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Abstract: Iron (Fe) is a highly ample metal on planet earth (~35% of the Earth’s mass) and is
particularly essential for most life forms, including from bacteria to mammals. Nonetheless, iron
deficiency is highly prevalent in developing countries, and oral administration of this metal is so
far the most effective treatment for human beings. Notably, the excessive amount of unabsorbed
iron leave unappreciated side effects at the highly interactive host–microbe interface of the human
gastrointestinal tract. Recent advances in elucidating the molecular basis of interactions between
iron and gut microbiota shed new light(s) on the health and pathogenesis of intestinal inflammatory
diseases. We here aim to present the dynamic modulation of intestinal microbiota by iron availability,
and conversely, the influence on dietary iron absorption in the gut. The central part of this review is
intended to summarize our current understanding about the effects of luminal iron on host–microbe
interactions in the context of human health and disease.

Keywords: iron; gut microbiota; iron supplementation; iron transporters; mucosal immunity; SCFA;
intestinal inflammation; inflammatory bowel disease (IBD); colorectal cancer

1. Introduction

The availability of iron is enormously vital for many living organisms, particularly humans
and microbes. Iron has a direct impact on host–microbiota interactions via altering microbial/viral
growth, acting on the host immune system, and drafting in a range of biochemical processes critical
to sustain life [1–3]. Most living beings have evolved to acquire iron from their proximate niche as
an evolutionary conserved strategy. Iron mainly works as an universal co-factor for proteins such as
hemoglobin, and for numerous enzymes involved in oxygen transport mechanisms, mitochondrial
respiration, intermediary and xenobiotic metabolism, and fundamental biological processes such as
cell growth and differentiation [4]. Nonetheless, iron deficiency, the most prevalent nutritional disorder,
or iron overload in gut due to its malabsorption, can alter host mucosal immune responses. Notably,
this is supported by several observations in the course of infectious disease or intestinal inflammatory
disease [3,5,6]. Conversely, an accumulated body of evidence also suggests that immune activation
can regulate iron metabolism that then leads to the development of iron-restricted anemia [1,5,7,8].
In this review, we meticulously cover the multifaceted aspects involved in iron-mediated host–microbe
interactions in the gut, for a better understanding of bi-directional cross-talk between iron homeostasis
and the mucosal immune system primed by gut microbiota. We begin with introducing general
concepts of gut microbiota and metabolic stress in gut lumen. We then concisely present systemic
iron metabolism and homeostasis concepts. The central part of this review focuses on our current
knowledge about mechanisms mediating the effects of luminal iron on host intestinal immune
responses, as well as the effects of abnormal gut immunity on iron homeostasis due to changes in
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abundance of commensal and pathogenic bacteria in gut. We last discuss the effects of iron metabolism
on intestinal inflammation and colorectal cancers via modulation of the gut microbial profile.

2. Mammalian Gut Microbiome in Health

Humans and other animals co-exist with vast numbers of microorganisms in their lower intestine,
and they are in continuous interaction with these entities on a daily basis. If one thinks of a human as
a host–microbial super-organism, these prokaryotic constituents comprise 90% of our total cells and
contain 99% of the aggregate gene pool [9]. The existence of highly co-evolved mutualism between
microbes that inhabit body surfaces and the host immune system have promoted beneficial co-existence
and interdependency over millions of years. Such mutualism starts at birth and continues throughout
life, driven by the colonization of microbial consortia within specific niches. Mucosal surfaces are
densely colonized by bacteria, fungi, archaea, viruses, and parasites that are mainly non-pathogenic in
healthy hosts: the extended metabolic potential of biochemical pathways in microbes crucially contribute
to host physiology, including digestive [10,11] and protective [12–15] functions, microbial catabolism of
otherwise indigestible foodstuffs [16], provision of essential amino acids, maturation of host mucosal
immune system [17–20], and completing the bile-salt cycle and pre-systemic metabolism of drugs and
toxins [21–26]. By far, the gastrointestinal tract (GI) is the most heavily colonized organ in humans,
and it contains over 70% of all the microbes in the body. The human gut has an estimated surface area
of a tennis court, and it is a preferred site for colonization due to its constant physiological temperature
and richness in molecules that can be used as nutrients by microbes. Though bacteria belonging to
Bacteroidetes (~16–23%) and Firmicutes (~49–76%) phyla, and to a lesser extent, Actinobacteria (<5%)
and Proteobacteria (<10%) constitute the main players in human intestines, besides, there is a greater
diversity at lower taxonomic levels. Prominently, the viable intestinal microbiota are critical for retaining
a healthy host [27]. However, host–microbial interactions are not always mutualistic; unfortunately,
like any beautiful relationship, this mutualism can also turn sour [26,28]. Several features of the modern
lifestyle directly contribute to this situation via antibiotics and other medications, including birth control
and non-steroidal anti-inflammatory drugs, diets high in refined carbohydrates, sugar, and processed
foods or low in fermentable fibers, dietary toxins such as gluten in wheat and industrial seed oils, and the
modern plague chronic stress. Under these extreme pathophysiological conditions, the interactions
can be subsumed in a pathogenic relationship, leading to alterations in the composition of microbial
consortia and their metabolic functions, accompanied by a loss of fitness of the host—producing the
occurrence or manifestation of disease [11], including many gastrointestinal disorders such as diarrhea,
gastroenteritis, irritable bowel syndrome (IBS), and inflammatory bowel disease (IBD) [29–33]. However,
the uncharacterized features of different prokaryotic constituents within the diverse microbiological
environment that can provoke different types of host immune responses that still make it difficult to
identify the source(s) of a soured mutualistic relationship.

