Supplementary Materials

Supramolecular Complexes of β-Cyclodextrin with Clomipramine and Doxepin: Effect of the Ring Substituent and Component of Drugs on Their Inclusion Topologies and Structural Flexibilities

Thammarat Aree*

Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand * Correspondence: athammar@chula.ac.th; Tel.: +66-2-2187584; Fax +66-2-2187598

Supplementary materials available:

1. Literature survey

Table S1. Summary of the CD–TCA inclusion complexes characterized by various techniques.

2. Crystallographic data

Table S2. X-ray single crystal data collection and refinement statistics of 1 and 2.

Table S3. Selected geometrical parameters of two β -CD macrocycles of **1** and **2**, in comparison with those of β -CD–(–)-epicatechin and β -CD·12H₂O.

Table S4. Hydrogen bond parameters and $\pi \cdots \pi$ interactions in β -CD·CPM·HCl·9.6H₂O (1).

Table S5. Hydrogen bond parameters and $\pi \cdots \pi$ interactions in β -CD·DXP·HCl·0.7EtOH·11.3H₂O (2).

Table S6. Structural parameters of CPM, DXP, DPM, IPM, AMT and NRT in free HCl salt form and in complex with proteins.

3. Computational data

Figure S1. Inclusion complexes of (a) β -CD–CPM(Cl on C3), (b) β -CD–CPM(Cl on C7) with Cl inside and outside the β -CD cavity, and (c) β -CD–*E*/*Z*-DXP, derived from DFT complete-geometry optimization in the gas phase.

Table S7. Hydrogen bond parameters in β -CD–CPM (4 modes) and β -CD–DXP (2 modes) inclusion complexes from DFT full-geometry optimization.

References

1. Literature survey

Host	Guest	Ratio	Inclusio	on mode ^a	K_a, \mathbf{M}^{-1}	Ref. ^d
			Aromatic	Side chain	(Tech) ^b	
ß-CD	CPM	1.1	$\checkmark \Delta$	Side chain	9.42×10^3 (II)	[1]
	CPM	1.1	$\checkmark \Lambda$		$9.42 \times 10^{3} (U)$	[1]
nr-p-CD		1.1	• A		9.38×10 (U)	
α-CD	DXP	1:1		v	140 (FI)	[2]
α-CD	DXP	2:1	▼ A+B		$16.5 \times 10^{3} (U)$	[3]
				,	19.6×10^{3} (F)	
α-CD	DXP	1:1		~	ND (Tg)	[3]
α-CD	DXP	1:1		\checkmark	0.05×10^3 (I)	[4]
β-CD	DXP	1:1		\checkmark	13.21×10^3 (I)	[4]
β-CD	DXP	1:1	✓ A+B		ND (N)	[5]
β-CD	DXP	3:1	✓ A+B	\checkmark	ND (U, F)	[6]
β-CD	DXP	1:1	\checkmark		397 (U), 624 (F)	[6]
β-CD	E-DXP	1:1		\checkmark	36.0×10^3 (E)	[7]
β-CD	Z-DXP	1.1		\checkmark	22.7×10^{3} (E)	[7]
B-CD	DXP	1.1	$\checkmark \Delta$		ND(Tg)	[8]
B CD		2.1			14.7×10^3 (II)	[0]
p-CD	DAI	2.1	• ATD		$14.7 \times 10^{3} (\text{C})$	[5]
0.00		1.1			$10.2 \times 10^{\circ} (F)$	[0]
p-CD	DPM	1:1		v	2.04×10^{5} (C)	[9]
β-CD	DPM	2:1	✓ A+B		ND (F)	[10]
β-CD	DPM	1:1	√	,	8.92×10 ³ (U)	[11]
β-CD	DPM	1:1	\checkmark	\checkmark	42.2 (U), 32.0 (F)	[12]
β-CD	DPM	1:1	✓ A		ND (X)	[13]
β-CD	DPM	1:1	✓ A	\checkmark	ND (Tg)	[13]
α-CD	IPM	1:1		\checkmark	130 (FI)	[2]
α-CD	IPM	1:1		\checkmark	0.08×10^3 (I)	[4]
β-CD	IPM	1:1		\checkmark	8.70×10^3 (I)	[4]
β-CD	IPM	1.1		\checkmark	1.50×10^{3} (C)	[9]
HP-B-CD	IPM	1.1	ND °		0.82×10^{3} (C)	[14]
III-p-CD	11 101	1.1 1.17		1	0.02×10 (C)	[17]
8 CD	IDM	1.1	• / A /D	•		[15]
p-CD	IFIVI				MD(M, L)	[13]
0.00		2:15	• A+B			[17]
β-CD	IPM IPM	2:1	▼ A+B		ND (Igl)	[15]
β-CD	IPM	1:1	✓ A	1	ND (Tg)	[8]
β-CD	IPM	1:1		✓	16.7 (U), 808 (F)	[16]
β-CD	IPM	1:1	✓ A		ND (X)	[13]
β-CD	IPM	1:1	✓ A	✓	ND (Tg)	[13]
α-CD	NRT	1:1		\checkmark	70 (FI)	[2]
α-CD	NRT	1:1		\checkmark	0.09×10^3 (I)	[4]
β-CD	NRT	1:1		\checkmark	16.77×10^3 (I)	[4]
β-CD	NRT	1:1	\checkmark	\checkmark	235 (U), 211 (F)	[17]
β-CD	NRT	1:1	✓ A		ND (X)	[18]
β-CD	NRT	1.1		\checkmark	ND(Tgl)	[18]
g-CD	AMT	1.1		✓	113 (FI)	[10]
		1.1		, ,	0.06×10^{3} (I)	
		1.1		•	0.00×10 (1) 22.00 $\times10^3$ (1)	
				v	$25.90 \times 10^{\circ}$ (1) 2.10 × 10 ³ (C)	
p-CD			NID	×	$5.19 \times 10^{\circ}$ (C)	[9]
HP-β-CD	AMT		ND		1.03×10^{5} (C)	[14]
β-CD	AMT	1:1	✓ A		ND(X)	[19]
β-CD	AMT	1:1	✓ A		ND (X)	[18]
β-CD	NRT	1:1		✓	ND (Tgl)	[18]

Table S1. Summary of the CD–TCA inclusion complexes characterized by various techniques.

^a TCA moiety included in CD cavity: aromatic rings A, B or side chain.

^b Binding constant (K_a) at 298 K derived from different techniques, mostly in solution: flow injection (FI); fluorescence (F); UV-vis (U); ion-selective electrode (I); capillary electrophoresis (E); light scattering (L); nuclear magnetic resonance (N); theoretical calculation in gas phase or solution (Tgl); single-crystal X-ray analysis (X); conductivity (C) ^c ND – not determined

^d Full reference list is given on pages 15–16.

