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Abstract: The lung presents a unique challenge for iron homeostasis. The entire airway is in direct
contact with the environment and its iron particulate matter and iron-utilizing microbes. However,
the homeostatic and adaptive mechanisms of pulmonary iron regulation are poorly understood.
This review provides an overview of systemic and local lung iron regulation, as well as the roles
of iron in the development of lung infections, airway disease, and lung injury. These mechanisms
provide an important foundation for the ongoing development of therapeutic applications.
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1. Introduction

Iron is an essential trace mineral for normal biological function in almost all organisms. Most of
the body’s iron is contained within the heme of hemoglobin, the vital oxygen carrier in blood. Iron is
also required for cell viability and proliferation as a catalytic constituent of iron-containing proteins
that are involved in DNA synthesis and repair, and cellular energy metabolism [1]. As expected, iron
deficiency results in the impairment of both systemic oxygen delivery and cellular function. Conversely,
an excess of iron also has deleterious effects for the host, leading to cellular toxicity via iron-generated
oxyradicals and peroxidation of lipid membranes [2]. Systemically, increased iron availability is also
associated with the increased virulence of multiple pathogens, including Yersinia enterocolitica [3],
Escherichia coli [4], and Klebsiella pneumoniae [5]. In order to maintain an appropriate iron balance,
organisms have evolved complex systemic homeostatic and cellular iron transport mechanisms [6].

Iron homeostasis in the lung faces unique challenges. The entire lung epithelium is exposed to
inhaled air containing iron particulate matter and infectious pathogens, and is also part of a delicate
air–blood interface whose gas exchange function is highly susceptible to impairment by cytotoxic injury.
Thus, lung iron bioavailability must be highly regulated to prevent its use by microbes during infection
and to ensure sequestration of catalytically active iron to prevent cytotoxicity. The terminal respiratory
unit, the alveolus, is composed of three major cell types, all of which are active in the maintenance
of lung iron homeostasis: types 1 and 2 alveolar epithelial cells, and alveolar macrophages. Alveolar
macrophages are a specialized subset of macrophages that defend against pulmonary infections,
and mediate damage and repair of the lung parenchyma [7]. However, the specific roles of these
cell types in basal iron regulation or in response to injury or infection is still poorly understood.
The purpose of this review is to explore recent scientific advances in understanding the role of iron
regulation in lung pathologies.
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2. Iron Regulation

2.1. Systemic Iron Homeostasis

A human adult requires ~25 mg/day of iron for baseline homeostasis and the replacement
of minor unregulated iron losses. The majority of this iron comes from the recycling of senescent
erythrocytes, while 1–2 mg is obtained from the absorption of dietary iron in the form of heme
or non-heme iron [8]. During times of stress erythropoiesis, iron utilization by the bone marrow
can increase 10-fold to accommodate the increased hemoglobin synthesis [9]. Thus, rapidly acting
compensatory mechanisms have evolved to increase dietary iron absorption and to allow the rapid
mobilization of iron from stores.

Hepcidin, a 25 amino acid peptide hormone produced primarily by hepatocytes [10], is the
key regulator of systemic iron homeostasis. Hepcidin acts by binding to the transmembrane
protein ferroportin (Fpn), the only known cellular iron exporter [11], causing its internalization
and degradation within lysosomes [11,12]. As Fpn is highly expressed on duodenal enterocytes,
macrophages, and hepatocytes, hepcidin controls the flow of iron from dietary gut absorption, recycling
of erythrocytes, and tissue iron stores. Hepcidin production is stimulated by increases in plasma iron
or iron stores, and during times of inflammation [13,14].

In addition to the mechanisms controlling systemic iron availability, each cell possesses regulatory
mechanisms to coordinate its iron uptake, storage, and export. Most cells acquire iron by importing
transferrin bound iron from blood via the membrane transferrin receptor (TfR1), after which iron is used
for basal cellular requirements or stored in the form of ferritin. Splenic and hepatic macrophages also
acquire iron through the phagocytosis of damaged or senescent erythrocytes, and this iron is similarly
stored as ferritin or utilized for basic cellular functions [15]. Cellular iron export occurs through Fpn,
which allows cells such as duodenal enterocytes and macrophages to release iron into circulation
and maintain systemic iron homeostasis. In addition, Fpn expression is increased in iron-overloaded
tissues and acts as a safety valve to export excess cellular iron to prevent oxidative damage.

