164.42 (C-4)	142.24 (C-6)	107.98 (C-5')		

HMBC T2				
11.30 (H-3)	108.16 (C-5)			
7.43 (H-6) →	164.47 (C-4)	151.07 (C-2)	108.16 (C-5)	49.27 (A)
4.34 (A) →	168.44 (B)	151.07 (C-2)	142.23 (C-6)	
3.29 (D2) →	168.44 (B)	56.90 (E)		
1.75 (CH₃-5) →	164.47 (C-4)	142.23 (C-6)	108.16 (C-5)	

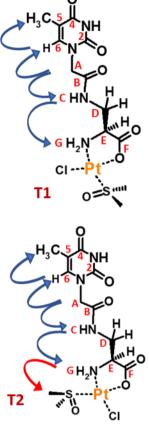
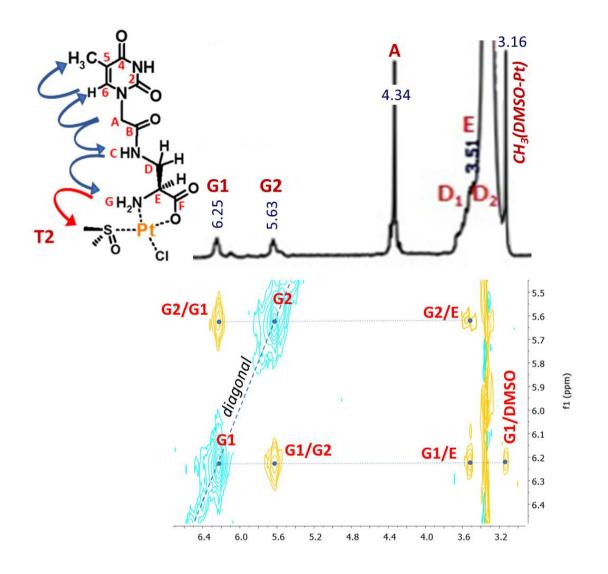
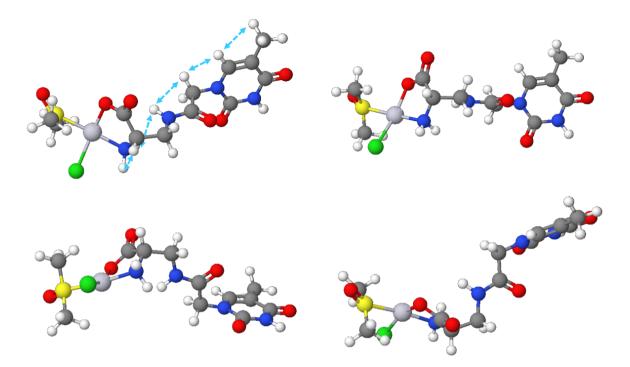
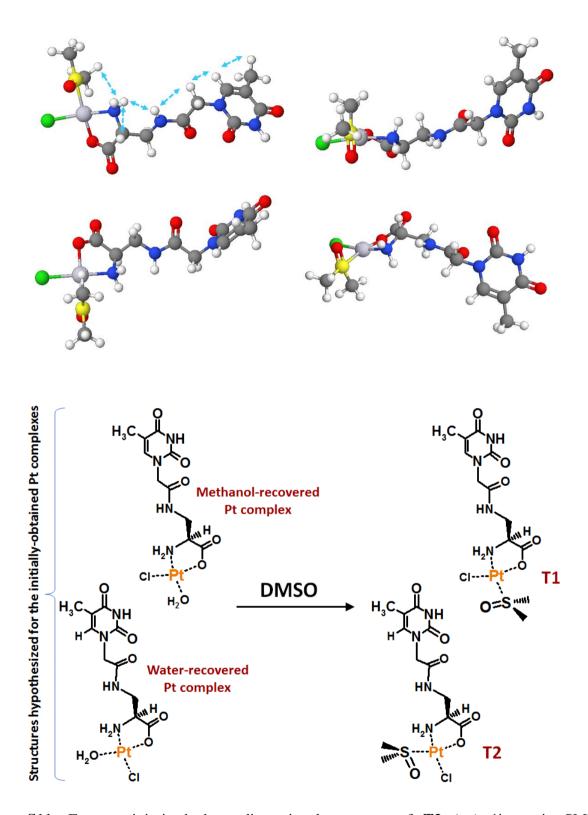
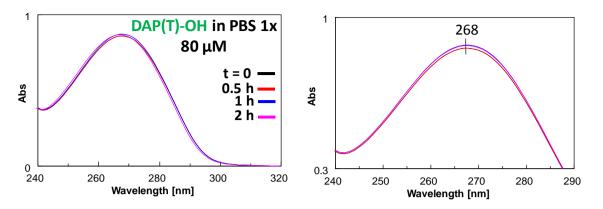