2. Crystallographic data

	1	2
	β-CD–Clomipramine HCl	β-CD–Doxepin HCl
Abbreviated formula	β-CD·CPM·HCl·9.6H ₂ O	β-CD·DXP·HCl·0.7EtOH·11.3H ₂ O
Chemical formula	$(C_6H_{10}O_5)_7 \cdot C_{19}H_{23}ClN_2 \cdot HCl \cdot 9.6H_2O$	$(C_{6}H_{10}O_{5})_{7} \cdot C_{19}H_{21}NO \cdot HCl$
		$\cdot 0.7(C_2H_6O) \cdot 11.3H_2O$
Formula weight	1645.32	1679.38
Crystal habit, color	Thin plate, colorless	Hexagonal, colorless
Crystal size [mm]	$0.04 \times 0.26 \times 0.38$	$0.30 \times 0.42 \times 0.42$
Crystal system, space gr.	Orthorhombic, $P2_12_12_1$ (No. 19)	Orthorhombic, <i>P</i> 2 ₁ 2 ₁ 2 ₁ (No. 19)
a, b, c [Å]	15.2643(6), 18.7352(7), 29.5743(10)	15.1521(4), 18.4814(4), 29.6212(9)
<i>α</i> , <i>β</i> , γ [°]	90, 90, 90	90, 90, 90
V [Å ³]	8457.7(5)	8294.9(4)
Ζ	4	4
$D_c [{ m g cm^{-3}}]$	1.292	1.328
μ [mm ⁻¹]	0.171	0.147
F(000)	3481	3576
Diffractometer	APEXII Kappa CCD (Bruker)	APEXII Kappa CCD (Bruker)
Wavelength [Å]	ΜοΚα, 0.71073	ΜοΚα, 0.71073
T [K]	296	296
Data collection	$\omega - \phi$ scan, 0.4° step, 8 s expose	$\omega - \phi$ scan, 0.4° step, 8 s expose
Frames collected	658	659
θ range [°]	1.38-25.42	1.74–30.61
Resolution [Å]	0.83	0.70
Completeness [%], <i>R</i> _{int}	99.7, 0.0592	99.8, 0.0350
Reflns	43530 / 15560 / 7967	55043 / 25417 / 16493
collected / unique / observed		
Data / restraints / parameters	15560, 59, 956	16493, 44, 939
$R_1^{\rm a}, wR_2[I > 2\sigma(I)]^{\rm b}$	0.1032, 0.2676	0.0825, 0.2235
R_1 , wR_2 [all data], GoF	0.1772, 0.3218, 1.005	0.1219, 0.2554, 1.026
$\Delta ho_{ m min}, \Delta ho_{ m max}$ [e Å ⁻³]	-0.60, 0.82	-0.50, 0.93
CCDC number	2011745	2011746

 Table S2. X-ray single crystal data collection and refinement statistics of 1 and 2.

 $\overline{{}^{a,b}R} = \sum ||F_{o}| - |F_{c}|| / \sum |F_{o}|; \ wR = \sum \{w(F_{o}^{2} - F_{c}^{2})^{2} / \sum w(F_{o}^{2})^{2} \}^{1/2}.$

Table S3. Selected geometrical parameters of two β -CD macrocycles of 1 and 2, in comparison with those of β -CD–(–)-epicatechin and β -CD·12H₂O.

Residue	Puckering	<i>Q</i> [Å] ª, 6)[º] b		Tilt ang	le [º] ^c			O4 deviat	ion [Å] ^d			O4(<i>n</i>)····C	D4(n-1), 0	O4(n)···cen	troid [Å]
п	1	2	β-CD–EC ^e	β-CD·12W ^f	1	2	β-CD-EC	β-CD·12W	1	2	β-CD–EC	β-CD·12W	1	2	β-CD-EC	β-CD·12W
1	0.571(11)	0.593(4)	0.561(2)	0.570									4.573(8)	4.528(4)	4.403(2)	4.489
	9.4(11)	8.3(5)	6.7(2)	7.6	21.5(4)	19.8(1)	19.7(1)	15.0	-0.218(5)	-0.222(2)	-0.180(1)	0.192	4.713(5)	4.781(3)	5.171	4.981
2	0.566(10)	0.589(4)	0.545(2)	0.583									4.419(9)	4.410(4)	4.263(2)	4.392
	2.9(10)	1.8(5)	5.6(2)	3.0	23.4(2)	22.5(1)	4.6(1)	26.2	0.069(5)	0.013(2)	-0.084(1)	0.091	5.255(5)	5.272(3)	5.397	5.153
3	0.540(11)	0.566(4)	0.574(2)	0.559									4.166(9)	4.199(4)	4.278(2)	4.286
	7.7(12)	5.8(4)	3.7(2)	3.9	5.2(2)	9.3(1)	6.9(1)	10.8	0.270(6)	0.254(3)	0.325(1)	-0.195	5.231(6)	5.216(3)	4.581	5.122
4	0.556(10)	0.579(5)	0.557(2)	0.596									4.418(8)	4.435(4)	4.498(2)	4.443
	5.7(10)	3.3(5)	4.9(3)	1.4	8.3(2)	6.6(1)	33.7(1)	7.9	-0.285(6)	-0.176(3)	-0.199(1)	-0.053	4.664(6)	4.640(3)	4.827	4.856
5	0.557(11)	0.571(5)	0.578(2)	0.579									4.463(9)	4.472(4)	4.322(2)	4.452
	5.3(10)	4.0(5)	3.2(2)	2.0	26.5(4)	26.4(2)	1.9(1)	10.7	-0.053(5)	-0.127(3)	-0.073(1)	0.276	4.892(5)	5.006(3)	5.435	5.054
6	0.552(11)	0.552(4)	0.565(2)	0.571									4.283(8)	4.244(4)	4.209(2)	4.247
	5.7(11)	7.1(4)	4.9(2)	3.9	3.9(2)	9.8(1)	14.6(1)	20.3	0.236(6)	0.184(2)	0.087(1)	-0.115	5.416(6)	5.390(3)	5.075	5.184
7	0.545(10)	0.560(5)	0.582(2)	0.567									4.197(8)	4.308(4)	4.626(2)	4.338
	5.7(11)	2.2(5)	8.8(2)	3.7	3.9(2)	1.9(1)	30.6(1)	6.4	-0.020(5)	0.074(2)	0.124(1)	-0.196	4.896(6)	4.862(3)	4.632	4.913
													0.407 g	0.329	0.417	0.242
													0.752 g	0.750	0.854	0.328
													0.874 ^g	0.873	0.876	0.870

^{a,b} A perfect cyclohexane chair (for R(C-C) = 1.54 Å) has puckering amplitude Q = 0.63 Å and angle describing the polar position $\theta = 0^{\circ}$ [20].

^c Interplanar angle of the plane through C1(n), C4(n), O4(n) and O4(n-1) against the O4 plane.

^d Deviation of glycosidic O4 atoms from the least-squares plane through the seven O4 atoms.

^e β-CD–(–)-epicatechin(EC) [21].

 $^{f}\beta$ -CD·12H₂O [22].

