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NMR Analysis:   

In protic solutions such as D2O, the oxime products reported in this paper would consist of a 

mixture of not only the ring opened E/Z isomers (major), but also the ring closed -glycosides 

(minor) as illustrated in Figure 1 of the main body of the paper.[2] Given the persistence of these 

different isomers, it is important to note some of the features present in the 1H NMR spectra.   

First, in the 1H spectra of 9-15 and 17, the two downfield signals found between 7.0-8.0 ppm 

correspond to the open chain E/Z isomers, with the most downfield and dominant signal the E 

isomer, and the more upfield signal the Z isomer.  Table S1 summarizes the E/Z ratios for the 

products.  What can also be noted from the 1H NMR spectra of 9-15 and 17 is the presence of 

several small signals integrating for less than 1H each.  These should not be interpreted as 

impurities, but instead as minor isomer species. All of the products correspond to either a single 

spot by TLC or a single peak eluted by SEC.  Additionally, the products all give rise to the 

expected number of protons, and finally, they have all been confirmed by high-resolution mass 

spectrometry (HRMS).  For example, from the evaluation of the 1H NMR of Compound 9, it can 

clearly be seen that the expected ratio of 3:1 for the Boc on the linker (1.40 ppm) to the acetyl 

protons on the sugar (2.02 ppm) matches that calculated using the peak integrations, despite the 

sum of the oxime signals at 7.49 ppm (E isomer) and 6.83 ppm (Z isomer) adding to only 0.9 total 

protons. Based on this information, it is therefore reasonable that the integration of the combined 

ring opened oxime E and Z signals will not integrate to a full proton, but that some portion of the 

product is present in the ring-closed form.  It would be expected that most of the ring-closed 

glycosides would predominantly exist in the more favorable -configuration where the linker is 

equatorial. A determination of the  ratio of these minor products could not be obtained from 

the current 1D 1H NMR data given the complexity of the signals overlapping in the region where 

the anomeric protons would be observed, and the expectation that the -isomer would only be 
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present in trace amounts at the most. However, an estimation of the percentage of product in the 

ring open oxime could be made from the sum of the E and Z integrations (Table S1) and was 

found to range from 71-90%, depending on the sugar.   

 

 

 

 

 

 

 

 

 

For the ketose-derived products, 20 and 21, there is no oxime proton present, therefore, no 

signals appear in the 7.0-8.0 ppm range as was seen for the aldose-derived products, 9-15 and 17.  

Instead, a strong signal corresponding to the proximal methylene group of the core adjacent to 

the oxime was used.  This group gives rise to two broad apparent triplet signals at 4.28-29 (E 

isomer) and 4.15 ppm (Z isomer) for 20 and 21.  These signals were assigned based on their 

similarity to the linker molecule used in the NMR study reported by Szabo and coworkers.[1] The 

ratio of these two peaks was therefore used to estimate the E/Z ratio of the ring-opened oxime 

present.  Unfortunately, as there is no E/Z proton available, the percentage of ring-opened oxime 

could not be estimated for 20 and 21.   

Sugar (Compound #) E/Z Ratio % Ring open oxime 
Monovalent     
GlcNAc (9) 3.5:1 90 
Cellobiose (10) 5.5:1 71 
Gentiobiose (11) 4.4:1 87 
Lactose (12) 7.1:1 81 
Maltose (13) 4.4:1 74 
Maltotriose (14) 4.6:1 79 
Melibiose (15) 5.4:1 83 
Trivalent     
Cellobiose (17) 5.4:1 60 
Sialic Acid (20) 3.0:1 ND 
Disialic Acid (21) 2.7:1 ND 

Table S1:  Summary of the E/Z ratios and % ring open oxime for all products.  For all but 20 and 21, this 
ratio was determined from the ratio of the E and Z proton signals found between 7.0-8.0 ppm in the 1H 
spectra.  For 20 and 21, this number was estimated from signals found at 4.15 and 4.28-4.29 ppm, which 
correspond to the first methylene of the core molecule adjacent to the oxime.[1] ND:  Not determined.     
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Figure S1:  1H NMR of Compound 9 (500 MHz, D2O).  
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Figure S2:  13C NMR of Compound 9 (125 MHz, D2O, internal MeOH standard). 
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Figure S3:  1H NMR of Compound 10 (500 MHz, D2O).  
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Figure S4:  13C NMR of Compound 10 (125 MHz, D2O, internal MeOH standard). 
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Figure S5:  1H NMR of Compound 11 (500 MHz, D2O).  
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Figure S6:  13C NMR of Compound 11 (125 MHz, D2O, internal MeOH standard). 
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Figure S7:  1H NMR of Compound 12 (500 MHz, D2O).  
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Figure S8:  13C NMR of Compound 12 (125 MHz, D2O, internal MeOH standard). 
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Figure S9:  1H NMR of Compound 13 (500 MHz, D2O). 
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Figure S10:  13C NMR of Compound 13 (125 MHz, D2O, internal MeOH standard). 
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Figure S11:  1H NMR of Compound 14 (500 MHz, D2O).  
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Figure S12:  13C NMR of Compound 14 (125 MHz, D2O, internal MeOH standard). 
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Figure S13:  1H NMR of Compound 15 (500 MHz, D2O). 
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Figure S14:  13C NMR of Compound 15 (125 MHz, D2O, internal MeOH standard). 
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Figure S15:  1H NMR of Compound 17 (500 MHz, D2O). 
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Figure S16:  13C NMR of Compound 17 (125 MHz, D2O, internal MeOH standard). 
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Figure S17:  1H NMR of Compound 20 (500 MHz, D2O). 
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Figure S18:  13C NMR of Compound 20 (125 MHz, D2O, internal MeOH standard). 
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Figure S19:  1H NMR of Compound 21 (500 MHz, D2O). 
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Figure S20:  13C NMR of Compound 21 (125 MHz, D2O, internal MeOH standard). 
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