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Abstract: The developing brain is extremely sensitive to many chemicals. Exposure to 
neurotoxicants during development has been implicated in various neuropsychiatric and 
neurological disorders, including autism spectrum disorders and schizophrenia. Various screening 
methods have been used to assess the developmental neurotoxicity (DNT) of chemicals, with most 
assays focusing on cell viability, apoptosis, proliferation, migration, neuronal differentiation, and 
neuronal network formation. However, assessment of toxicity during progenitor cell differentiation 
into neurons, astrocytes, and oligodendrocytes often requires immunohistochemistry, which is a 
reliable but labor-intensive and time-consuming assay. Here, we report the development of a triple-
transgenic zebrafish line that expresses distinct fluorescent proteins in neurons (Cerulean), 
astrocytes (mCherry), and oligodendrocytes (mCitrine), which can be used to detect DNT during 
neuronal differentiation. Using in vivo fluorescence microscopy, we could detect DNT by 6 of the 
10 neurotoxicants tested after exposure to zebrafish from 12 h to 5 days’ post-fertilization. Moreover, 
the chemicals could be clustered into three main DNT groups based on the fluorescence pattern: (i) 
inhibition of neuron and oligodendrocyte differentiation and stimulation of astrocyte 
differentiation; (ii) inhibition of neuron and oligodendrocyte differentiation; and (iii) inhibition of 
neuron and astrocyte differentiation, which suggests that reporter expression reflects the 
toxicodynamics of the chemicals. Thus, the triple-transgenic zebrafish line developed here may be 
a useful tool to assess DNT during neuronal differentiation. 

Keywords: developmental neurotoxicity; neuronal differentiation; zebrafish; in vivo fluorescence 
imaging 

 

1. Introduction 

The developing brain is more vulnerable than the adult brain to most chemicals [1–6]. Exposure 
to neurotoxicants during development has been implicated in various neurodevelopmental and 
neuropsychiatric diseases, including autism spectrum disorders, attention deficit hyperactive 
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disorder, learning disabilities, and schizophrenia [7–15]. The Organisation for Economic Co-
operation and Development (OECD) has developed guidelines to assess the developmental 
neurotoxicity (DNT) of chemicals, with rodents as the model animal of choice [16]. However, while 
rodents have contributed significantly to our understanding of DNT [3,17–19], experiments using 
large numbers of rodents are time-consuming, expensive, and accompanied by ethical concerns. 
Thus, alternative test systems, such as human stem/progenitor cell and zebrafish models, have the 
potential to enable testing of large chemical libraries while reducing expense and minimizing rodent 
use [4,20–25]. 

In human stem/progenitor cell models, various endpoints have been used to assess DNT, 
including viability, apoptosis, proliferation, migration, differentiation, and neuronal network 
formation [24,26,27]. These endpoints facilitate the identification of adverse outcome pathways and 
the development of integrated approaches to test and assess chemical-induced DNT [22,28]. 
Differentiation of neural stem/progenitor cells into neurons, astrocytes, and oligodendrocytes has 
been analyzed by immunohistochemical staining with antibodies against cell-specific proteins such 
as NeuN/RNA-binding Fox3 (Rbfox3) for neurons, glial fibrillary acidic protein (GFAP) for 
astrocytes, and myelin basic protein (MBP) for oligodendrocytes [26,29]. Reporter assays in which 
expression of fluorescent proteins is driven by the promoters of genes selectively expressed in 
neurons, astrocytes, and oligodendrocytes have also been used to assess the effects of developmental 
neurotoxicants on cell differentiation [30]. Fluorescent reporter assays do not require time-consuming 
procedures such as fixation and immunostaining, and they can be performed in a relatively high-
throughput manner. However, distinguishing between multiple cell types requires a multiplexed 
fluorescent reporter system and, although this has been employed in some human stem/progenitor 
cell models [31], to our knowledge, it has not been used to distinguish between neurons, astrocytes, 
and oligodendrocytes in the same organism. 