Coordination of cellular iron acquisition and distribution is regulated post-transcriptionally in
response to changes in intracellular iron levels by the iron regulatory protein/iron responsive elements
(IRP/IRE) system [16–18]. The iron regulatory proteins, IRP1 and IRP2, bind to IREs, which are
untranslated regions of mRNA located at either the 5′ or 3′ end. IREs at the 5′ end are associated
with genes involved in the storage or export of iron (ferritin, Fpn), while 3′ IREs are associated with
genes involved in iron uptake (TfR1, DMT1). Under conditions of cellular iron depletion, IRP1/IRP2
bind to IREs, preventing translation of mRNA containing 5′ IREs and stabilizing mRNA containing
3′ IREs. This leads to the increased expression of iron uptake proteins and decreased expression of
iron storage and export proteins. Conversely, in iron-loaded cells, IRP1 is converted to c-aconitase and
IRP2 is degraded, resulting in decreased IRP binding to IREs. This leads to increased expression of
iron storage and export proteins and decreased expression of iron uptake proteins.

2.2. Lung Iron Regulation

Iron regulation in the lung has not been well characterized, with only a few in vitro and in vivo
studies attempting to identify the iron transporters in pulmonary cells (Figure 1). TfR1 has been
identified as an importer of transferrin-bound iron in the alveolar epithelium and alveolar macrophages.
In response to systemic iron deficiency, TfR1 protein levels increased in whole rat lung. Conversely,
TfR1 protein expression in whole lung did not increase with intratracheally instilled iron oxide [19].
The DMT1 transporter, a principal importer of dietary non-heme iron and an importer of endosomal
iron from the Tf-TfR1 complex into cytoplasm, has also been shown to be expressed in both alveolar
epithelial cells and alveolar macrophages [20]. While respiratory DMT1 appears to be regulated by
the IRP/IRE system, there is inconclusive evidence on the effects of iron deficiency and overload
on the production of DMT1 mRNA and protein in the lung [19,21,22]. Multiple studies utilizing
DMT1 mutated murine models have implicated this iron transporter in the pathogenesis of lung
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injury. The Belgrade rat, an animal model of functional DMT1 deficiency, develops more severe lung
injury in response to lipopolysaccharide (LPS) and oil fly ash [23,24]. Similarly, mk/mk mice, also
defective in DMT1, have increased bleomycin-induced lung injury compared to wild-type controls [25].
The mechanism of DMT1 attenuating the lung’s response to inflammatory stimuli is unclear, but these
descriptive studies demonstrate a link between DMT1 and the lung’s inflammatory response. Thus,
although iron importers are present in the lung, little is understood about their regulation and role in
specific cell types and under different pathophysiological conditions.
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distribution remains unknown. Inset depicts an alveolar macrophage. Macrophages phagocytose 
airway red blood cells to recycle iron from heme. Solid arrows indicate direction of iron transport. 

Fpn was reported to be localized on the apical layer of the airway epithelia of human lung [26] 
and also expressed in alveolar macrophages [27]. While the liver is the predominant source of 
circulating hepcidin, the hormone is also expressed at lower levels in human airway epithelial cells 
and alveolar macrophages [28], raising the possibility that hepcidin has a paracrine role in the lung. 
One ex vivo study showed that LPS-stimulated mouse alveolar macrophages increased the 
expression of hepcidin mRNA and decreased Fpn mRNA. Iron treatment had no effect on hepcidin 
mRNA expression, but did upregulate both Dmt1 and Fpn [29]. Interestingly, another in vitro study 
showed that Fpn in airway epithelial cells did not internalize in response to hepcidin and that 
hepcidin itself had no significant effect on iron transport in either airway epithelial cells or alveolar 
macrophages [30]. However, Fpn levels do correlate with changes in iron status [27,31], suggesting 
that lung Fpn expression may be controlled preferentially by the IRP/IRE regulatory system, rather 
than a purely hepcidin-dependent mechanism. Additionally, the reported distribution pattern of Fpn 
on the apical layer of airway epithelial cells suggests that Fpn may play a tissue-specific role of iron 
detoxification in lungs [26]. 

Recent studies in mouse models with genetic iron overload have begun characterizing the roles 
of hepcidin and Fpn in lung iron homeostasis. Neves et al. investigated a murine disease model of 
hereditary hemochromatosis type 4, created by a global C326S amino acid substitution in Fpn that 
confers resistance to hepcidin binding and leads to systemic iron overload [32]. They reported that 
the Fpn mutant mice develop increased iron levels in airway epithelial cells and bronchoalveolar 
lavage (BAL) fluid [27]. Interestingly, while splenic and hepatic macrophages are predictably iron-
depleted from the increased Fpn protein exporting iron, a subset of alveolar macrophages showed 
iron overload. The authors suggest that these differences could be partially due to the varying levels 
of Fpn expression in alveolar macrophages.  