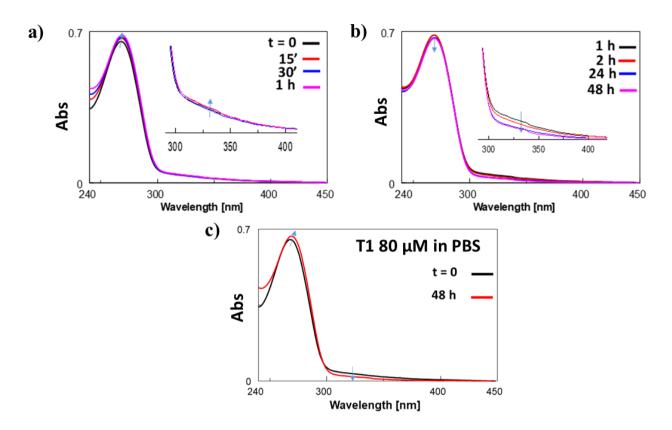
Table S4: ¹H \rightarrow ¹H correlations based on the observed cross peaks in the bidimensional NOESY spectra of **T1** and **T2** (the red arrow indicates the correlation useful to discriminate the relative position of the DMSO and chloride ligands in **T2**).

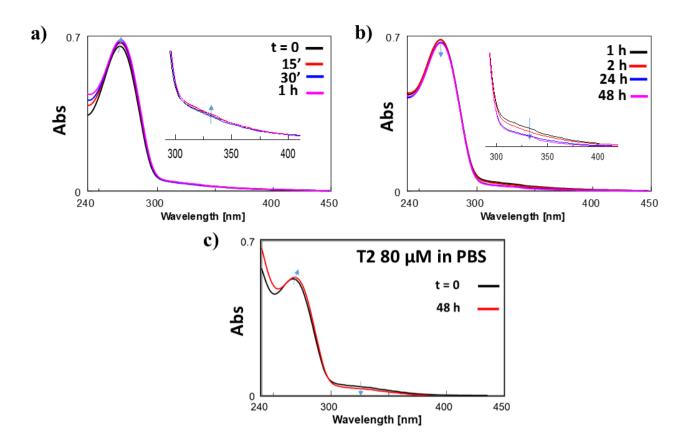
	N	OESY T1]
8.58 (C)/	6.29 (G1),	4.25 (A)			1
8.48 (C′) →	5.68 (G2)	4.35 (A)			
7.44 (H-6)/ 7.43 (H-6')→	4.35 (A)	1.75 (CH ₃ -5)			
6.29 (G1) →	8.58 (C)/ 8.48 (C')	5.68 (G2)	3.52 (E')	3.90 (E)	1
5.68 (G2) →	8.58 (C)/ 8.48 (C')	6.29 (G1)	3.52 (E')	3.90 (E)	
4.35 (A)	7.44 (H-6)/ 7.43 (H-6')				
1.75 (CH₃-5) →	7.44 (H-6)/ 7.43 (H-6')				

	NOESY T2					
8.43 (C) →	6.25 (G1)	5.63 (G2)	4.34 (A)	3.55 (D1)		
7.43 (H-6)→	4.34 (A)	1.75 (CH ₃ -5)				
6.25 (G1) →	8.43 (C)	5.63 (G2)	3.51 (E)	3.16 (CH ₃ -DMSO)		
5.63 (G2) →	8.43 (C)	6.25 (G1)	3.51 (E)			
4.33 (A) →	8.43 (C)	7.44 (H-6)				
1.75 (CH₃-5) →	7.43 (H-6)					


Figure S9: Enlargement of the NOESY spectrum (400 MHz) of T2 in DMSO-d₆.


Figure S10: Energy-minimized three dimensional structure of **T1** {isomeric SMILES CC1C(=O)N([H])C(=O)N(CC(N([H])CC2C(=O)O[Pt+2](Cl)(S(=O)(C)C)N2([H])[H])=O)C=1}: 3D structure images (random low energy conformers) realized by MOLVIEW (<u>http://molview.org</u>). Light blue dashed arrows highlighted the spatial proximity of the corresponding protons, as also experimentally evidenced in the NOESY spectra (Table S4).