Many characteristics concerning mammalian gut microbiota, including the dynamics impact of
its assembly, which define the spatial distribution and functional features of its prokaryotic members,
remain vague. Concurrently, the factors involved in shaping the gut microbiota were extensively
studied in the last decade. Well-characterized factors that influence gut colonization during life are
among diet (including breast feeding and formula-based feed in early life), hygiene, illness, medication,
surgery, hospitalization, stress, sport activity, aging, and smoking and alcohol abuse, which all can
be classified as environmental factors [34,35]. Even though gut microbial changes can partially be
explained by host genetics [36–38], a recent study shows inter-individual gut similarities in the gut
microbial profiles of genetically unrelated individuals sharing a household pattern, and that over 20%
of the inter-individual microbiome variability is associated with environmental factors such as diet
and medication [35]. Interestingly, this study additionally demonstrates that there is limited evidence
for micro biome–genetic associations, based on an analysis performed on a cohort of 1046 healthy
adults [35]. Even though there are minor heritable taxa and SNP associations, gut microbial
composition is predominantly shaped by non-genetic factors [39–41]. Gaining mechanistic insight
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into the regulation of host–microbe interactions and the development of microbial consortia within a
specific niche is of fundamental importance for discriminating the associations and causalities between
the intestinal ecosystem and host immunity. This will undoubtedly lay the foundation for the future
therapies of intestinal inflammation-linked diseases [26].

3. Systemic Iron Metabolism and Homeostasis

A healthy human can absorb 25–50 g of dietary iron over lifetime. The majority of body-constituent
iron (~3–5 g) is presented as heme, an iron-containing compound of the porphyrin class in the
hemoglobin of red blood cells (RBCs), or in the myoglobin of muscles [42]. In order to replace iron
losses through urine, sweat, and desquamated enterocytes, humans are able to absorb iron in a daily
basis. On average, 2 mg of iron is delivered by dietary absorption into the duodenum, which is
balanced by an unregulated loss of 2 mg of iron. Dietary iron has three forms: inorganic, heme,
and ferritin. Inorganic dietary iron, existing in almost all diet sources, is mainly present in the oxidized
form, Fe(III), and this needs to be reduced to the Fe(II) form via ferrireductases prior to intestinal
uptake [43,44]. Although heme mainly derived from lean meat accounts for only 5–10% dietary iron,
it is more readily available compared to non-heme iron. Even though the uptake of dietary heme and
ferritin mechanistically is not well identified, evidence suggests that iron is consequently released
from these forms, and it enters a common pathway in the enterocyte as inorganic iron. The circulation
of iron is relatively small, and it must have a turnover of few hours to meet the daily requirement
of iron to support normal body functioning. The balance of iron level in human body is extremely
important, and since humans do not have a physiological mechanism for iron excretion, intestinal
iron absorption is a highly regulated dynamic process. Players such as macrophages in the spleen,
liver, and bone marrow maintain a transient fraction of iron, while an excess of the metal is stored
in the liver parenchyma within ferritin [45,46]. Despite rapid turnovers and changes in host iron
utilization, plasma iron concentration is generally stable, indicating that the delivery of iron from
recycling macrophages into plasma is homeostatically controlled. Iron is an essential bio-element for
most life forms, and its importance lies in its ability to mediate electron transfer (The ferrous state
of iron acts as an electron donor, and its ferric state acts as an acceptor). Therefore, iron plays a vital
role in the catalysis of enzymatic reactions that involve electron transfer (reduction and oxidation,
redox reaction). Even though it is a critically essential micronutrient, in reverse, it is a deleteriously
toxic oxidative radical when allowed to exchange electrons in an unrestrained manner with hydrogen
peroxide (H2O2), which it leads into the production of hydroxyl radicals and hydroxide ions via Fenton
chemistry. Hence, the balance between deficient or excessive levels of iron can be harmful for the host
via damage to DNA, protein, and lipids [47]. Therefore, this balance is tightly regulated at the systemic
and cellular levels by two distinct but interacting sets of regulatory mechanisms that humans and
other organisms, therefore, evolved to have [4,42,48].