Deschemin et al. characterized the lungs in hepcidin knockout (HKO) mice, a mouse model of 
severe genetic iron overload [31]. The lack of hepcidin results in increased gut iron absorption with 
systemic iron overload, iron deposition in parenchymal tissues, and iron depletion of macrophages 
in the liver and spleen. Iron content in the lung increased, which resulted in compensatory decreases 

Figure 1. Proposed scheme of lung iron homeostasis. Iron is taken up into the alveolar epithelial cells
through transferrin receptor (TfR1) and DMT1, and exported through ferroportin (Fpn), which was
reported to be localized on the apical/airway facing layer of the epithelium. Within the cells, iron is
stored in a non-reactive state in ferritin. Though hepcidin is mostly produced in the liver for systemic
circulation, local production of hepcidin has also been suggested to play a role in lung iron homeostasis.
Zip8 is highly expressed in the lung and facilitates iron intake, though its specific distribution remains
unknown. Inset depicts an alveolar macrophage. Macrophages phagocytose airway red blood cells to
recycle iron from heme. Solid arrows indicate direction of iron transport.

Fpn was reported to be localized on the apical layer of the airway epithelia of human lung [26] and
also expressed in alveolar macrophages [27]. While the liver is the predominant source of circulating
hepcidin, the hormone is also expressed at lower levels in human airway epithelial cells and alveolar
macrophages [28], raising the possibility that hepcidin has a paracrine role in the lung. One ex vivo
study showed that LPS-stimulated mouse alveolar macrophages increased the expression of hepcidin
mRNA and decreased Fpn mRNA. Iron treatment had no effect on hepcidin mRNA expression, but did
upregulate both Dmt1 and Fpn [29]. Interestingly, another in vitro study showed that Fpn in airway
epithelial cells did not internalize in response to hepcidin and that hepcidin itself had no significant
effect on iron transport in either airway epithelial cells or alveolar macrophages [30]. However,
Fpn levels do correlate with changes in iron status [27,31], suggesting that lung Fpn expression may be
controlled preferentially by the IRP/IRE regulatory system, rather than a purely hepcidin-dependent
mechanism. Additionally, the reported distribution pattern of Fpn on the apical layer of airway
epithelial cells suggests that Fpn may play a tissue-specific role of iron detoxification in lungs [26].

Recent studies in mouse models with genetic iron overload have begun characterizing the roles
of hepcidin and Fpn in lung iron homeostasis. Neves et al. investigated a murine disease model of
hereditary hemochromatosis type 4, created by a global C326S amino acid substitution in Fpn that
confers resistance to hepcidin binding and leads to systemic iron overload [32]. They reported that the
Fpn mutant mice develop increased iron levels in airway epithelial cells and bronchoalveolar lavage
(BAL) fluid [27]. Interestingly, while splenic and hepatic macrophages are predictably iron-depleted
from the increased Fpn protein exporting iron, a subset of alveolar macrophages showed iron overload.
The authors suggest that these differences could be partially due to the varying levels of Fpn expression
in alveolar macrophages.
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Deschemin et al. characterized the lungs in hepcidin knockout (HKO) mice, a mouse model of
severe genetic iron overload [31]. The lack of hepcidin results in increased gut iron absorption with
systemic iron overload, iron deposition in parenchymal tissues, and iron depletion of macrophages in
the liver and spleen. Iron content in the lung increased, which resulted in compensatory decreases in
Tfrc and Dmt1 mRNA expression, and increased levels of Fpn and ferritin mRNA and protein levels.
Specific examination of the alveolar macrophages also demonstrated increased levels of Fpn and
ferritin. However, similar to the paper by Neves et al., these macrophages were iron-loaded, which is
in stark contrast to the iron depletion of splenic macrophages. This is likely related to the much lower
expression of Fpn in the alveolar macrophages of HKO mice compared to the splenic macrophages.
While these genetic mouse models of iron overload clearly demonstrate some unique characteristics
of lung iron homeostasis, further studies are necessary to clarify the role of the hepcidin–Fpn axis in
the lung.