Compared with other species, zebrafish offer several advantages as a model system for DNT 
testing. For example, the pattern of developmental gene expression and structure of various brain 
regions is relatively conserved in zebrafish; a wide range of chemicals can be absorbed from the 
surrounding medium; the small size and prolific breeding capacity lowers housing and experimental 
costs [4,23,32–35]; and the optical transparency, particularly of pigmentless mutants, make zebrafish 
suitable for in vivo fluorescence imaging [4,20]. To date, many transgenic (Tg) zebrafish lines have 
been developed that express fluorescent proteins in specific neuronal subtypes [36–38], and 
multiplexed reporter systems have also been implemented in this species [39]. To facilitate DNT 
testing, we have developed a triple-fluorescent Tg zebrafish line in which progenitor cell 
differentiation into neurons, astrocytes, and oligodendrocytes is accompanied by cell type-specific 
expression of the fluorescent proteins Cerulean, mCherry, and mCitrine, respectively, thereby 
enabling the effects of neurotoxicants on neuronal differentiation to be assessed in vivo. 

2. Results 

2.1. Construction of Transposon Vectors to Express Cerulean, Mcherry, and Mcitrine in Neurons, 
Astrocytes, and Oligodendrocytes 

We selected the Tol2 system to selectively express the three fluorescent proteins in neurons, 
astrocytes, and oligodendrocytes [40]. Tol2 is an autonomous transposon that can catalyze 
transposition of a DNA construct flanked by Tol2 sequences into the host genome. Cerulean, 
mCherry, and mCitrine were selected as the reporter proteins because their fluorescent signals can 
be distinguished using CFP, RFP, and YFP filters. To direct cell type-specific reporter expression, we 
used the regulatory sequences of enolase 2 (eno2), gfap, and mbp, which are selectively expressed in 
neurons, astrocytes, and oligodendrocytes, respectively [36–38]. The regulatory sequence of eno2 
gfap, or mbp was cloned upstream of the coding region of Cerulean, mCherry, or mCitrine, 
respectively, and then inserted between two Tol2 sequences in the vector backbone, generating eno2: 
Cerulean, gfap:mCherry, and mbp:mCitrine vectors (Figure 1). 
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Figure 1. Schematic representation of transposon vectors. 

The coding regions of Cerulean, mCherry, and mCitrine were placed downstream of the 
regulatory sequences of eno2, gfap, and mbp, and cloned between two Tol2 sequences in the vector 
backbone to direct selective protein expression in neurons, astrocytes, and oligodendrocytes, 
respectively. The resulting Tg (eno2:Cerulean, gfap:mCherry, mbp:mCitrine) zebrafish line is 
referred to as the triple-Tg line. 

2.2. Generation of Triple-Tg Zebrafish 

One of the three transposon vectors was injected together with transposase mRNA into fertilized 
zebrafish eggs to generate three lines expressing a single fluorescent protein (Cerulean, mCherry, or 
mCitrine) in the central nervous system (CNS). At maturity, the single-Tg zebrafish were mated to 
generate double-Tg zebrafish. In turn, the adult double-Tg zebrafish were mated to generate triple-
Tg zebrafish expressing Cerulean, mCherry, and mCitrine in the CNS. Representative in vivo images 
of the larvae at 5 days’ post-fertilization (dpf) is shown in Figure 2. The fluorescence patterns obtained 
are consistent with the results of previous studies of single fluorescent protein expression in zebrafish 
neurons, astrocytes, or oligodendrocytes driven by eno2, gfap, or mbp promoters, respectively [36–
38]. These results suggest that the fluorescent proteins are selectively expressed in neurons, 
astrocytes, and oligodendrocytes. 
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Figure 2. In vivo fluorescence imaging of the triple-Tg zebrafish line. 

Representative in vivo fluorescence images of triple-Tg zebrafish at 5 dpf. 