The uptake of all forms of iron occurs mainly in the duodenum and upper jejunum. Systemically,
duodenal enterocytes absorb inorganic dietary non-heme ferric iron via divalent metal transporter 1
(SLC11A2 or DMT1) after reduction by membrane bound ferrireductases (DCYTB), the enzymes that
reduce ferric iron to ferrous iron, often as a by-product of another operation (Figure 1). Iron can also adopt
different spin states (high or low) in both the ferric and ferrous form, depending on its ligand environment.
Enterocytes are also able to uptake heme iron via an undefined mechanism (however, the proposed
transporter SLC46A1 in this study then appears to carry mostly folate) [49,50]. Iron translocation at the
cellular level occurs through the enterocytes and is exported into circulation by the basolateral exporter
ferroportin (SLC40A1) via a mechanism dependent on the oxidation of iron by a membrane-bound
multi-copper oxidase hephaestin enabling binding between plasma transferrin (Tf) and iron. Most cells
in the human body obtain iron from circulating diferric Tf (Tf-Fe(III)). This key form binds to transferrin
receptor 1 (TfR1), which is highly expressed on hemoglobin-synthesizing erythroblast cell surfaces and
is internalized as a Tf-Fe(III)–TfR1 complex by endocytosis. Later, ferric iron is released from Tf upon
acidification of the endosomes, and this is followed by reduction via STEAP3. Upon the reduction,
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it is exported into the cytosol by DMT1. This cytosolic form of iron is used then for the formation of
iron-containing proteins and by the mitochondria for the biosynthesis of heme and Fe–S clusters [51].
When enough iron is stored in the human system, iron export is reduced via hepcidin (a 25-amino acid
peptide hormone)-mediated internalization and the degradation of ferroportin. Additionally, ferritin
stores iron, which can be lost within three days by intestinal cells shedding (Figure 1) [51,52].
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Figure 1. Systemic iron metabolism. Cells and organs involved in iron regulation are shown. Hepcidin
produced in hepatocytes regulates iron efflux from other cells by regulating the stability of ferroportin.
Hepatocytes sense iron levels and release hepcidin accordingly. Divalent metal transporter 1 (DMT1)
on enterocytes internalize iron from the lumen of the duodenum after ferric Fe(III) is reduced to
ferrous Fe(II) by ferrireductase. In parallel, free heme is internalized via HRG1 and hemoxygenase-1
(HMOX1) helps to release Fe(II). Ferroportin on the enterocyte’s membrane that cooperates with
hephaestin (HEPH) oxidizes Fe(II) to Fe(III). Besides, hepcidin binds to ferroportin on macrophages
and duodenal enterocytes and splenic reticuloendothelial macrophages recycle iron from senescent
red blood cells and release via ferroportin with the aid of natural resistance-associated macrophage
protein 1 (Nramp1). Fe(II) is then oxidized into Fe(III) via ceruplasmin (Cp) in the circulation. Plasma
transferrin (Tf) captures and circulates iron in the body, and Tf–Fe2 supplies iron to all tissues in host
body. Hepatocytes sense iron levels in host and release hepcidin, a hepatic hormone that regulates
iron efflux from these cells by regulating the stability of ferroportin. The synthesis and secretion of
hepcidin by hepatocytes is also influenced by several conditions in the host, including inflammation,
endoplasmic reticulum (ER) stress, and hypoxia.