Figure S11: Energy-minimized three dimensional structure of **T2** (up) {isomeric SMILES CC1=CN(CC(=O)N(CC2N([H])([H])[Pt+2](Cl)(S(C)(C)=O)OC2=O)[H])C(=O)N([H])C1=O}: 3D structure images (random low energy conformers) realized by MOLVIEW (<u>http://molview.org</u>). Light blue dashed arrows highlighted the spatial proximity of the corresponding protons, as also experimentally evidenced in the NOESY spectra (see Table S4). Final structures of **T1** and **T2** and hypothesized ones for their initially-formed precursors, the methanol- and water-recovered Pt complexes (bottom).

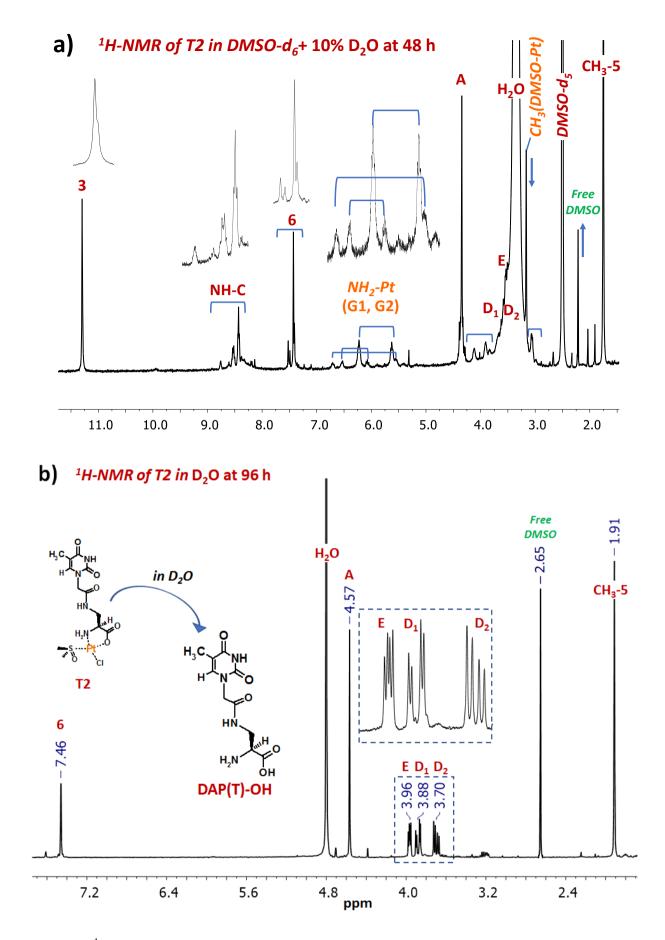

Figure S12: UV-vis spectra of DAP(T)-OH in PBS monitored over time (for clarity, only the overlapped spectra of the first 2 h monitoring were shown).

Figure S13: a,b) UV-vis spectra of **T1** in PBS at 80 μM concentration recorded over time, up to 48 h. c) Overlapped UV-vis spectra of **T1** immediately after its dissolution in PBS and after 48 h (black and red lines, respectively).

Figure S14: **a,b**) UV-vis spectra of **T2** in PBS at 80 μM concentration recorded over time, up to 48 h. **c**) Overlapped UV-vis spectra of **T2** immediately after its dissolution in PBS and after 48 h (black and red lines, respectively).

Figure S15:¹H-NMR spectra (400 MHz) of **T2 a**) in DMSO-d₆, 48 h after the addition of 10% D₂O and **b**) 96 h after its dissolution in D₂O.