2.3. Assessment of DNT Using Triple-Tg Zebrafish 

To assess the DNT of a panel of chemicals, we first measured the no observed effect 
concentration (NOEC) for lethality, which is the highest concentration of each chemical to which 
zebrafish are exposed that does not significantly affect the lethality compared with the controls. 
Triple-Tg zebrafish were exposed to log serial dilutions of 13 chemicals from 12 h post-fertilization 
(hpf) to 5 dpf and then imaged at 5 dpf. The effects of the chemicals on lethality were evaluated 
according to a Fish Embryo Acute Toxicity Test guideline (OECD TG236) [41]. The measured NOEC 
for lethality of each chemical was designated the maximum tolerable concentration (MTC) and was 
used for DNT assessment. We employed 13 chemicals considered suitable for DNT test method 
validation [42,43], of which 10 were established developmental neurotoxicants: valproic acid (VPA), 
trichostatin A (TSA), carbamazepine (CBZ), nicotine (NCT), chlorpyrifos (CPF), cyclopamine (CPM), 
methyl mercury (MeHg), dexamethasone (DEX), retinoic acid (RA), and bisphenol A (BPA); and 3 
were not neurotoxicants: deferoxamine (DFX), saccharin (SAC), and acetaminophen (APAP). We selected 
the 10 developmental neurotoxicants because they have been reported to affect neuronal differentiation 
[44–56]. The MTCs for these chemicals were 1 nM for RA, 100 nM for TSA, CPM, and MeHg, 10 μM for 
CPF, 100 μM for VPA, CBZ, DEX, and SAC, and 1000 μM for DFX and APAP (Figure 3). 

We next performed in vivo fluorescence imaging of the triple-Tg zebrafish after exposure to the 
13 chemicals at their MTCs from 12 hpf to 5 dpf. The fluorescent signals were then quantified and 
normalized to the values for untreated control zebrafish (Figure 4 and Supplemental Table S1). We 
found that Cerulean fluorescence (CFP) was significantly reduced by exposure of zebrafish to TSA, 
CBZ, NCT, BPA, and CPF (Figure 4A and Supplemental Table S1), whereas mCherry fluorescence 
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(RFP) was significantly increased by VPA and TSA and significantly decreased by BPA (Figure 4B 
and Supplemental Table S1), and mCitrine fluorescence (YFP) was significantly decreased by VPA, 
TSA, CBZ, and NCT (Figure 4C and Supplemental Table S1). To translate the fluorescent protein 
expression patterns into functional effects on neuronal differentiation, we calculated the ratios of the 
fluorescent signals. VPA, TSA, and CBZ significantly increased the RFP/CFP ratio and decreased the 
YFP/CFP and YFP/RFP ratios (Figure 4D–F and Supplemental Table S1), suggesting that these 
compounds increased and decreased the differentiation of progenitors into astrocytes and 
oligodendrocytes, respectively. NCT significantly decreased the ratios of YFP/CFP and YFP/RFP, but 
not RFP/CFP (Figure 4D–F and Supplemental Table S1), suggesting that NCT preferentially interfered 
with the differentiation into oligodendrocytes. SAC, APAP, and DFX did not significantly affect the 
fluorescent signals, which is consistent with the fact that these chemicals are considered to not be 
neurotoxicants. However, we were not able to detect the significant change of these fluorescent signals 
in zebrafish exposed to CPM, RA, MeHg, and DEX that have been reported to be developmental 
neurotoxicants [42,43]. Hierarchical clustering of the fluorescence parameters for each chemical (Figure 
5) revealed tight clustering of i) TSA, VPA, and CBZ; ii) CPM, NCT, and CPF; iii) BPA and RA; and iv) 
DEX, SAC, APAP, and DFX; reflecting on the trend of i) increase of RFP and decrease of YFP and 
CFP; ii) decrease of YFP and CFP; iii) decrease of RFP and CFP; and iv) little change of CFP, RFP, and 
YFP, respectively. MeHg, whose average signal of YFP was relatively high, was not tightly clustered 
with other chemicals. Thus, the triple-Tg zebrafish line appears to be capable of discriminating 
between developmental neurotoxicants that affect different cell types within the CNS. 