Daily absorbed iron (1–3 mg) represents only a fraction of the total body iron, while the recycling
of heme from senescent erythrocytes by reticuloendothelial (RE) macrophages provides the main
fraction of circulating iron [53]. Ferroportin exports the iron from heme into the circulation, and binds
to apotransferrin for hemoglobin synthesis in the bone marrow. However, liver hepatocytes play a
critical role in regulating serum iron levels via the integration of information on the systemic iron
status, and secreting an appropriate amount of hepcidin that orchestrates systemic iron fluxes and
controls plasma iron levels (Figure 1) [4,54]. Hepcidin also influences the internalization of ferroportin,
decreasing iron export. An Increased level of hepatic iron (>30 µmol/g of dry weight) and inflammation
are positively correlated with hepcidin production, and they are negatively correlated with ferroportin
degradation in intestinal cell RE macrophages, which leads to an iron reduction in plasma [55,56].
Mechanistically, iron–transferrin complexes bind to TfR1 on hepatocytes, thereby displacing the
TfR1-associated protein, HFE. Then, the binding interaction between HFE and hepatocyte-specific
type 2 transferrin receptor (TfR2) transduces signals acting together with other signals from bone
morphogenetic proteins (BMPs) to increase hepcidin secretion. This leads the binding of hepcidin
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to the transporter ferroportin on enterocytes and macrophages to induce its internalization and
lysosomal degradation, thus reducing the entry of iron into the circulation and restoring homeostasis
(Figure 1) [1,8]. In contrast, low levels of plasma iron control the inhibition of hepcidin expression and
an increase in transporter ferroportin, which allow more iron into the blood circulation [1,8]. Of note,
perturbations in hepcidin production, either inherited or acquired, consequently trigger iron deficiency
(high hepcidin levels) or iron overload (hepcidin deficiency).

4. Iron Regulation Along the Gastrointestinal Tract (GIT) Under the Shade of the Gut Microbiota

The stomach is an oxygenic and acidic environment [57]. The nature of diets and the stomach
leads the most of the dietary iron to reach the intestine in ferrous form, Fe(II), assisted by reducing
agents, such as ascorbic acid [57,58]. Contrary to that, in the small intestine, the pH rises, and hence,
the solubility of ferric iron decreases and the oxidation of iron increases [59]. Several studies
demonstrate the role of colonic microbiota on this iron, with a shift in the valence state and the
importance of siderophore production (Figure 2) [60–63]. Nevertheless, the iron solubility and
availability in the colonic lumen for gut microbiota is extremely difficult to predict, due to the
direct/indirect influence of many environmental and conditional factors. Depending on the dietary
availability, only ~15% of iron is absorbed in the duodenum, the primary site of iron absorption, and the
remainder passes into the colon, where it is available for utilization by the gut microbiota. Despite a
relative high theoretical concentration (~25 mmol/L) of iron presenting in the large intestine, only a
small proportion (~0.4 mmol) is bioavailable, likely due to the limited water solubility of inorganic iron
in a non-acidic microenvironment [64]. Additionally, iron transporters such as DMT1 have been shown
to express in the apical surfaces of the mammalian proximal colon, indicating an involvement of the
host in exacerbating the iron availability in the bacteria-dense large intestine [65,66]. Iron speciation
and the potential presence of lactoferrin, also known as lactotransferrin, lipocalin-2 (only expressed at
low level in healthy host) and as-yet unidentified defence proteins in colonic mucosa might contribute
to the limitation of iron at this site, which enables gut microbes to synthesize siderophores, the small,
high-affinity iron-chelating compounds, for their needs under the circumstances of limited amount of
iron in their surrounding environment (Figure 2) [67].