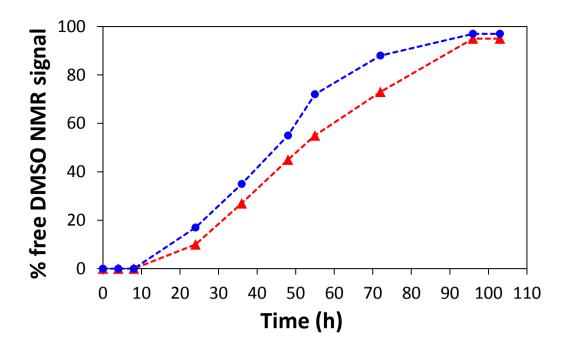
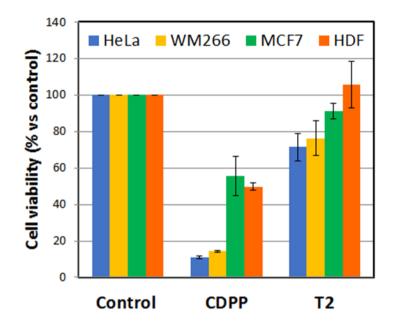
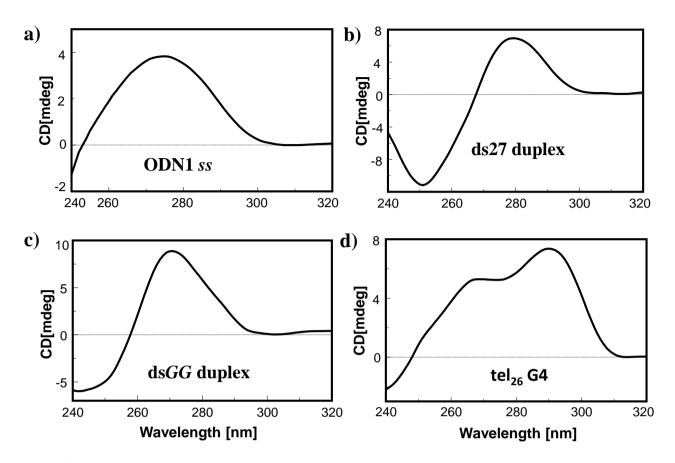
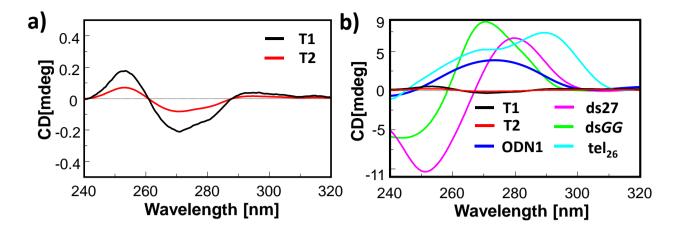
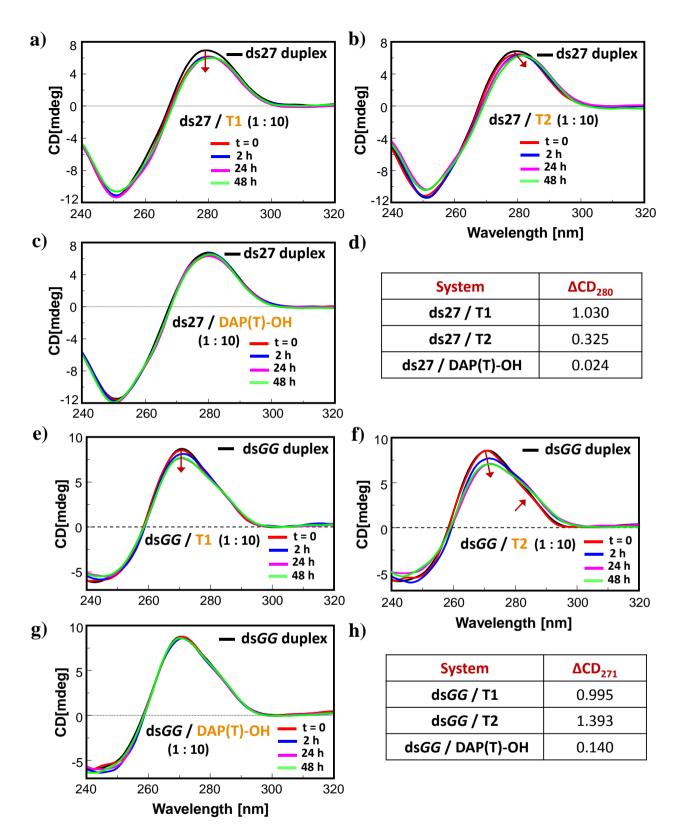
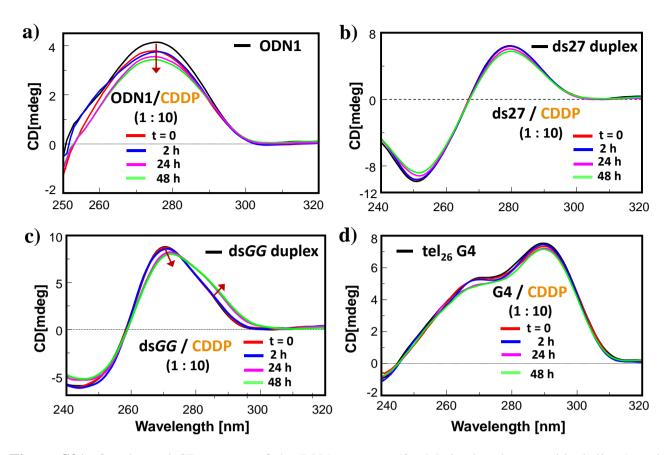


Figure S16: ¹H-NMR-time course experiments on T1 and T2 dissolved in D_2O . The % of the free DMSO NMR signal, compared to that of CH₃-5, was reported as a function of the time (h) after platinum complexes dissolution.