 
Figure 3. Bright-field images of triple-Tg zebrafish exposed to the maximum tolerable concentrations 
of chemicals during early development. (A) Experimental protocol. (B) Triple-Tg zebrafish were 
treated with the indicated chemicals at their maximum tolerable concentrations from 12 hpf to 5 dpf. 
The animals were then anesthetized and subjected to in vivo bright-field imaging using a 
stereomicroscope. 
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Figure 4. Quantification of in vivo fluorescence imaging of triple-Tg zebrafish exposed to chemicals 
at the maximum tolerable concentrations during early development. Triple-Tg zebrafish were treated 
as described for Figure 3 and subjected to in vivo fluorescence imaging at 5 dpf. The fluorescence 
signals for CFP (A), RFP (B), YFP (C), RFP/CFP ratio (D), YFP/CFP ratio (E), and YFP/RFP ratio (F) 
were quantified and normalized to the mean signals in the untreated control zebrafish group (CNT). 
* p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. Data are presented as the mean ± SEM of 4–77 
zebrafish/chemical. 
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Figure 5. Hierarchical clustering of chemicals based on their effects on Cerulean (CFP), mCherry 
(RFP), and mCitrine (YFP) expression in triple-Tg zebrafish. The normalized score of six fluorescence 
parameters (CFP, RFP, YFP, RFP/CFP, YFP/CFP, and YFP/RFP) from triple-Tg zebrafish exposed to 
chemicals at their MTC from 12 hpf to 5 dpf were subjected to hierarchical clustering using Manhattan 
distance with average linkage. 

3. Discussion 

Here, we report the development of a triple-Tg zebrafish line expressing Cerulean, mCherry, 
and mCitrine in neurons, astrocytes, and oligodendrocytes, respectively, and we demonstrate with 
in vivo fluorescence imaging that the line can be used to assess the effects of chemicals on the 
differentiation of neural progenitors into the three cell types. Thus, this triple-Tg zebrafish line may 
be a useful tool for DNT testing during neuronal differentiation. 

Previous work has demonstrated the utility of Tg zebrafish lines expressing a single fluorescent 
protein in neurons for DNT testing. For example, animals expressing green fluorescent protein (GFP) 
under the control of the neuron-specific hb9 promoter were successfully used to demonstrate a dose-
dependent reduction of axon length following exposure to ethanol [57], which is consistent with the 
DNT of ethanol in humans [58,59]. Similarly, a zebrafish line with nkx2.2a-driven expression of GFP 
in motor neurons was used to demonstrate significant shortening of axons following exposure to five 
neurotoxicants at concentrations that did not cause external malformations [60]. Another Tg zebrafish 
line expressing mCitrine in oligodendrocytes under the control of the mbp promoter was able to 
demonstrate not only the DNT of antithyroid drugs (methimazole and propylthiouracil), but also the 
stimulatory effects of thyroid hormone on oligodendrocyte differentiation [61]. A zebrafish line with 
HuC/elavl3-driven expression of GFP in neurons and olig2-driven dsRed expression in 
oligodendrocytes was successfully used to detect DNT of trimethyltin chloride [62]. To our 
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knowledge, however, there have been no reports of DNT testing using a triple-Tg zebrafish line 
expressing distinct fluorescent proteins in neurons, astrocytes, and oligodendrocytes. 

Here, we selected 13 chemicals recommended as reference compounds to validate newly 
developed assays for DNT [42,43]; of which 10 have been reported to be neurotoxicants and 3 have 
no reported neurotoxicity. By quantifying the relative fluorescence of each reporter protein in 
chemical-exposed zebrafish, we were able to detect significant effects of 6 of the 10 putative 
neurotoxicants (VPA, TSA, CBZ, NCT, CPF, and BPA) on neuronal differentiation. 