Not only oxygen and pH, but also different dietary products can also affect the valency and the
solubility of iron. Certain dietary products, mainly derived from plant sources including phytate [68,69],
polyphenols [70], and tannins [69] negatively affect iron absorption by tightly binding to iron and
decreasing iron bioavailability. Vitamin C is a water-soluble vitamin that is thought to increase the
absorption of non-heme iron, and it acts as a reducing agent to facilitate iron absorption from the
GIT [71,72]. Other organic acids such as tartaric, malic, succinic, fumaric, and citric acids can prevent
the precipitation of ferric iron when the pH increases, and this enhances Fe(II) and Fe(III) uptake [71,73].
Moreover, the fluctuations in gut metabolites cause an increase in short-chain fatty acids (SCFAs),
which can lower the pH, promote solubility, and reduce iron into the ferrous state, and importantly,
via stimulating the proliferation of epithelial cells, enhance the absorptive surface [63]. However,
the efficiency of colonic iron absorption is only about 14% that of the duodenum. The expression of
several critical genes in iron absorption pathway, including Dcytb, DMT1, TfR, and ferritin, are lower
(not ferroportin) in the colon than in the duodenum [74,75]. In contrast, colonic epithelial cells express
basolateral IREG1 in the same fashion as in the duodenum, and this protein could regulate colonic
epithelial cell iron levels [60]. Mice studies clearly showed that iron absorption genes in the colon are
up-regulated compared to iron-deficient mice, whereas Dcytb (a highly expressed duodenal reductase)
is down-regulated [60]. This hints at the influential role of the colonic microbiota on the valence state
of iron, by acting on extracellular reductases (Figure 2). A recent study indicates a direct role of host
microbiota in iron regulation. The study reported a 10-fold increase in intestinal Dcytb and Dmt1
expression, and a two-fold reduction in ferroportin expression in germ-free (GF) mice, as compared to
specific pathogen free (SPF) mice [76]. Therefore, in the absence of gut microbiota, the intestinal cells
displayed very low iron stocks, and transport systems towards the body were very scarce. However,
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in the presence of gut microbiota, these cells acquired a considerable capacity for iron storage (in the
form of ferritin), and favored its transport towards the body by increasing the expression of ferroportin.
This shows that intestinal cells have a capacity to adapt their ability to distribute and store iron in the
presence of gut microbiota. This notion is further supported with GF studies in rats, showing that the
reduced level of iron uptake increased the loss of iron in their feces compared to specific-pathogen-free
(SPF) rats [77], and they become anemic when fed on a low-iron diet [77]. The authors estimated that
the absorption and net retention of iron decreased by around 25% in the absence of viable intestinal
microbiota [77], in agreement with other studies that found a decreased absorption of iron after antibiotic
treatment in rats [78] and rabbits [79]. Additionally, elevated ferritin expression and epithelial cells
favoring iron storage upon gut colonization in GF mice provide an insight that gut microbes can
establish a specific iron regulation signature for crosstalk with the host intestinal epithelium. Notably,
due to the reduced environment in the colonic lumen, iron can form complex formations with mucins,
certain amino acids, proteins, and other food components. However, we do not entirely know yet how
accessible these insoluble forms of iron are for bacteria [80]. Somehow, ferrous and ferric forms of iron
are be present in the colonic lumen to favor the viability of gut microbiota.
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Figure 2. Several iron regulation mechanisms in the colonic lumen. The pH varies along the
gastrointestinal tract (GIT), and food intake can also drive further pH fluctuations in the GIT.
The stomach has a low pH (pH = 1.5–3.5) that favors the solubility of both ferric and ferrous iron
with or without a ligand. Even though the pH is low in the duodenum (pH = 1.5–4.5), the acidic
nature of the environment, mixed with food components, can increase the pH. A higher pH in the
small intestine (pH = 6.2–7.5) decreases the solubility of ferric iron, and within the colon, the pH
can slightly drop due to lactate and short chain fatty acids (SCFAs; acetate, butyrate, and propionate)
produced by the microbiota (pH = 4.5–7.5). In colonic lumen, (1) iron can bind to polyphenols, including
tannins and phytate, that can make iron accessible via the enzymatic degradation or removal of the
iron by siderophores; (2) An insoluble form of iron with phosphate, carbonate, or oxides can be
made soluble again via as-yet unidentified mechanisms that drive bacterial reduction or siderophore
chelation; (3) Host cells and/or gut microbes can utilize the reduced form of iron conjugated with
citrate or ascorbate, and additionally, iron-bound lactate, mucin, or amino acids might be easier
to access compared to an iron−ferritin complex by colonic microbiota via unknown mechanism(s);
(4) The low-affinity siderophores, alpha-hydroxyacids and alpha-keto-acids may theoretically assist
with the relatively easier access of iron, and they may also help for the iron cross-feeding by
heterologous siderophores (a phenomenon where certain bacterial strains can compete for each other’s
siderophores) within the colonic microbiota. At last, lipocalin-2 in the colonic lumen may scavenge
iron conjugated to siderophores to prevent uptake by pathobionts.
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We have more information on how the mammalian host cells in the gut are able to deal with
iron; however, we are quite restricted on the roles of the gut microbiota on iron regulation, which
remains speculative [65]. Iron availability for small intestinal microbiota, explicitly in the duodenum,
are likely to be different to that for colonic microbiota, since small intestinal microbiota are home
to a lower density of residing microorganisms compared to the colon. Nevertheless, colonic iron
absorption can contribute more to defence mechanisms, as iron exclusion from the colonic lumen can
contribute to nutritional immunity and restrain the gut pathobiont community [81]. Of note, oral iron
administration can modify gut microbiota due to metabolic changes in the colonic lumen.