^g Ranges of the O4(n)···O4(n-1), O4(n)···centroid distances and the average of their ratios are in *italics*; for an ideal heptagon, the ratio is 0.868.

^h Endocyclic torsion angles ϕ and ψ at glycosidic O4, defined as O5(*n* + 1)–C1(*n* + 1)–O4(*n*)–C4(*n*) and C1(*n* + 1)–O4(*n*)–C4(*n*)–C4(*n*)–C5(*n*), respectively.

ⁱ Averages of ϕ and ψ are in *italics*; for the β -CD roundness, the sum of averages should be zero [23].

^j Exocyclic torsion angles χ and ω are defined as C4–C5–C6–O6 and O5–C5–C6–O6, respectively.

^{k,m} Doubly disordered O63–H group with occupancy factors 0.44 and 0.56 for respective sites A and B.

Table S3. Continued.

Residue	O3(<i>n</i>)····O2	(n+1) dista	ance [Å]		Torsion ang	les $\phi^{\rm h}$, $\psi^{\rm h}$ [°	']		Torsion angles χ^{j} , ω^{j} [°]			
n	1	2	β-CD–EC	β-CD·12W	1	2	β-CD–EC	β-CD·12W	1	2	β-CD–EC	β-CD·12W
1	2.877(11)	2.838(5)	2.924(2)	2.957	116.6(9)	116.0(4)	100.7(2)	119.3	54.4(13)	48.5(6)	53.5(2)	-169.4
					-100.2(10)	-99.8(4)	-121.5(2)	-95.9	-64.1(11)	-69.5(6)	-66.8(2)	70.5
2	2.885(10)	2.905(5)	2.765(2)	2.875	107.0(10)	108.7(4)	111.6(2)	110.5	56.1(17)	175.5(5)	58.7(3)	-173.9
					-111.3(10)	-115.1(4)	-118.1(2)	-106.6	-66.1(16)	57.1(6)	-62.7(2)	71.0
3	2.917(11)	2.924(6)	2.762(2)	2.902	105.3(8)	103.9(4)	129.1(2)	102.5	-172.3(38) ^k 61.6(43) ^m	58.2(5)	48.9(2)	58.7
					-120.3(8)	-118.3(4)	-97.4(2)	-121.1	66.4(51) ^k -73.9(36) ^m	-63.9(5)	-72.5(2)	-60.8
4	2.782(12)	2.870(7)	3.346(3)	2.783	105.7(9)	104.3(4)	90.1(2)	107.7	56.3(11)	56.2(5)	55.7(3)	57.0
					-108.9(10)	-113.4(4)	-131.9(2)	-109.4	-63.6(10)	-63.5(5)	-64.5(2)	-61.0
5	2.767(12)	2.794(5)	2.828(3)	2.770	122.9(9)	120.9(4)	117.1(2)	110.7	63.3(11)	64.7(6)	60.7(2)	50.7
					-104.1(10)	-101.0(5)	-105.9(2)	-114.1	-57.6(11)	-55.6(6)	-60.9(2)	-71.0
6	2.862(13)	2.850(6)	3.246(3)	2.855	105.8(9)	104.9(4)	105.9(2)	120.0	-176.0(8)	-173.9(4)	-167.8(2)	-175.4
					-129.6(8)	-123.1(4)	-96.5(2)	-109.8	63.8(10)	65.2(6)	69.8(2)	64.7
7	2.867(12)	2.874(5)	2.833(3)	2.862	114.3(9)	108.4(4)	102.7(2)	103.0	53.0(11)	54.7(5)	54.2(3)	52.1
					-111.8(9)	-119.0(4)	-118.4(2)	-125.7	-69.3(10)	-66.3(5)	-64.7(3)	-62.9
					111.1 ⁱ	109.6	108.2	110.5				
					<i>—112.3</i> ⁱ	-112.8	-112.8	-111.8				
					-1.2 ⁱ	-3.2	-4.6	-1.3				

^{a,b} A perfect cyclohexane chair (for R(C-C) = 1.54 Å) has puckering amplitude Q = 0.63 Å and angle describing the polar position $\theta = 0^{\circ}$ [20].

^c Interplanar angle of the plane through C1(n), C4(n), O4(n) and O4(n-1) against the O4 plane.

^d Deviation of glycosidic O4 atoms from the least-squares plane through the seven O4 atoms.

^e β -CD–(–)-epicatechin(EC) [21].

 ${}^{f}\beta$ -CD·12H₂O [22].

^g Ranges of the $O4(n)\cdots O4(n-1)$, $O4(n)\cdots$ centroid distances and the average of their ratios are in *italics*; for an ideal heptagon, the ratio is 0.868.

^h Endocyclic torsion angles ϕ and ψ at glycosidic O4, defined as O5(*n* + 1)–C1(*n* + 1)–O4(*n*)–C4(*n*) and C1(*n* + 1)–O4(*n*)–C4(*n*)–C4(*n*)–C5(*n*), respectively.

ⁱ Averages of ϕ and ψ are in *italics*; for the β -CD roundness, the sum of averages should be zero [23].

^j Exocyclic torsion angles χ and ω are defined as C4–C5–C6–O6 and O5–C5–C6–O6, respectively.

^{k,m} Doubly disordered O63–H group with occupancy factors 0.44 and 0.56 for respective sites A and B.

D–H···A	D–H	H…A	D····A	∠(DHA)	D–H…A	D–H	Н…А	D····A	∠(DHA)
β -CD- β -CD									
O31-H···O22	0.82	2.10	2.877(11)	158.5	O25-H…O6W	0.82	2.14	2.84(2)	143.4
O22–H…O66 ^{ii b}	0.82	2.53	3.043(11)	122.0	O35-H…O6W	0.82	2.52	3.31(2)	164.4
O32-H…O66 ⁱⁱ	0.82	2.22	2.860(10)	134.7	O26-H…O7W	0.82	2.28	3.08(4)	164.1
O33–H…O24	0.82	2.12	2.917(11)	163.6	O66-H···Cl2B	0.82	1.93	2.736(12)	165.5
O34–H…O25	0.82	2.01	2.782(12)	157.5	O27–H…O8W	0.82	2.43	3.24(2)	166.7
O36–H…O27	0.82	2.26	2.862(13)	130.2	O4W-H2···O27 vi	0.96	2.30	3.147(13)	146.7
O37-H···O21	0.82	2.21	2.867(12)	137.4	β -CD–CPM				
O67–H···O33 ^v	0.82	1.98	2.753(11)	157.5	O22-H···Cl1	0.82	2.72	3.504(10)	159.5
β -CD-H ₂ O/Cl ^a					C18M-H2O34	0.97	2.40	3.36(2)	170.2
O21-H···O1W	0.82	2.48	2.91(2)	113.7	N5'M-H…O61 ⁱⁱ	0.98	1.82	2.73(2)	152.7
O61-H…O3W	0.82	2.36	3.17(2)	172.4	C31–H…Cg1 ^d	0.98	3.11	4.021	155.9
O4W-H1…O22 v	0.96	2.65	3.139(11)	112.0	C51–H…Cg2	0.98	3.75	4.542	139.5
O62-H···O6W ⁱ	0.82	2.19	2.90(3)	144.8	C55–H…Cg2	0.98	3.49	4.431	162.2
O23-H···Cl2A	0.82	2.05	2.773(10)	146.1	H_2O-H_2O				
O63B-H···O7W ^{ic}	0.82	2.44	2.93(4)	119.3	O1W-H2···O9W	0.96	2.33	3.12(3)	140.0
O24-H···O9W iii	0.82	2.04	2.81(2)	157.4	O8W-H1···O10W	0.96	1.88	2.81(3)	162.3
O64-H···Cl2A iv	0.82	1.91	2.674(9)	155.2	O8W-H2···O9W	0.96	1.99	2.87(3)	152.4

Table S4. (a) Hydrogen bond parameters in β-CD·CPM·HCl·9.6H₂O (1) [Å, °].

