A Second Generation Mn-Porphyrin Dimer with a Twisted Linker as a Potential Blood Pool Agent for MRI: Tuning the Geometry and Binding with Serum Albumin

Supporting Information

Table of Contents

Fig. S.1. ¹ H-NMR of 1	2
Fig. S.2. ¹ H-NMR of <i>m</i> -P2	3
Fig. S.3. Mass spectrum of 1	4
Fig. S.4. Mass spectrum of <i>m</i> -P2	5
Fig. S.5. Mass spectrum of <i>m</i> -MnP2.	6
Fig. S.6. UV-Visible spectra of <i>m</i> -P2 and <i>m</i> -MnP2.	7
Fig. S.7. Molecular dynamics calculations for both MnP2 dimers	8
Fig. S.8. Mass spectrum of oversulfonated <i>m</i> -P2	9
Dissociation constant determination	10

Figure S1. ¹H-NMR of **1** acquired in CDCl₃ with 0.1% TMS. Residual solvent peaks are CHCl₃, CH₂Cl₂, grease, and water.

Figure S2. ¹H-NMR of *m*-P2 acquired in DMSO-*d*₆. Residual solvent peaks are DMSO and water.

Figure S3. Positive mode ESI-MS of 1.

Figure S4. Negative mode ESI-MS of *m*-P2.

Figure S5. Negative mode ESI-MS of *m*-MnP2.

Figure S6. UV-Visible spectra of *m*-P2 and *m*-MnP2 measured in 25 mM pH 7 HEPES buffer. λ_{max} of *m*-P2 = 422 nm, λ_{max} of *m*-MnP2 = 468 nm.

Figure S7. Molecular modeling of MnP2 (top) and two conformers of *m*-MnP2 (middle and bottom). The distance between two distal S-atoms are labeled. (35.197, 33.249 and 22.739 Å, respectively).

Fig. S8. Negative mode ESI-MS of oversulfonated *m*-P2 found m/z = 296.80 ([M]⁶⁻), calculated for $C_{88}H_{49}N_8O_{21}S_7^{6-}$ (m/z = 296.69).

Dissociation Constant Determination

The dissociation constant, K_d , was obtained using the GraphPad Prism/OriginLab Pro 9.0 software by fitting the experimental data to the following equations:

$$LR \stackrel{K_d}{\longleftrightarrow} L + R$$
[1]

$$LR = \frac{(x+L_0+K_d) - \sqrt{(x+L_0+K_d)^2 - 4x \times L_0}}{2}$$
[2]

$$\mathbf{L} = \mathbf{L}_0 - \mathbf{L}\mathbf{R}$$
 [3]

$$Y - Y_0 = M L R \times L R$$
^[4]

These equations are based on the assumption that the porphyrin, L, and the HSA, R, are bound to form a 1:1 LR complex. L_0 is the total concentration of porphyrin and x denotes the total concentration of HSA in the solution. The *M*LR is the molar absorbance of the LR complex. *Y* and Y_0 are the observed absorbance and the initial absorbance respectively.