Mobile phases used

To select the one that will enable the best separation of the above mentioned substances the following (11 mobile phases) were tested:

I: toluene: ethyl acetate: glacial acetic acid (60: 40: 1 v/v), II: toluene: ethyl acetate: methanol (4: 4: 2 v/v), III: toluene: acetone: glacial acetic acid (80: 30: 1 v/v), IV: toluene: acetone: glacial acetic acid (10: 15: 0,2 v/v), V: ethyl acetate: chloroform: methanol: ammonia (5: 3,3: 1,5: 0,2 v/v), VI: dichloromethane: methanol: cyclohexane (95: 5: 40 v/v), VII: cyclohexane: chloroform: methanol (12: 6: 1 v/v), VIII: chloroform: methanol: ammonia (10: 25: 0,25 v/v), IX: toluene: acetonitrile: glacial acetic acid (60: 50: 2 v/v), X: hexane: chloroform: acetone: glacial acetic acid (60: 60: 30: 1 v/v), XI: cyclohexane: chloroform: methanol: glacial acetic acid (6: 3: 0,5: 0,5 v/v).

To select mobile phases, test solutions were prepared as described in Methodology, solutions A, B, C were heated for 2 hours, solution D was exposed to UV radiation (λ =254 nm) for 2 hours. The solutions (5 μ L) were spotted on the chromatographic plates.

Figures 1-11 show densitograms of the tested solutions of diclofenac sodium in various mobile phases: track 1- standard, track 2- with the addition of hydrochloric acid, track 3- with the addition of sodium hydroxide, track 4- with the addition of hydrogen peroxide, track 5- sample irradiated with radiation UV

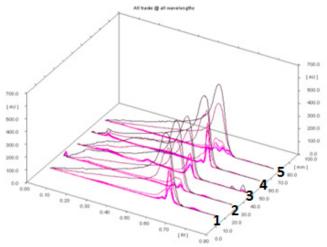


Fig. 1 Densitogram of tested solutions using mobile phase I.