ZIP8, encoded by the SLC39A8 gene, is a member of the SLC39A transmembrane metal importer
family and is expressed many-fold higher in the lung than in any other organ system [33]. Initially
identified as a zinc transporter, recent studies have shown that Zip8 also imports iron into the cytosolic
space [33]. Early in vitro and animal studies consistently show that inflammatory stimulation with
LPS greatly increases Zip8 expression, suggesting that this iron importer has a function in host
defense [34,35]. As of yet, there have been no studies investigating the role of Zip8 in human lung
infections or lung injury.

3. Iron in Lung Pathology

3.1. Acute Lung Injury

Acute lung injury (ALI), clinically known as acute respiratory distress syndrome (ARDS), is an
acute inflammatory process with neutrophil infiltration, increased vascular permeability, and diffuse
alveolar damage [36]. ARDS can occur as a result of a direct insult to the lung, including pneumonia,
aspiration, and smoke inhalation, or a systemic inflammatory response, including sepsis, trauma,
burns, and transfusion-related ALI. The pathophysiology of ARDS is largely mediated by the release of
free radicals and reactive oxygen species and their injurious effects on endothelial integrity [37]. In the
presence of iron, peroxides are converted to damaging radicals and enhance cytotoxicity by the Fenton
reaction [38]. The relevance of iron in the development of ARDS has been evaluated with numerous
clinical studies, showing strong correlations with iron and iron-related proteins, as well as the presence
or severity of ARDS. One study found increased concentrations of BAL total iron and non-heme
iron in ARDS patients, as compared to healthy controls. Iron-related proteins, including hemoglobin,
transferrin, TfR1, lactoferrin, and ferritin, were also all elevated in BAL [39]. Future studies are needed
to examine whether these changes in BAL iron and iron-related proteins have a causal effect on lung
injury or are simply a byproduct of lung injury and increased vascular permeability. Serum ferritin has
also been investigated as a predictor of ARDS, and was found to predict the development of ARDS with
high sensitivity and specificity in one clinical study [40]. As ferritin is a known acute phase reactant
and could simply be rising as part of the inflammatory response, a second clinical study confirmed the
predictive value of serum ferritin for the progression to ARDS while also demonstrating no correlation
of ferritin with the degree of hypoxia, time of invasive ventilation, or mortality [41]. These studies
consistently illustrate a strong association between iron-related proteins and the development of lung
injury, but further clinical and basic mechanistic studies are necessary to delineate the causative effects
of iron on ARDS.

3.2. Lung Infections

Host defense of the lung organ system is particularly challenging as the entire epithelium is in
constant and direct contact with environmental air containing numerous potential infectious pathogens.
As the delicate single-cell-layer alveolar epithelium is responsible for vital air–blood gas exchange,
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non-cytotoxic nutrient deprivation mechanisms of host defense play an important role against lung
microbial pathogens. The biological relevance of iron in the pathology of infections has been established
through numerous clinical and animal studies. Iron overload has been associated with increased
incidence of bacteremia with hemodialysis [42], and increased virulence of multiple microbes, including
Yersinia enterocolitica [3], Escherichia coli [4], and Klebsiella pneumoniae [5]. One clinical study found
a significant correlation between high dietary iron and the development of active tuberculosis in a
high-risk population [43]. Another study of 137 iron-deficient Somali patients found that iron repletion
resulted in a significant increase in infection incidence, with the activation of pre-existing malaria,
brucellosis, and tuberculosis [44].