Based on their fluorescent signatures, VPA, TSA, and CBZ appeared to inhibit and stimulate the 
differentiation of oligodendrocytes and astrocytes, respectively. These results are consistent with 
previous studies in rodents demonstrating that VPA inhibits and stimulates neural progenitor cell 
differentiation to oligodendrocytes and astrocytes, respectively [44,45]. Activation of histone 
deacetylase 3 (HDAC3) has been reported to stimulate and inhibit the differentiation of rat neural 
progenitors to oligodendrocytes and astrocytes, respectively [63]. Interestingly, VPA, TSA, and CBZ 
are known to inhibit HDAC3 [64–66], suggesting that they may affect oligodendrocyte and astrocyte 
differentiation by suppressing HDAC3 activity in neural progenitor cells. Our results are also 
consistent with the report demonstrating the inhibition of neurogenesis by TSA and other HDAC 
inhibitors [67]. 

We found that exposure of the triple-Tg zebrafish to NCT, a nicotinic acetylcholine receptor 
(nAChR) agonist, suppressed the differentiation of oligodendrocytes, as indicated by the fluorescent 
signatures. This finding is consistent with previous work showing that gestational exposure of rats 
to NCT resulted in significantly reduced expression of myelin genes, including Mbp, in the prefrontal 
cortex and nucleus accumbens of juvenile rats [46]. We also found that CPF, an acetylcholinesterase 
(AChE) inhibitor, showed a trend to suppress the differentiation of oligodendrocytes in the triple-Tg 
zebrafish. In a similar study, exposure of rats to the AChE inhibitor carbofuran from gestational day 
7 onwards also led to impaired myelination in the hippocampus on postnatal day 21 [47]. The results 
of the present study are consistent with these reports, collectively suggesting that misregulation of 
nAChR function during development may be associated with impaired oligodendrocyte 
differentiation. Our results are also consistent with the report demonstrating the inhibition of 
neurogenesis by NCT and CPF [68,69]. Hierarchical clustering of the fluorescence parameters 
revealed that CPM was tightly clustering with NCT and CPF. It is noteworthy that CPM inhibits 
PAX6 and hedgehog signaling, key players in the differentiation into neurons and oligodendrocytes, 
respectively [48,70,71]. 

Triple-Tg zebrafish exposed to BPA showed significantly decreased Cerulean and mCherry 
expression, indicative of reduced the differentiation into neurons and astrocytes, respectively. BPA 
attenuate the expression of Pax6 [49], suggesting that BPA may decrease the differentiation into 
neurons by disrupting Pax6 functions. The mechanisms of how BPA decrease the differentiation into 
astrocytes remain to be elucidated. RFP signal seems to be reduced by RA in the hierarchical 
clustering. This is consistent with a previous report demonstrating that RA suppressed the expression 
of GFAP in embryonic day 13 cortical progenitor cells [55], although the reduction was not 
statistically significant in this study. 

We were not able to detect significant effects of MeHg and DEX on the neuronal differentiation 
in the triple-Tg zebrafish. It has been demonstrated that MeHg, DEX, and RA significantly affect 
neural progenitor differentiation in rodents [55,56,72]. In this study, zebrafish were exposed to these 
chemicals from 12 hpf to 5 dpf. We can change the exposure time and concentration of chemicals. 
Further studies are needed to optimize the assessment of DNT using triple-Tg zebrafish. The 
optimization could also stimulate using the triple-Tg zebrafish for drug discovery targeting neural 
regeneration and other studies focusing on neuronal differentiation. 

Finally, developmental exposure of triple-Tg zebrafish to SAC, APAP, and DFX had no 
significant effects on fluorescent protein expression, which is consistent with previous 
demonstrations that these chemicals are not developmental neurotoxicants [42,43]. 

This study has several limitations. First, we used eno2, gfap, and mbp as markers for neurons, 
astrocytes, and oligodendrocytes, respectively. Although these genes are well-established neuronal 
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cell type-specific markers in mammals [73–75] and zebrafish [36–38], they are expressed at relatively 
late stages of neuronal differentiation [73–75]. Therefore, the triple-Tg zebrafish developed in this 
study may not be suitable for DNT testing in the early stages of neuronal differentiation. Second, 
zebrafish can absorb most, but not all, chemicals from the surrounding medium, and chemicals with 
low lipophilicity (high hydrophilicity) tend to be poorly absorbed [4,33,76]. Third, the molecular 
mechanisms underlying the DNT of each chemical on neuronal differentiation in the Tg zebrafish 
remain to be clarified. Genome editing technology is easily performed in zebrafish, making it feasible 
to generate gene-specific knockout animals. Integrative analysis of various knockout and transgenic 
zebrafish lines will make it possible to clarify the adverse outcome pathways underlying the effects 
of neurotoxicants on neuronal differentiation. 