^a Site occupancy factors (SOFs) are as follows

9.6 water molecules are distributed over 13 sites: 1.0 (O4W, O8W, O9W, O11W); 0.8 (O2W, O3W, O6W); 0.7 (O1W); 0.6 (O7W, O10W); 0.5 (O5W, O12W); 0.3 (O13W)

One twofold disordered chloride: 0.5 (Cl2A, Cl2B)

^b Equivalent positions: (i) -x + 1.5, -y + 1, z + 0.5; (ii) -x + 1, y + 0.5, -z + 1.5; (iii) x + 1, y, z;

(iv) - x + 2, y - 0.5, -z + 1.5; (v) - x + 1, y - 0.5, -z + 1.5; (vi) x + 0.5, -y + 0.5, -z + 1.

^c Twofold disordered O63–H group with occupancy factors 0.44 and 0.56 for respective sites A and B.

^d Cg1 = A-ring (C1M–C2M–C3M–C4M–C13M–C12M), Cg2 = B-ring (C6M–C7M–C8M–C9M–C15M–C14M)

(b) $\pi \cdots \pi$ interactions in β -CD·DPM·HCl·0.8EtOH·9.4H₂O (1) [Å, °].

Cg(I)	Cg(J)	Cg–Cg	Alpha	CgI_Perp	CgJ_Perp	Туре
Cg1	Cg2(-x+1, y+0.5, -z+1.5)	5.877(5)	118.7(5)	2.209(4)	3.654(4)	Edge-to-face

Note:

- Cg(I) = Plane number I

*Cg*1 = A-ring (C1M–C2M–C3M–C4M–C13M–C12M), *Cg*2 = B-ring (C6M–C7M–C8M–C9M–C15M–C14M)

- Alpha = Interplanar angle between planes I and J [°]

- Cg – Cg = Distance between ring centroids [Å]

- CgI_Perp = Perpendicular distance of Cg(I) on ring J [Å]

- CgJ_Perp = Perpendicular distance of Cg(J) on ring I [Å]

D–H…A	D–H	Н…А	D…A	∠(DHA)	D–H…A	D–H	Н…А	D…A	∠(DHA)
β -CD- β -CD									
O31-H···O22	0.82	2.06	2.838(5)	158.1	O65-H···O8WB	0.82	2.55	3.12(2)	126.7
O22–H…O66 ^{ib}	0.82	2.47	3.066(5)	130.8	O26-H···O9WA	0.82	2.00	2.808(11)	167.5
O32–H···O23	0.82	2.10	2.905(5)	169.1	O26-H···O9WB	0.82	2.00	2.80(2)	164.3
O33–H…O67 ⁱ	0.82	2.28	2.828(5)	124.2	O27-H…O1E	0.82	2.40	3.041(14)	136.0
O24-H···O33	0.82	2.14	2.924(6)	160.4	β-CD–DXP				
O25-H···O34	0.82	2.29	2.870(7)	128.2	N5'X-H···O52 ⁱ	0.98	2.42	3.167(6)	132.3
O35-H···O26	0.82	1.98	2.793(5)	170.7	N5'X-H···O62 ⁱ	0.98	2.20	3.011(9)	139.2
O66–H…O32 ^{iv}	0.82	2.07	2.782(5)	144.3	C31–H…Cg2 °	0.98	3.14	4.007	149.0
O37-H···O21	0.82	2.22	2.874(5)	137.3	C31–H··· <i>Cg</i> 3	0.98	2.95	3.837	150.7
O67–H…O64 ^v	0.82	2.13	2.920(6)	161.1	C51–H…Cg1	0.98	3.65	4.524	149.3
β-CD-H ₂ O/EtOH/Cl ^a					C55–H··· <i>Cg</i> 1	0.98	3.32	4.244	146.9
O21-H···O1W	0.82	2.03	2.785(7)	152.0	C51–H··· <i>Cg</i> 4	0.98	3.75	4.600	157.8
O61-H···O3W	0.82	2.21	2.955(7)	150.8	C55–H··· <i>Cg</i> 4	0.98	3.46	4.400	162.7
O62-H···O4W	0.82	1.92	2.722(7)	167.5	H ₂ O-H ₂ O/EtOH/Cl				
O23-H···Cl1 i	0.82	1.97	2.779(5)	168.3	O3W-H1···O12W	0.96	1.88	2.81(2)	161.7
O63-H···Cl2 ⁱⁱ	0.82	2.05	2.816(6)	154.1	O3W-H2····Cl2	0.96	2.32	3.234(9)	158.9
O11W-H2…O24 v	0.96	2.03	2.941(10)	158.5	O4W-H1…O11W iv	0.96	1.90	2.786(10)	152.5
O34-H···O13W ⁱⁱⁱ	0.82	2.38	2.97(2)	129.4	O4W-H2…O13W	0.96	1.95	2.78(2)	143.7
O64–H…Cl1 ⁱⁱ	0.82	2.00	2.739(5)	149.2	O6W-H2···O12W ⁱ	0.96	2.20	2.94(2)	132.5
O1E-HO25 v	0.82	2.41	2.939(13)	123.5	O7W-H1…Cl1 ⁱⁱ	0.96	2.06	2.906(8)	146.1
O6W-H1O35	0.96	2.34	2.819(10)	110.4	O11W-H1…O1W	0.96	2.14	2.830(11)	127.5
O7W-H2···O65	0.96	1.87	2.807(8)	164.0	O13W-H1…O1E iv	0.96	2.31	3.03(2)	131.4
O65–H···O8WA	0.82	2.09	2.740(8)	136.4	O13W-H2…O5W	0.96	1.92	2.82(2)	155.5

Table S5. (a) Hydrogen bond parameters in β-CD·DXP·HCl·0.7EtOH·11.3H₂O (2) [Å, °].