Both invading pathogens and their hosts have developed multiple mechanisms to control the
supply of iron necessary for microbial survival (Figure 2). One particularly effective and well-described
method of iron scavenging by microbes is through the siderophore-dependent pathways, in which
microbes secrete small compounds called siderophores that complex with iron for active uptake by the
microbe [45]. In response, the host circumvents this pathway with neutrophil gelatinase-associated
lipocalin (NGAL), otherwise known as siderocalin or lipocalin-2. Produced by neutrophil granules
and epithelial cells in response to inflammation, this innate immune protein acts by binding to,
and sequestering, iron-loaded bacterial siderophores [46]. One murine study showed that intratracheal
Escherichia coli instillation resulted in a strong induction of NGAL expression in bronchial epithelium
and type 2 pneumocytes [47]. An in vitro study of Mycobacterium tuberculosis found that recombinant
NGAL restricted the growth of the organism in broth media in an iron-dependent manner [48]. Another
major iron-binding protein in the airways is lactoferrin, a member of the transferrin gene family that is
found in nasobronchial epithelial secretions and neutrophil granules. Lactoferrin sequesters airway
iron away from microbes and is taken up by the lactoferrin receptor on lung epithelial cells and
macrophages for iron reabsorption. Levels of lactoferrin correlate with the severity of infectious
pneumonia, pulmonary tuberculosis, and sepsis [49]. Another iron transporter that is vital in host
defense is natural resistance-associated macrophage protein 1 (NRAMP1), a divalent metal transporter
expressed specifically in phagosomes. NRAMP1 reduces phagosomal iron availability and confers
resistance to several intraphagosomal microbes [50,51].
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Figure 2. Proposed scheme of lung iron regulation during infection and inflammation. Bacteria secrete
siderophores to capture host iron. The host combats this by increasing import of iron (lactoferrin (Lfn),
DMT1), decreasing export of iron through ferroportin (Fpn), and increasing iron stores through ferritin.
Secreted Lfn and NGAL bind free iron and siderophore-bound iron in the airway to prevent bacterial
iron uptake. Inset shows an alveolar macrophage during infection. Alveolar macrophages phagocytose
bacteria as a host defense response. NRAMP1 is expressed in macrophage phagosomes and transports
iron out of the phagosome to limit iron availability to pathogens. Solid arrows indicate direction of
iron transport.
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The hepcidin–Fpn axis also has a principal role in innate immunity. Hepcidin plays a role in host
defense by sequestering iron to hinder the growth and proliferation of invading pathogens [52]. During
times of infection and inflammation, there appears to be multiple mechanisms of hepcidin expression
regulation. The primary regulator of inflammation-induced hepcidin production is the inflammatory
cytokine IL-6. A single infusion of IL-6 into healthy human subjects increased hepcidin production
and decreased serum iron [13]. In an inflammatory state, increased IL-6 causes the activation of STAT3
(signal transducer and activator of transcription 3) and its binding to the hepcidin promoter [53].
In response to bacterial stimulation, myeloid cells have also been shown to upregulate hepcidin and
decrease Fpn expression in a Toll-like receptor 4 (TLR4)-dependent manner [54].

Recently, several transgenic murine studies have established the roles of hepcidin and iron
status in the morbidity and mortality of various pathogenic infections. Hepcidin knockout mice
developed hyperferremia with a profound susceptibility to bacteremia from Klebsiella pneumoniae,
Yersinia enterocolitica, and E. coli, and treatment with a hepcidin analogue restored hypoferremia,
decreased bacterial burden, and improved survival in each model of infection [5,55,56]. These studies
indicate that hepcidin has a protective effect against siderophilic pathogens by limiting the availability
of non-transferrin bound iron, a form of iron that is readily accessed by microbes. Another study
showed that cell-specific knockdown of hepcidin in airway epithelium increased lung bacterial
burden and injury in mice after cecal ligation and puncture, a model of polymicrobial sepsis [57].
By contrast, hepcidin–Fpn regulation may have a deleterious effect on the host during infections with
intracellular pathogens. For example, one in vitro study demonstrated that the intracellular growth
of Chlamydia psittaci, C. trachomatis, and Legionella pneumophila in macrophages is enhanced by the
addition of hepcidin. Accordingly, macrophages from flatiron mice, a mouse strain heterozygous with
a loss-of-function Fpn mutation (H32R), had increased bacterial proliferation that was unchanged by
the addition of exogenous hepcidin [58]. Another study used murine macrophages to show decreased
virulence of intracellular Salmonella enterica when Fpn expression was increased, and increased
virulence with hepcidin-induced Fpn downregulation [59].

3.3. Cystic Fibrosis

Cystic fibrosis (CF) is a genetic disorder caused by mutations in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene, and is characterized by the retention of thick airway secretions
and chronic pulmonary infections. Patients with CF also have increased levels of iron and iron-related
proteins in their lower respiratory tract [60], and these iron levels are strongly correlated with increases
in inflammatory cytokines [61]. A clinically important area of study in CF is the microbial pathogen
Pseudomonas aeruginosa, which is responsible for the majority of CF infectious exacerbations. This
pathogen forms biofilms that are more resistant to antibiotics than the free-floating (planktonic) state
and hinder the eradication of these bacteria. Construction of this biofilm is highly dependent on iron
availability, and Pseudomonas aeruginosa has developed sophisticated mechanisms to acquire iron from
the environment, including both siderophore-dependent and independent systems [62].