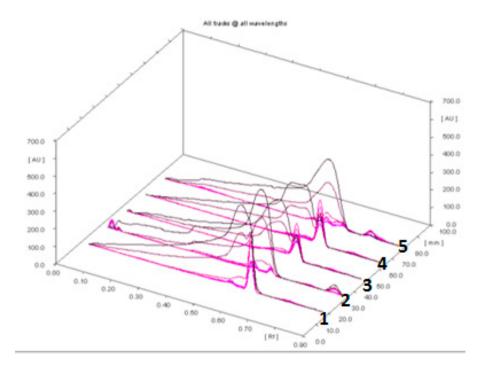


Fig. 2 Densitogram of tested solutions using mobile phase II

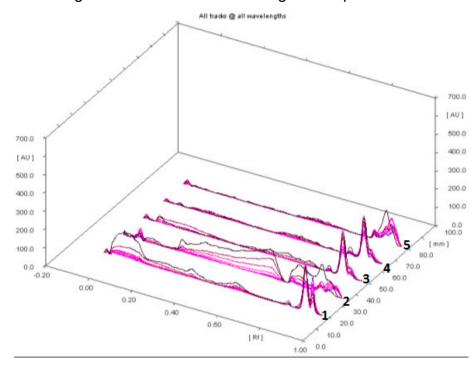


Fig. 3 Densitogram of tested solutions using mobile phase III

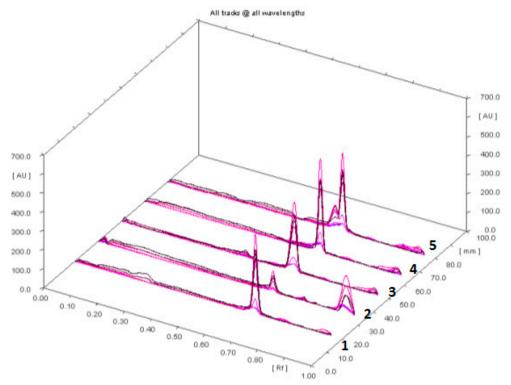


Fig. 4 Densitogram of tested solutions using mobile phase IV

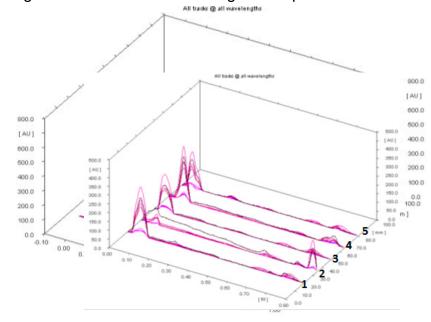


Fig. 5 Densitogram of tested solutions using mobile phase V

Fig. 6 Densitogram of tested solutions using mobile phase VI

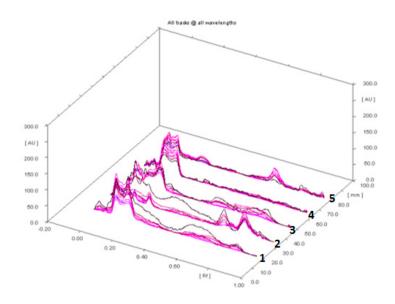


Fig. 7 Densitogram of tested solutions using mobile phase VII

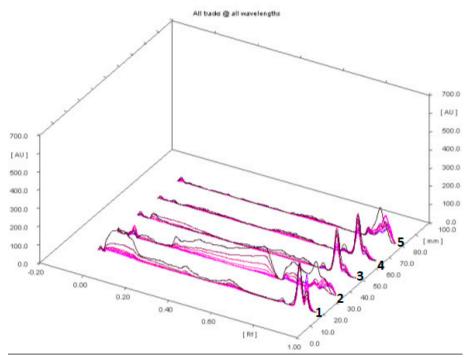


Fig. 8 Densitogram of tested solutions using mobile phase VIII

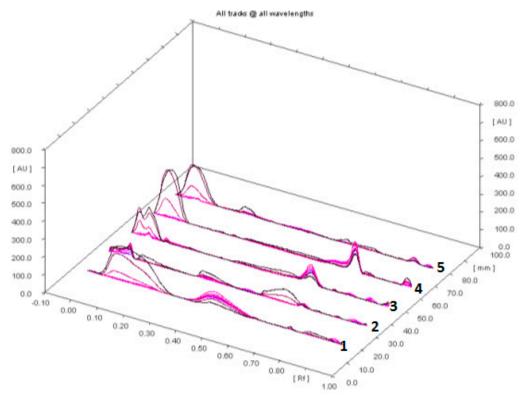


Fig. 9 Densitogram of tested solutions using mobile phase IX

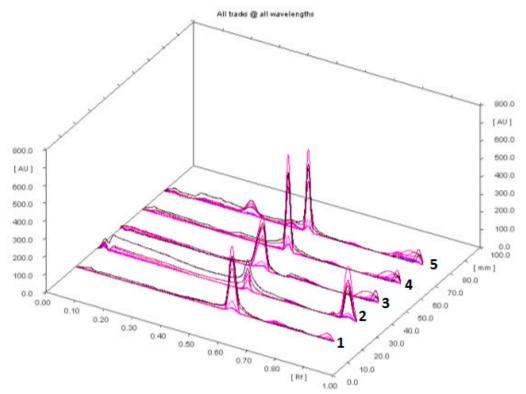


Fig. 10 Densitogram of tested solutions using mobile phase X

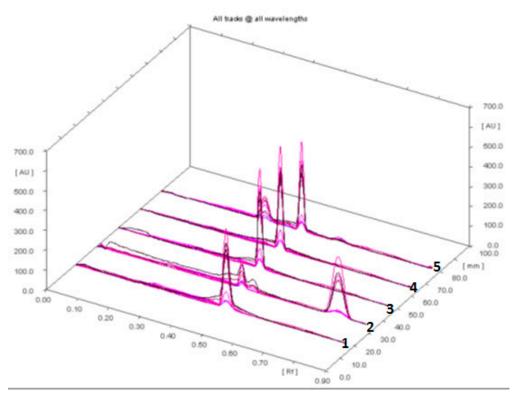
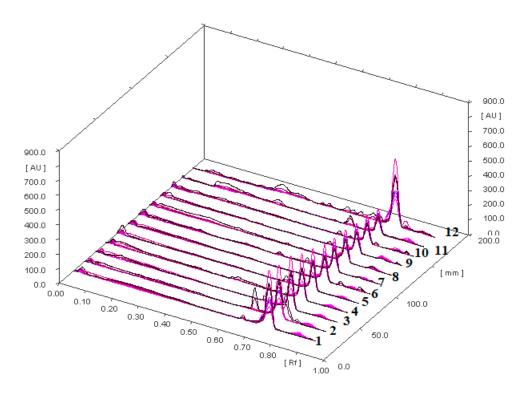


Fig. 11 Densitogram of tested solutions using mobile phase XI


Based on the above analysis results, 3 mobile phases were selected for further research, namely phases: IV, X, XI

Methanolic solution of diclofenac sodium with the addition of HCI, heated at 90 ° C

- 1- Immediately after adding HCI
- 2-0.5 hours heated
- 3-1.0 hours heated
- 4-1.5 hours heated
- 5-2.0 hours heated
- 6-2.5 hours heated
- 7-3.0 hours heated
- 8-3.5 hours heated
- 9-4.0 hours heated
- 10-4.5 hours heated
- 11-5 hours heated