^a Site occupancy factors (SOFs) are as follows

11.3 water molecules distributed over 15 sites: 1.0 (O1W–O4W, O6W, O7W, O11W); 0.7 (O5W, O8WA, O13W); 0.6 (O9WA, O12W); 0.4 (O9WB), 0.3 (O8WB, O10W);

EtOH: 0.7 (O1E); one twofold disordered chloride: 0.5 (Cl1, Cl2)

^b Equivalent positions: (i) -x + 1, y + 0.5, -z + 1.5; (ii) x + 1, y, z; (iii) -x + 2, y + 0.5, -z + 1.5;

(iv) -x + 1, y - 0.5, -z + 1.5; (v) x - 1, y, z; -x + 1.5, -y + 1, z - 0.5.

^c *Cg*1 = A-ring (C1A–C2A–C3A–C4A–C13A–C12A), *Cg*2 = B-ring (C6A–C7A–C8A–C9A–C15A–C14A) for *E*-DXP *Cg*3 = A-ring (C1B–C2B–C3B–C4B–C13B–C12B), *Cg*4 = B-ring (C6B–C7B–C8B–C9B–C15B–C14B) for *Z*-DXP

(b) $\pi \cdots \pi$ interactions in β -CD·DXP·HCl·0.7EtOH·11.3H₂O (**2**) [Å, °].

• E -DAP (DAP site A with SOF = 0.0

		/				
Cg(I)	Cg(J)	Cg–Cg	Alpha	CgI_Perp	CgJ_Perp	Туре
Cg2	Cg1(-x+1, y+0.5, -z+1.5)	5.461(5)	108.5(5)	2.136(3)	4.074(3)	Edge-to-face
• Z-	DXP (DXP site B with SOF =	0.37)				

Cg(I)	Cg(J)	Cg–Cg	Alpha	CgI_Perp	CgJ_Perp	Туре
Cg3	Cg4(-x+1, y+0.5, -z+1.5)	5.575(8)	117.5(8)	1.496(5)	4.054(5)	Edge-to-face

Note:

- Cg(I) = Plane number I

Cg1 = A-ring (C1A-C2A-C3A-C4A-C13A-C12A), Cg2 = B-ring (C6A-C7A-C8A-C9A-C15A-C14A) Cg3 = A-ring (C1B-C2B-C3B-C4B-C13B-C12B), Cg4 = B-ring (C6B-C7B-C8B-C9B-C15B-C14B)

- Alpha = Interplanar angle between planes I and $J[\circ]$

- Cg – Cg = Distance between ring centroids [Å]

- $CgI_Perp = Perpendicular distance of <math>Cg(I)$ on ring J [Å]

- CgJ_Perp = Perpendicular distance of Cg(J) on ring I [Å]

Table S6. Structural parameters of CPM, DXP, DPM, IPM, AMT and NRT in free HCl salt form and in complex with proteins.

(a) Free HCl	salt	form
--------------	------	------

	CIMP	RA ^e		PUK	GEI ^f		IMIP	RC ^g	JINGIW ^h	YOVZEO ⁱ
CSD/PDB code ^d	CPM			DP	M		IP	М	NRT	AMT
	7-Cl ^j	3-Cl ^j	Mol 1 ^k	Mol 2	Mol 3	Mol 4	Mol 1	Mol 2		
1) [6-7-6]-Tricyclic core										
Butterfly angle [°] ^a	123.2	123.2	122.5	122.2	124.2	122.8	123.0	130.2	124.3	129.6
Annellation angle [°] ^b	32.5	32.5	32.0	31.1	32.0	31.8	26.6	32.5	29.6	25.7
Twist angle [°] ^c	-15.5	15.5	-13.3	13.7	13.9	-13.5	7.4	15.2	13.8	7.2
C15–C10–C11–C12 torsion angle [°]	-63.2	63.2	-60.4	59.8	60.9	-59.8	49.2	70.1	64.3	58.9
A-centroid–B-centroid distance d_{AB} [Å]	4.867	4.867	4.857	4.863	4.889	4.866	4.790	4.965	4.963	4.973
2) Side chain at N5/C5										
C13–C5/N5–C16–C17 torsion angle [°]	-142.5	-71.2	-142.3	-69.5	-70.4	-141.3	-159.7	-68.5	179.1	-174.3
C5/N5–C16–C17–C18 torsion angle [°]	71.1	-71.2	-177.8	178.1	177.1	-176.5	160.5	-179.6	-113.0	121.2
N5'–A-ring centroid distance d _{NA} [Å]	6.553	6.107	6.197	6.541	6.533	6.176	6.537	6.248	7.330	7.301
N5'–B-ring centroid distance d _{NB} [Å]	6.107	6.553	6.495	6.106	6.088	6.488	6.076	7.219	5.955	5.765

(b) Complex with proteins

	2Q6H ¹		2QEI ^m		4MMA ⁿ	6G9I ^p	3R2	ZE ^q
CSD/PDB code ^d		CPM		CPM		CPM	DXP	
	7-Cl	3-Cl	7-Cl	3-Cl	3-Cl	3-Cl	<i>E</i> form	Z form
1) [6-7-6]-Tricyclic core								
Butterfly angle [°] ^a	128.6	120.7	126.4	120.7	136.0	130.2	123.3	123.7
Annellation angle [°] ^b	28.9	30.6	29.1	30.6	30.6	32.5	24.4	25.8
Twist angle [°] ^c	10.6	7.4	9.6	7.4	-13.5	15.5	-10.7	13.5
C15–C10–C11–C12 torsion angle [°]	54.3	42.0	47.4	42.0	-76.9	76.8	-66.1	69.3
A-centroid–B-centroid distance d_{AB} [Å]	5.037	4.881	4.988	4.881	5.037	4.947	4.910	4.923
2) Side chain at N5/C5								
C13–C5/N5–C16–C17 torsion angle [°]	179.1	-131.2	-160.4	-131.2	-90.0	-135.2	1.0	-179.4
C5/N5–C16–C17–C18 torsion angle [°]	92.9	85.2	59.6	85.2	167.7	-145.0	112.8	99.11
N5'–A-ring centroid distance d_{NA} [Å]	7.446	5.927	7.150	5.927	6.207	7.274	6.256	6.997
N5'–B-ring centroid distance $d_{\rm NB}$ [Å]	5.303	5.406	5.408	5.406	5.281	5.577	6.918	6.089

Table S6. Continued.

