A Second Generation Mn-Porphyrin Dimer with a Twisted Linker as a Potential Blood Pool Agent for MRI: Tuning the Geometry and Binding with Serum Albumin

Supporting Information

Table of Contents

Fig. S.1. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $1 \quad 2$
Fig. S.2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $m-\mathrm{P} 2 \quad 3$
Fig. S.3. Mass spectrum of $\mathbf{1} 4$
Fig. S.4. Mass spectrum of $m-\mathrm{P} 2 \quad 5$
Fig. S.5. Mass spectrum of m-MnP2. 6
Fig. S.6. UV-Visible spectra of $m-\mathrm{P} 2$ and $m-\mathrm{MnP2}$. 7
Fig. S.7. Molecular dynamics calculations for both MnP2 dimers 8
Fig. S.8. Mass spectrum of oversulfonated m-P2 9
Dissociation constant determination 10

Characterization

Figure S1. ${ }^{1} \mathrm{H}$-NMR of $\mathbf{1}$ acquired in CDCl_{3} with 0.1% TMS. Residual solvent peaks are $\mathrm{CHCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, grease, and water.

Figure S2. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of $m-\mathrm{P} 2$ acquired in DMSO- d_{6}. Residual solvent peaks are DMSO and water.

MS Spectrum

Figure S3. Positive mode ESI-MS of 1.

Figure S4. Negative mode ESI-MS of $m-\mathrm{P} 2$.

Figure S5. Negative mode ESI-MS of m-MnP2.

Figure S6. UV-Visible spectra of $m-\mathrm{P} 2$ and $m-\mathrm{MnP} 2$ measured in 25 mM pH 7 HEPES buffer. $\lambda_{\max }$ of m $\mathrm{P} 2=422 \mathrm{~nm}, \lambda_{\text {max }}$ of $m-\mathrm{MnP} 2=468 \mathrm{~nm}$.

Figure S7. Molecular modeling of MnP2 (top) and two conformers of $m-\mathrm{MnP2}$ (middle and bottom). The distance between two distal S-atoms are labeled. (35.197, 33.249 and $22.739 \AA$, respectively).

Fig. S8. Negative mode ESI-MS of oversulfonated $m-\mathrm{P} 2$ found $m / z=296.80\left([\mathrm{M}]^{6-}\right)$, calculated for $\mathrm{C}_{88} \mathrm{H}_{49} \mathrm{~N}_{8} \mathrm{O}_{21} \mathrm{~S}_{7}{ }^{6-}(\mathrm{m} / \mathrm{z}=296.69)$.

Dissociation Constant Determination

The dissociation constant, K_{d}, was obtained using the GraphPad Prism/OriginLab Pro 9.0 software by fitting the experimental data to the following equations:

$$
\begin{align*}
& \mathrm{LR} \stackrel{\boldsymbol{K}_{\boldsymbol{d}}}{\leftrightarrow} \mathrm{L}+\mathrm{R} \tag{1}\\
& \mathrm{LR}=\frac{\left(\boldsymbol{x}+\boldsymbol{L}_{\mathbf{0}}+\boldsymbol{K}_{\boldsymbol{d}}\right)-\sqrt{\left(\boldsymbol{x + L _ { 0 }}+\boldsymbol{K}_{d}\right)^{2}-\mathbf{4 x \times L _ { 0 }}}}{2} \tag{2}\\
& \mathrm{~L}=\mathrm{L}_{0}-\mathrm{LR} \tag{3}\\
& Y-Y_{0}=M \mathrm{LR} \times \mathrm{LR} \tag{4}
\end{align*}
$$

These equations are based on the assumption that the porphyrin, L, and the HSA, R, are bound to form a $1: 1 \mathrm{LR}$ complex. L_{0} is the total concentration of porphyrin and \boldsymbol{x} denotes the total concentration of HSA in the solution. The MLR is the molar absorbance of the LR complex. Y and Y_{0} are the observed absorbance and the initial absorbance respectively.