12- Standard, i.e. methanolic solution of diclofenac sodium

Fig. 12 Densitogram after separation using a mobile phase IV

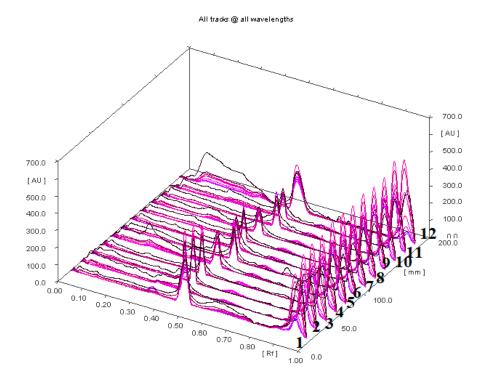


Fig. 13 Densitogram after separation using a mobile phase $\,X$

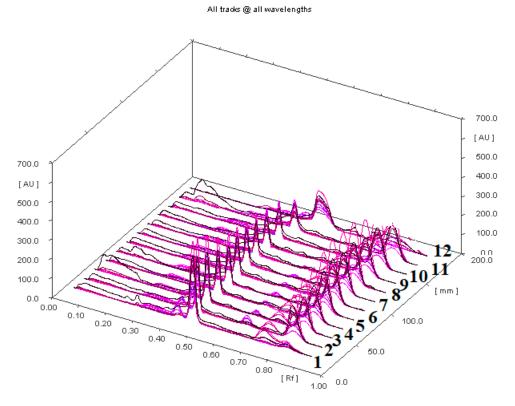
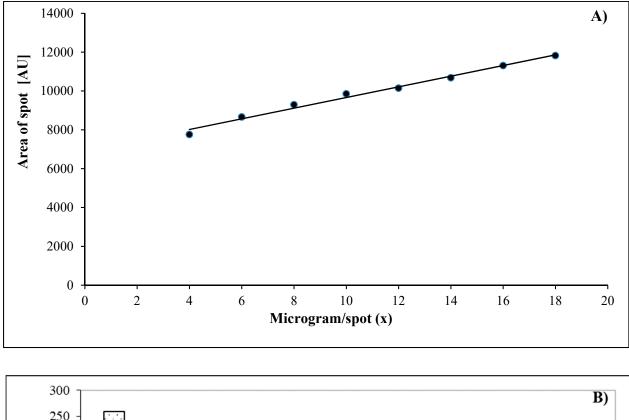
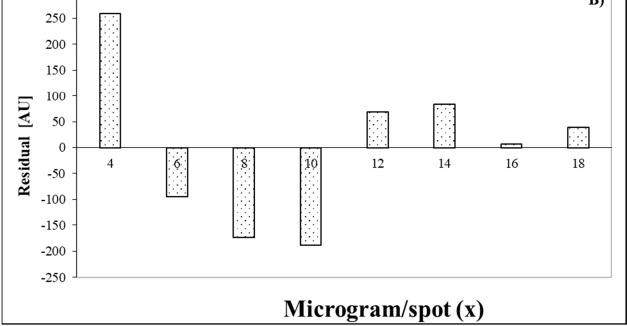




Fig. 14 Densitogram after separation using a mobile phase IX

CALIBRATION

Fig. 15 Calibration plot (**A**) and plot of residuals (**B**) for diclofenac sodium in the linear working range (mobile phase **XI**: cyclohexane: chloroform: methanol: glacial acetic acid, 6: 3: 0,5: 0,5 v/v).

Table 1. R_F and R_S values of diclofenac sodium with the addition of hydrochloric acid, which was heated at 90°C for 90 minutes and developed in the XI mobile phase (D- diclofenac sodium, A-diclofenac related compound A [1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one], P - unidentified degradation products of diclofenac sodium (see Fig.1 in the manuscript)

Symbol	R _F	Rs
compound		
Р	0.11	
Р	0.38	2.40
D	0.45	1.33
Р	0.63	4.54
Р	0.73	1.60
А	0.80	1.60

Table 2. R_F and R_S values of diclofenac sodium with the addition of hydrochloric acid, which was heated at 90°C for 5 h and developed in the XI mobile phase (D- diclofenac sodium, A- diclofenac related compound A [1-(2,6-dichlorophenyl)-1,3-dihydro-2H-indol-2-one], P - unidentified degradation products of diclofenac sodium (see Fig.2 in the manuscript)

Symbol	R _F	Rs
compound		
Р	0.07	
Р	0.11	1.05
Р	0.16	0.33
D	0.45	4.16
Р	0.73	4.40
А	0.80	0.89

Table 3. R_F and R_s values of diclofenac sodium from its methanolic solution, which was exposed to UV radiation ($\lambda = 254$ nm) for 5 h and developed in the XI mobile phase (D-diclofenac sodium, P - unidentified degradation products of diclofenac sodium (see Fig.3 in the manuscript)

Symbol	R _F	Rs
compound		
Р	0.18	
Р	0.37	1.83
Р	0.42	1.23
D	0.45	1.56
Р	0.65	3.76
Р	0.91	4.20

Table 4. R_F and R_S values of diclofenac sodium, which was exposed to UV radiation ($\lambda = 254$ nm) on silica gel for 5 h and developed in the XI mobile phase (D- diclofenac sodium, P - unidentified degradation products of diclofenac sodium (see Fig.4 in the manuscript)

Symbol	R _F	Rs
compound		
Р	0.03	
Р	0.21	4.60
Р	0.33	2.71
Р	0.41	1.18
D	0.45	0.92
Р	0.75	3.62
Р	0.91	2.31