(b) Complex with proteins

	2QB4 ^r		2QJU ^s	2Q72 ^t		6G9B ^u		4M48 ^v	3AP	V ^w
CSD/PDB code ^d	DPM		DPM	IPM		IPM		NRT	AM	1T
	Mol 1	Mol 2		Mol 1	Mol 2	Mol 1	Mol 2		Mol 1	Mol 2
1) [6-7-6]-Tricyclic core										
Butterfly angle [°] ^a	127.5	129.3	120.5	129.2	126.0	111.6	110.1	124.2	122.8	120.5
Annellation angle [°] ^b	28.3	28.5	29.2	29.1	29.0	32.4	33.5	29.1	27.6	27.7
Twist angle [°] ^c	10.8	-8.7	9.7	-9.2	11.2	-14.4	-12.1	14.7	9.6	11.8
C15–C10–C11–C12 torsion angle [°]	57.9	-50.8	54.5	-48.9	55.8	-62.8	-61.5	72.0	59.8	62.9
A-centroid–B-centroid distance d_{AB} [Å]	5.016	5.036	4.855	5.021	5.101	4.781	4.757	4.950	4.920	4.878
2) Side chain at N5/C5										
C13–C5/N5–C16–C17 torsion angle [°]	-168.1	68.7	179.5	73.0	-167.6	-144.7	-138.3	-0.1	-178.8	179.2
C5/N5–C16–C17–C18 torsion angle [°]	77.0	89.4	81.4	85.8	69.8	165.2	145.9	162.1	128.7	128.7
N5'–A-ring centroid distance d _{NA} [Å]	7.331	6.697	7.767	6.722	7.293	7.297	7.012	6.571	6.152	6.188
N5'–B-ring centroid distance d _{NB} [Å]	5.373	6.014	5.170	5.949	5.430	6.508	6.714	6.307	5.153	5.224

^{a,b,c} Angle between aromatic planes A and B; Angle between C13–C12 and C14–C15; C13–C12–C15–C14 torsion angle (see inset for atom numbering).

^d For the β -CD encapsulation of DPM, IPM [13] and NRT, AMT [18], see Table 1 and Figure 3.

e.f.g.h.i CSD codes: CIMPRA [24]; PUKGEI [25]; IMIPRC [26]; JINGIW [27]; YOVZEO [28];

none of free DXP HCl or DXP in complex with small molecule has been reported.

^j Two CPM molecules are inversion-symmetry-related, i.e., crystals belong to monoclinic, space group $P2_1/c$.

^k Number of molecules in the asymmetric unit.

¹CPM in complex with bacterial leucine transporter (LeuT), L-leucine and sodium (PDB code: 2Q6H) [29].

^mCPM in complex with LeuT, L-alanine and sodium (PDB code: 2QEI) [29].

ⁿ CPM in complex with biogenic leucine transporter (LeuBAT) (PDB code: 4MMA) [30].

^pCPM in complex with ebolavirus glycoprotein (PDB code: 6G9I) [31].

 q DXP in complex with human histamine H₁ (PDB code: 3RZE) [32].

^r DPM in complex with LeuT, L-leucine and sodium (PDB code: 2QB4) [29].

^s DPM in complex with LeuT and L-leucine (PDB code: 2QJU) [33].

^t IPM in complex with LeuT, L-leucine and sodium (PDB code 2Q72) [29].

^u IPM in complex with ebolavirus glycoprotein (PDB code: 6G9B) [31].

^v NRT in complex with dopamine transporter(DAT), NaCl and cholesterol (PDB code: 4M48) [34].

^w AMT in complex with human alpha1-acid glycoprotein (PDB code: 3APV) [35].

3. Computational data

(a) β -CD–CPM(Cl on C3)

Figure S1. Inclusion complexes of (a) β -CD–CPM(Cl on C3), (b) β -CD–CPM(Cl on C7) with Cl inside and outside the β -CD cavity, and (c) β -CD–*E*/*Z*-DXP, derived from DFT complete-geometry optimization in the gas phase; side view (left) and top view (right). For better comparison, the energy of complex (E_{cpx}) and stabilization energy (ΔE_{stb}) are given; see also Tables S7 and 3. The H-bonding interactions are indicated by magenta lines.

⁽b) β -CD–CPM(Cl on C7)

Figure S1. Continued.

Figure S1. Continued.

D–H…A	D–H	H…A	D····A	∠(DHA)	D–H···A	D-H	H…A	D···A	∠(DHA)
β-CD·CMP ^b				c .:					
1-3CI-in			$\underline{\beta-CD}$	<u>conformation</u>	R CD CMD				
p-CD-p-CD	0.08	1.05	2.01	167 A	p-CD-CMP	1 10	2 5 5	1 62	162 7
$031 - H \cdots 022$	0.98	1.95	2.91	107.4	C_{31} -H···Cg1	1.10	5.55 7.84	4.02	105.7
032 - H = 023	0.98	1.91	2.07	107.5	021–H…Cg2	0.98	2.04	5.47	123.1
024 - H = 033	0.98	1.99	2.93	102.4					
$025 \parallel 026$	0.98	2.12 2.12	3.03	150.0					
055 4 056	0.98	2.12	2.07	105.5					
005-11030	0.98	1.00	2.85	168.2					
030-H···027	0.98	1.95	2.90	108.2					
000-H.003	0.97	2.20	3.12 2.88	143.4					
057-II···021	0.98	2.06	2.00	163.7					
1-3CL-out	0.98	2.00	3.01	103.7					
β -CD- β -CD			Distorted	round	β-CD–CMP				
021–H···037	0.98	2.07	2.99	157.4	$C52-H\cdots Cg2$	1.10	3.46	4.50	157.7
031–H···022	0.98	1.98	2.93	164.6	$C55-HCq^{2}$	1 10	3 36	4 36	151.6
032_H023	0.98	1.96	2.93	164.1	C55 II C82	1.10	5.50	1.50	151.0
032 H···023	0.90	1.90	2.92	168.2					
$033 - 11 \cdots 024$	0.98	1.90	2.92	106.2					
034–H···023	0.98	1.94	2.91	100.8					
035-H···026	0.98	1.98	2.93	103.4					
066–H…065	0.98	2.29	3.11	140.9					
<u>027–H…O36</u>	0.98	2.05	2.96	153.7					
$\beta CD \beta CD$			Distorted	round	B CD CMP				
p - c D - p - c D	0.08	1.01	2.86	164.6	p - CD - CMI	1 10	2 50	1 67	167 5
$031 - 11 \cdots 022$	0.98	1.91	2.00	104.0	C_{32} -II···C g_{2}	1.10	2.19	4.07	107.5
032-H···023	0.98	1.94	2.91	100.7	$C33-H\cdots Cg2$	1.10	5.48 2.57	4.45	143.0
033-H···024	0.98	1.95	2.92	168.3	C32–H…Cg1	1.10	3.57	4.55	150.2
034–H···025	0.98	1.94	2.91	168.0					
035–H···026	0.98	1.96	2.91	164.0					
O66−H…O65	0.97	2.41	3.22	140.0					
O27–H…O36	0.98	2.18	3.02	143.6					
O37–H…O21	0.98	1.94	2.91	170.2					
1-7Cl-out			\mathbf{D}^{*}	1					
β - <i>CD</i> - β - <i>CD</i>	0.00	1	Distorted	round	β -CD-CMP	0.00	0.14	0 60	110.0
031–H···022	0.98	1.93	2.90	168.2	$O21-H\cdots Cg2$	0.98	3.11	3.69	119.9
032–H···023	0.98	1.91	2.87	168.2					
024–H···033	0.98	1.98	2.93	162.6					
025–H…O34	0.98	2.13	3.07	160.1					
035–H…O26	0.98	2.14	3.10	164.4					
065–H…056	0.98	1.89	2.85	164.9					
036–H···O27	0.98	1.92	2.89	168.6					
066–H…065	0.97	2.19	3.05	146.2					
O37–H…O21	0.98	1.93	2.88	164.7					
O67–H…O51	0.98	2.04	2.99	162.5					

Table S7. Hydrogen bond parameters in β -CD–CPM (4 modes) and β -CD–DXP (2 modes) inclusion complexes from DFT full-geometry optimization [Å, °].^a

Table S7. Continued.