Figure S17: Comparison of HeLa, WM266, MCF-7 and HDF cell viability incubated with CDDP or T2 at 25 μ M concentration at 37 °C for 48 h. Cell viability was measured by using the MTT assay. The results are presented as the percentage of living cells with respect to the control (vehicle-treated cells) and are expressed as means \pm SE of at least three independent experiments performed in triplicate.


Figure S18: CD spectra of (**a**) the single strand ODN1, (**b**) the hairpin duplex ds27, (**c**) the hairpin duplex ds*GG*, and (**d**) the G-quadruplex tel₂₆. All the sequences were analysed at a 2 μ M concentration in 100 mM KCl, 7 mM Na₂HPO₄/NaH₂PO₄, pH = 7.2, 20 °C (optical path = 1 cm).

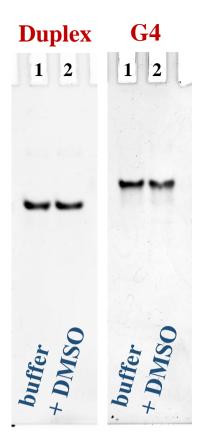

Figure S19: Overlapped CD spectra of **T1** and **T2** at 20 μ M concentration in 100 mM KCl, 7 mM Na₂HPO₄/NaH₂PO₄, pH = 7.2, at 20 °C, (**a**) alone or (**b**) in comparison with the indicated DNA systems, each at 2 μ M concentration (optical path = 1 cm).

Figure S20: Overlapped CD spectra of the hairpin duplexes ds27 (**a**-**c**) and ds*GG* (**e**-**g**), each at 2 μ M concentration, in the absence (black lines) and presence of **T1** (**a** and **e**), **T2** (**b** and **f**) and DAP(T)-OH (**c** and **g**) (20 μ M each) at different times (0, 2, 24, 48 h) after the addition of the target molecules. Differences in the CD signal at 280 (for ds27) and 271 (for ds*GG*) nm between the CD spectra of the duplex before and after 48 h incubation with each added compound (**d** and **h**) (optical path = 1 cm).

Figure S21: Overlapped CD spectra of the DNA systems (2 μ M) in the absence (black lines) and presence of CDDP (20 μ M) at different times (0, 2, 24, 48 h) after its addition: **a**) ODN1, **b**) hairpin duplex ds27, **c**) hairpin duplex ds*GG*, **d**) tel₂₆. The experiments were carried out in 100 mM KCl, 7 mM Na₂HPO₄/NaH₂PO₄, pH = 7.2, at 20 °C (optical path = 1 cm).

Figure S22: Representative 25 % polyacrylamide gel electrophoresis (PAGE) under native conditions relative to the *GG*-duplex (ds*GG*) and G-quadruplex DNA systems (2 μ M concentration), in only buffer (100 mM KCl, 7 mM Na₂HPO₄/NaH₂PO₄, pH = 7.2) (lanes 1), or incubated for 48 h with 5 % DMSO (lanes 2). Gel was run at 80 V, at r.t. for 3.3 h in TBE 1X buffer.

Abbreviations: CD (circular dichroism), COSY (correlation spectroscopy), DAP (2,3diaminopropanoic acid), DMSO (dimethyl sulfoxide), ESI (electrospray ionization), G4 (Gquadruplex), HMBC (heteronuclear multiple-bond correlation), HSQC (heteronuclear single quantum correlation), LC (liquid chromatography), MALDI (matrix-assisted laser desorption ionization), MS (mass spectrometry), NMR (nuclear magnetic resonance), NOESY (nuclear Overhauser effect spectroscopy), ODN (oligodeoxyribonucleotide), PBS (phosphate-buffered saline), ppm (parts per million), TFA (trifluoroacetic acid), TIC (total ion current), TOF (time of flight), t_R (retention time).