3.4. Chronic Obstructive Pulmonary Disease

Both cigarette smoking and chronic obstructive pulmonary disease (COPD) are associated with a
disruption of iron homeostasis in the lung. Regular cigarette smoking results in a great increase in
lung exposure to iron, estimated at 5.2–13.8 µg of iron daily in a subject smoking 20 cigarettes per
day [63]. Compared to nonsmokers, smokers have increased total non-heme iron and ferritin levels in
BAL fluid and in alveolar macrophages [64], as well as increased serum ferritin levels [65]. Smokers
also have increased redox-active iron levels in exhaled breath condensate [66].

Although cigarette smoking is the largest risk factor for the development of COPD, genetic
association studies have uncovered differentially expressed iron-related genes that indicate a role for
iron in the susceptibility to developing COPD. The most relevant is the iron-regulatory protein IRP2
that was discovered to be a major COPD susceptibility gene in a case–control study [67]. Notably,
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IRP2 is located within a cluster of genes on a chromosome that also includes several components
of the nicotinic acetylcholine receptor [68]. As in smokers, levels of iron and iron-binding proteins
are increased in the lung tissue, BAL fluid, and alveolar macrophages of COPD patients, and iron
levels are correlated with disease severity and with worsening lung function [64]. A recent study
used mouse models of COPD to investigate the mechanism of IRP2’s role in the development of
COPD [69]. The group showed that IRP2 increases mitochondrial iron loading and levels of cytochrome
c oxidase (COX), leading to mitochondrial dysfunction and COPD development. Frataxin-deficient
mice, which develop higher mitochondrial iron loading due to lack of the mitochondrial iron-sulfur
regulator frataxin, were shown to develop worse airway mucociliary clearance and higher pulmonary
inflammation at baseline. Conversely, mice with decreased COX synthesis were protected from
cigarette smoke-induced lung inflammation and impairment in mucociliary clearance. Mice treated
with the mitochondrial iron chelator deferiprone were protected from impaired mucociliary clearance,
pulmonary inflammation, and the development of COPD. Together, these data indicate that IRP2
functions as a COPD susceptibility gene by increasing mitochondrial iron overload and levels of COX,
leading to mitochondrial dysfunction and the development of COPD.

4. Potential Therapeutics

Due to the apparent importance of iron homeostasis in the development of many lung pathologies
and infections, there has been a lot of interest in manipulating iron availability for potential therapeutic
applications. Conventional means of reducing iron load in the body include dietary restriction [70],
phlebotomy, and chelators, including deferoxamine, deferiprone, and deferasirox [71]. However,
such systemic iron depletion can predispose patients to multiple adverse effects, including nutritional
deficiency, anemia, and infection. For example, systemic iron chelators such as deferoxamine have
been shown to eliminate Pseudomonas aeruginosa biofilms on a CF line in vitro [72], but deferoxamine
also functions as a bacterial siderophore and can paradoxically act as an iron supply to specific
microbes such as Rhizopus [73]. Newer synthetic iron chelators with fewer adverse effects are also
being considered for a broad range of oxidative stress-related conditions, ranging from cardiovascular
to inflammatory and malignant pathologies [74]. In addition, there has been early work examining the
therapeutic potential of modulating specific iron transporters, including DMT1 and Fpn [12,75]. Studies
in mice have shown that hepcidin mimetics are effective in lowering systemic iron and modulating
the virulence and mortality of gram-negative pneumonia [5,76]. Another approach in the field of
CF research is the use of an iron competitor. Interfering with iron uptake by Pseudomonas aeruginosa,
with the cationic metal gallium, has been shown to have antimicrobial and antibiofilm activity [77].
Another proposed, but undeveloped, therapeutic approach would be the local or regional delivery of
iron modulators, such as chelators, iron competitors, or hepcidin analogues.

While there have been substantial scientific advances in our understanding of systemic iron
regulation and the pathogenesis of different iron disorders in recent years, lung iron regulation and its
role in pulmonary pathology has been an understudied area. Future basic and translational studies
are clearly necessary to advance this field and to enable the development of clinical therapeutic
applications. On a mechanistic level, the field requires a systematic characterization of the roles and
regulation of the principal iron transporters and iron-related proteins in each of the major alveolar cell
types as well as the bronchial airway epithelium. Transgenic mice with lung-specific deletions of iron
transporters, and further mouse models of key pulmonary pathologies, could be utilized to study the
roles of specific iron-related proteins in the development of lung disease.

Funding: NIH NHLBI K08-HL127293 (AK).
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