D–H…A	D-H	H···A	D…A	∠(DHA)	D–H···A	D–H	H···A	D····A	∠(DHA)
β-CD·DXP ^b				X/					<u>`</u>
2-Е									
β -CD- β -CD			Distorted	round	β -CD–E-DXP				
O31–H…O22	0.98	1.88	2.84	167.1	C31–H··· <i>Cg</i> 2	1.10	3.75	4.62	137.8
O32–H…O23	0.98	2.04	2.98	161.0					
O62–H…O53	0.98	2.02	2.96	159.7					
O24–H…O33	0.98	2.01	2.97	164.1					
O64–H…O55	0.98	1.97	2.88	155.4					
O25–H…O34	0.98	2.11	3.03	156.9					
O35–H…O26	0.98	2.03	2.99	164.8					
O65-H…O56	0.98	2.00	2.93	158.3					
O36–H…O27	0.98	1.97	2.94	166.8					
O66–H…O57	0.98	2.04	2.98	161.6					
O37–H…O21	0.98	1.88	2.86	168.9					
2-Z									
β -CD- β -CD			Distorted	round	β -CD–Z-DXP				
O31–H…O22	0.98	1.90	2.86	164.8	C51–H…Cg2	1.10	3.41	4.46	167.5
O32–H…O23	0.98	1.98	2.95	167.2	C55–H··· <i>Cg</i> 2	1.10	3.64	4.57	145.6
O24–H…O33	0.98	2.02	2.97	162.6	C31–H…Cg1	1.10	3.50	4.62	137.8
O64–H…O55	0.98	1.97	2.89	155.0	C32–H…Cg1	1.10	3.62	4.55	150.2
O25-H…O34	0.98	2.07	2.99	156.8					
O35–H…O26	0.98	2.07	3.02	163.7					
O65-H…O56	0.98	1.91	2.87	167.2					
O36–H…O27	0.98	1.88	2.85	168.7					
O66-H…O65	0.97	2.37	3.21	143.2					
O37–H…O21	0.98	1.92	2.89	167.1					

^a DFT energy minimization in vacuum at the B3LYP/6-31+G(d)/4-31G level, see also Figure S1 and Table 3.

^b X-ray-derived structures are used as starting models.

^c C/O–H··· π interactions with Cg1 and Cg2 as the centroids of A-ring (C1–C2–C3–C4–C13–C12) and B-ring (C6–C7–C8–C9–C15–C14), respectively.

References

- Misiuk, W.; Zalewska, M. Study on the inclusion interactions of β-cyclodextrin and its derivative with clomipramine by spectroscopy and its analytic application. *Anal. Lett.* 2008, *41*, 543–560. https://doi.org/10.1080/00032710801910650.
- 2. Georgiou, M. E.; Koupparis, M. A.; Georgiou, C. A. Rapid automated spectrophotometric competitive complexation studies of drugs with cyclodextrins using the flow injection gradient technique: tricyclic antidepressant drugs with α-cyclodextrin. *Analyst* **1999**, *124*, 391–396. https://doi.org/10.1039/A808426B.
- 3. Rajendiran, N.; Sankaranarayanan, R. K.; Saravanan, J. A study of supramolecular host–guest interaction of dothiepin and doxepin drugs with cyclodextrin macrocycles. *J. Mol. Struct.* **2014**, *1067*, 252–260. https://doi.org/10.1016/j.molstruc.2014.03.051.
- 4. Valsami, G. N.; Koupparis, M. A.; Macheras, P. E. Complexation studies of cyclodextrins with tricyclic antidepressants using ion-selective electrodes. *Pharm. Res.* **1992**, *9*, 94–100. https://doi.org/10.1023/A:1018940013006.
- Cruz, J. R.; Becker, B. A.; Morris, K. F.; Larive, C. K. NMR characterization of the host–guest inclusion complex between β-cyclodextrin and doxepin. *Magn. Reson. Chem.* 2008, *46*, 838–845. https://doi.org/10.1002/mrc.2267.
- Sankaranarayanan, R. K.; Siva, S.; Venkatesh, G.; Prabhu, A. A. M.; Rajendiran, N. Dual fluorescence of dothiepin, doxepin drugs—effect of solvents and β-cyclodextrin. *J. Mol. Liq.* 2011, *161*, 107–114. https://doi.org/10.1016/j.molliq.2011.04.016.
- 7. Jones, C. J.; Larive, C. K. Microcoil NMR study of the interactions between doxepin, β-cyclodextrin, and acetate during capillary isotachophoresis. *Anal. Chem.* **2012**, *84*, 7099–7106. https://doi.org/10.1021/ac301401p.
- Jenita, M. J.; Prabhu, A.; Rajendiran, N. Theoretical study of inclusion complexation of tricyclic antidepressant drugs with β-cyclodextrin. *Ind. J. Chem.* 2012, *51A*, 1686–1694. http://nopr.niscair.res.in/handle/123456789/15201.
- Junquera, E.; Romero, J. C.; Aicart, E. Behavior of tricyclic antidepressants in aqueous solution: selfaggregation and association with β-cyclodextrin. *Langmuir* 2001, *17*, 1826–1832. https://doi.org/10.1021/la000819q.
- 10. Jalali, F.; Ezzati, N. Spectrofluorimetric study and determination of desipramine in the presence of βcyclodextrin. *J. Anal. Chem.* **2014**, *69*, 367–370. https://doi.org/10.1134/S1061934814040029.
- 11. Misiuk, W. Study on the Inclusion Complex Formation of Desipramine with B-Cyclodextrin and Its Pharmaceutical Application. *W. J. Pharm. Pharm. Sci.* **2015**, *4*, 18–33. https://www.wjpps.com/Wjpps_controller/abstract_id/3840.
- Viswalingam, M.; Prabu, S.; Sivakumar, K.; Rajamohan, R. Spectral characteristics of desipramine in βcyclodextrin cavity through inclusion complex. *J. Macromol. Sci.* 2016, *A53*, 781–790. https://doi.org/10.1080/10601325.2016.1237817.
- Aree, T. β-Cyclodextrin inclusion complexation with tricyclic antidepressants desipramine and imipramine: a structural chemistry perspective. *J. Pharm. Sci.* 2020, *109*, 3086–3094. https://doi.org/10.1016/j.xphs.2020.07.007.
- Cano, J.; Rodriguez, A.; Aicart, E.; Junquera, E. Temperature effect on the complex formation between tricyclic antidepressant drugs (amitriptyline or imipramine) and hydroxypropyl-β-cyclodextrin in water. *J. Incl. Phenom. Macrocycl. Chem.* 2007, *59*, 279–285. https://doi.org/10.1007/s10847-007-9328-x.
- Sousa, F. B. D.; Denadai, A. M. L.; Lula, I. S.; Nascimento Jr, C. S.; Neto, N. S. F.; Lima, A. C.; ... Sinisterra, R. D. Supramolecular self-assembly of cyclodextrin and higher water soluble guest: Thermodynamics and topological studies. *J. Am. Chem. Soc.* 2008, *130*, 8426–8436. https://doi.org/10.1021/ja801080v.
- Viswalingam, M.; Prabu, S.; Sivakumar, K.; Rajamohan, R. Preparation and characterization of a imipramine–β-cyclodextrin inclusion complex. *Instrum. Sci. Technol.* 2016, 44, 651–671. https://doi.org/10.1080/10739149.2016.1177726.
- 17. Kundu, M.; Roy, M. N. Preparation, interaction and spectroscopic characterization of inclusion complex of a cyclic oligosaccharide with an antidepressant drug. *J. Incl. Phenom. Macrocycl. Chem.* **2017**, *89*, 177–187. https://doi.org/10.1007/s10847-017-0745-1.