In summary, we have generated a triple-Tg zebrafish line to enable DNT screening of neuron, 
astrocyte, and oligodendrocyte differentiation within 1 week. Further studies with an expanded 
chemical library will be required to rigorously assess the utility of in vivo fluorescent imaging of 
triple-Tg zebrafish as an alternative method to assess DNT. 

4. Materials and Methods 

4.1. Ethics Statement 

Mie University Institutional Animal Care and Use Committee guidelines state that no approval 
is required for experiments using zebrafish. Nonetheless, the animal experiments described in this 
manuscript conform to the ethical guidelines established by the committee. 

4.2. Compounds 

Valproic acid (VPA), deferoxamine (DFX), acetaminophen (APAP), nicotine (NCT), 
dexamethasone (DEX), chlorpyrifos (CPF), and methyl mercury (MeHg) were purchased from Sigma 
(St. Louis, MO, USA). Cyclopamine (CPM) and retinoic acid (RA) were purchased from Wako (Osaka, 
Japan). Trichostatin A (TSA), carbamazepine (CBZ), bisphenol A (BPA), and saccharin (SAC) were 
purchased from Tokyo Kasei (Tokyo, Japan). With the exception of CPM, DFX, and APAP, stock 
solutions were prepared in dimethyl sulfoxide (DMSO; Nacalai, Kyoto, Japan). CPM was dissolved 
in ethanol (Wako), and DFX and APA were dissolved in in 0.3× Danieau’s solution (19.3 mM NaCl, 
0.23 mM KCl, 0.13 mM MgSO4, 0.2 mM Ca(NO3)2, 1.7 mM HEPES, pH 7.2). For experiments, 
chemicals were serially diluted in 0.3× Danieau’s solution. Controls contained the same final 
concentrations of vehicle. 

4.3. Zebrafish Husbandry 

Zebrafish were maintained according to standard methods as described previously [61,77]. 
Briefly, zebrafish were raised at 28.5 ± 0.5 °C with a 14/10 h light/dark cycle. Embryos were obtained 
by natural mating and cultured in 0.3× Danieau’s solution. 

4.4. Generation of Tg (eno2:Cerulean, gfap:mCherry, mbp:mCitrine) Zebrafish 

We used an albino zebrafish line [78] (Max Planck Institute for Developmental Biology, 
Tübingen, Germany) to generate the Tg zebrafish line. The coding regions of Cerulean, mCherry, and 
mCitrine were amplified by PCR from pCS2+8NCerulean, pCS2+8NmCherry, and pCS2+8NmCitrine 
plasmids, respectively (Addgene, Cambridge, MA, USA), and cloned into a Tol2 vector using the In-
fusion HD cloning kit (Takara Bio, Shiga, Japan) to generate three circular plasmids (pT2-Cerulean, 
pT2-mCherry, and pT2-mCitrine). Briefly, a fragment (bp 3017 to 1088) of pT2AL200R150G [40] was 
amplified by inverse PCR and fused with the coding regions of Cerulean, mCherry, or mCitrine to 
generate the circular plasmids. The promoters of zebrafish eno2 (−3783 to −3723 bp) [36] and mbp 
(−1873 to 80 bp) [38] were synthesized (Invitrogen, Carlsbad, CA, USA) and cloned into the relevant 
pT2 plasmid using the In-fusion HD cloning kit (Takara Bio, Shiga, Japan). The promoter of zebrafish 
gfap [37] was amplified from pEGFP-gfap (Intron1/5′/Exon1-zebrafish; Addgene) by PCR and cloned 
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into pT2-mCherry using the In-fusion HD cloning kit (Takara Bio). To generate single-Tg zebrafish, 
one of the three plasmids and transposase mRNA were injected into zebrafish embryos at the 1–4 cell 
stage, and larvae expressing the fluorescent protein in the CNS were selected and maintained. Mature 
F0 single-Tg zebrafish were mated with albino zebrafish and single-Tg F1 animals were selected and 
maintained. Mature F1 male single-Tg zebrafish were mated with mature F1 female single-Tg 
zebrafish expressing a different fluorescent protein to generate F2 double-Tg zebrafish. Mature F2 
double-Tg male and female zebrafish (e.g., males expressing Cerulean and mCherry and females 
expressing mCherry and mCitrine) were mated to generate F3 zebrafish. Finally, the F3 zebrafish 
with eno2-driven Cerulean expression in neurons, gfap-driven mCherry expression in astrocytes, and 
mbp-driven mCitrine expression in oligodendrocytes were selected by in vivo fluorescence imaging 
at 5 dpf, maintained, and analyzed. 