- 18. Aree, T. β-Cyclodextrin encapsulation of nortriptyline HCl and amitriptyline HCl: molecular insights from single-crystal X-ray diffraction and DFT calculation. *Int. J. Pharm.* **2020**, *575*, 118899. https://doi.org/10.1016/j.ijpharm.2019.118899.
- Castiglione, F.; Ganazzoli, F.; Malpezzi, L.; Mele, A.; Panzeri, W.; Raffaini, G. Inclusion complexes of βcyclodextrin with tricyclic drugs: an X-ray diffraction, NMR and molecular dynamics study. *Beilstein J. Org. Chem.* 2017, *13*, 714–719. https://doi.org/10.3762/bjoc.13.70.
- 20. Cremer, D. T.; Pople, J. A. General definition of ring puckering coordinates. *J. Am. Chem. Soc.* **1975**, *97*, 1354-1358. https://doi.org/10.1021/ja00839a011.
- Aree, T.; Jongrungruangchok, S. Crystallographic evidence for β-cyclodextrin inclusion complexation facilitating the improvement of antioxidant activity of tea (+)-catechin and (–)-epicatechin. *Carbohydr. Polym.* 2016, *140*, 362–373. https://doi.org/10.1016/j.carbpol.2015.12.066.
- 22. Lindner, K.; Saenger, W. Crystal and molecular structure of cyclohepta-amylose dodecahydrate. *Carbohydr. Res.* **1982**, *99*, 103–115. https://doi.org/10.1016/S0008-6215(00)81901-1.
- 23. French, A. D.; Johnson, G. P. Linkage and pyranosyl ring twisting in cyclodextrins. *Carbohydr. Res.* **2007**, 342, 1223–1237. https://doi.org/10.1016/j.carres.2007.02.033.
- 24. Post, M. L.; Horn, A. S. The crystal and molecular structure of the tricyclic antidepressant chlorimipramine hydrochloride: 3-chloro-5-(3-dimethylaminopropyl)-10,11-dihydro-5H-dibenz[b,f] azepine hydrochloride. *Acta Cryst.* **1977**, *B33*, 2590–2595. https://doi.org/10.1107/S0567740877008966.
- 25. Jasinski, J. P.; Butcher, R. J.; Hakim Al-Arique, Q. N. M.; Yathirajan, H. S.; Ramesha, A. R. Desipramine hydrochloride: a non-merohedrally twinned structure. *Acta Cryst.* **2010**, *E66*, o674–o675. https://doi.org/10.1107/S1600536810006203.
- 26. Post, M. L.; Kennard, O.; Horn, A. S. The tricyclic antidepressants: imipramine hydrochloride. The crystal and molecular structure of 5-(3-dimethylaminopropyl)-10,11-dihydro-5H-dibenz[b,f]azepine hydrochloride. *Acta Cryst.* **1975**, *B31*, 1008–1013. https://doi.org/10.1107/S0567740875004396.
- 27. Klein, C. L.; Banks, T. A.; Rouselle, D. Structure of nortriptyline hydrochloride. *Acta Cryst.* **1991**, *C*47, 1478–1480. https://doi.org/10.1107/S010827019001280X.
- 28. Klein, C. L.; Lear, J.; O'Rourke, S.; Williams, S.; Liang, L. Crystal and molecular structures of tricyclic neuroleptics. *J. Pharm. Sci.* **1994**, *83*, 1253–1256. https://doi.org/10.1002/jps.2600830914.
- 29. Singh, S. K.; Yamashita, A.; Gouaux, E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. *Nature* **2007**, *448*, 952–956. https://doi.org/10.1038/nature06038.
- 30. Wang, H.; Goehring, A.; Wang, K. H.; Penmatsa, A.; Ressler, R.; Gouaux, E. Structural basis for action by diverse antidepressants on biogenic amine transporters. *Nature* **2013**, *503*, 141–146. https://doi.org/10.1038/nature12648.
- 31. Zhao, Y.; Ren, J.; Fry, E. E.; Xiao, J.; Townsend, A. R.; Stuart, D. I. Structures of ebola virus glycoprotein complexes with tricyclic antidepressant and antipsychotic drugs. *J. Med. Chem.* **2018**, *61*, 4938–4945. https://doi.org/10.1021/acs.jmedchem.8b00350.
- 32. Shimamura, T.; Shiroishi, M.; Weyand, S.; Tsujimoto, H.; Winter, G.; Katritch, V.; ... Iwata, S. Structure of the human histamine H₁ receptor complex with doxepin. *Nature* **2011**, *475*, 65–70. https://doi.org/10.1038/nature10236.
- 33. Zhou, Z.; Zhen, J.; Karpowich, N. K.; Goetz, R. M.; Law, C. J.; Reith, M. E.; Wang, D. N. LeuT-desipramine structure reveals how antidepressants block neurotransmitter reuptake. *Science* **2007**, *317*, 1390–1393. https://doi.org/10.1126/science.1147614.
- 34. Penmatsa, A.; Wang, K. H.; Gouaux, E. X-ray structure of dopamine transporter elucidates antidepressant mechanism. *Nature* **2013**, *503*, 85–90. https://doi.org/10.1038/nature12533.
- 35. Nishi, K.; Ono, T.; Nakamura, T.; Fukunaga, N.; Izumi, M.; Watanabe, H.; ... Otagiri, M. Structural insights into differences in drug-binding selectivity between two forms of human *α*1-acid glycoprotein genetic variants, the A and F1* S forms. *J. Biol. Chem.* **2011**, *286*, 14427–14434. https://doi.org/10.1074/jbc.M110.208926.