4.5. Exposure of Triple-Tg Zebrafish to Chemicals 

Mature triple-Tg zebrafish were mated with the albino mutant line and the resulting embryos 
(40 per well in 6-well plates) were exposed to serial dilutions of the chemicals from 12 hpf to 5 dpf 
without changing the medium. zebrafish were then imaged using a nikon smz800 stereoscopic 
microscope according to a fish embryo acute toxicity test guideline (oecd tg236) [41]. the highest 
chemical concentration that did not induce lethality (noec) was taken as the maximum tolerable 
concentration (mtc) for assessment of dnt. 

4.6. In Vivo Imaging of Triple-Tg Zebrafish 

Mature triple-Tg zebrafish were mated with the albino mutant line, and the embryos (40/well in 
6-well plates) were exposed to chemicals at the MTCs from 12 hpf to 5 dpf without changing the 
medium. At 5 dpf, the larvae were transferred to fresh 0.3× Danieau’s solution containing 2-
phenoxyethanol (500 ppm) to be anesthetized and then transferred to glass slides. A few drops of 3% 
low-melting agarose solution were placed over the larvae, and the animals were immediately 
oriented with the dorsal side up. The zebrafish were then observed using an epifluorescence 
microscope (SMZ25, Nikon, Tokyo, Japan) with the following filters: CFP (Ex/Em 425–445/457–500 
nm), RFP (Ex/Em 530–560/590–650 nm), and YFP (Ex/Em 458–512/529–550 nm) to detect Cerulean 
(Ex/Em 433/475 nm), mCherry (Ex/Em 587/610 nm), and mCitrine (Ex/Em 516/529 nm) fluorescence, 
respectively. Fluorescent signals were quantified using Volocity (Perkin Elmer, Cambridge, MA, 
USA). A region of interest was placed around the Cerulean fluorescence observed in the brain and 
spinal cord in the 256 gray-scale (0–255) image. The areas of CFP, RFP, and YFP fluorescence within 
the region of interest that contained pixels above the intensity threshold (30 for Cerulean and 
mCherry, 20 for mCitrine) were measured. Single-protein signals and the ratios of RFP/CFP, 
YFP/CFP, and YFP/RFP signals were calculated. 

4.7. Statistical Analysis 

CFP, RFP, YFP, RFP/CFP, YFP/CFP, and YFP/RFP fluorescent signals in each treated zebrafish 
were normalized to the average signals in the untreated control group. Data are shown as the mean 
± standard error of the mean (SEM). We performed D’Agostino–Pearson normality test to examine 
the distribution of these data related to each chemical. The test revealed that these data were not 
always normally distributed. We, therefore, used Kruskal–Wallis test and Dunnett’s multiple 
comparisons test to examine the differences between group means. Hierarchical clustering of log-
transformed normalized fluorescent signals was performed using Heatmapper [79] with Manhattan 
as the distance measurement method and average linkage as the clustering method. Statistical 
analyses were performed using Prism 7 software (GraphPad, La Jolla, CA, USA). 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Table S1: Summary of 
in vivo fluorescence imaging of triple-Tg zebrafish. 
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