5. The Effect of Iron on Gut Microbiota and Pathogens

The human gut microbiota encounters a broad range of unabsorbed luminal iron concentrations
acquired via a diet containing red meat and fortified cereals. Iron as an essential element, is also
extensively required across the domain of bacteria by functioning as a co-factor in iron-containing
proteins for redox reaction, metabolic pathways, and electron transport chain mechanisms [82,83].
These gut residents, just like humans, have evolved a number of mechanisms for obtaining iron from
their human hosts for survival and proliferation.

Iron is critical for the replication and survival of almost all bacteria, with a few exceptions, which
acquired alternative metabolic solutions from evolution. Lactobacillus plantarum was the first identified
iron-independent microbial strain, which contains just one or two iron atoms—a level that is considered
to be too low to provide iron with any conceivable biological function [84]. This feature also explains
their presence in natural gut microbiota and milk, a highly iron-restricted environment due to the
lactoferrin [85]. Another novel microorganism is Borrelia burgdorferi, a well-known pathogen causing
Lyme disease transmitted to humans by the bite of infected ticks of the genus Ixodes. This pathogen
have evolved in an iron-poor but a manganese-rich environment, by substituting Fe with Mn in their
metalloproteins, which is an essential trigger for the activation of SodA superoxide dismutase (SOD),
and which is essential for virulence [86]. This may facilitate infection in iron-free conditions that is
tightly restricted within the host systemic compartment [87].

Alternatively, siderophores are small, high-affinity iron-chelating compounds that are secreted
by bacteria, and they are the most prevalent strategies of aerobic and facultative anaerobic bacteria
families such as Enterobacteriaceae, Streptomycetaceae, and Bacillaceae, in order to scavenge inorganic
iron from the environment [88]. They are vastly produced by bacteria under low iron stress, due to their
high ferric ion-specific chelating capacities [83,89]. There is no shared protein structure of siderophores
due to the ability of the gut bacterial species to produce iron-siderophore complexes with specific
transporters [88].

On the other hand, some gut strains like Bacteroides fragilis are strongly dependent on heme
(or its precursor, protoporphyrin IX), since they have dispensed with the biosynthetic machinery
that is required for heme elaboration. Microbes can take up heme by releasing either hemophores or
expressing high-affinity heme outer membrane transporters [90]. In iron depletion, heme availability
in the GIT is likely to be limited [91]. Thus, iron availability severely influences the gut bacterial
ecosystem. Not surprisingly, different studies have investigated the effect of iron deficiency and/or
supplementation on shaping the composition of the intestinal microbiota, both in animals and humans.
These studies revealed well-defined patterns of microbial alterations in the gut which correlate with
iron-deficient and iron-supplemented diets.

Numerous studies have investigated the effect of iron deficiency and supplementation on the gut
microbiota (summarized in Figure 3). One of the oldest studies back in 1985, showed that infants given
an iron-fortified cow’s milk preparation had lower Bifidobacterium but higher counts of Bacteroides and
E. coli than infants receiving an unfortified cow’s milk preparation [92]. Another study on prolonged
consumption of iron-supplemented biscuits by children from Côte d’Ivoire demonstrated a high
proportion of fecal Enterobacteriaceae family and a low proportion of Lactobacillus, compared to a
control group receiving non-supplemented biscuits [93]. Moreover, iron deficiency in young Indian
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women was associated with low levels of Lactobacillus acidophilus in the gut [94]. In a recent study,
an iron-fortified micronutrient powder provided to Kenyan infants ranging from 6 to 10 months of age
caused an increase of several taxa from Enterobacteriaceae family, especially the pathobiont E. coli, and a
decrease of Bifidobacterium in their intestine [95]. Of note, the researchers also stated on higher levels of
calprotectin in infants supplemented with iron, an indication of increased gut inflammation [95]. A lack
of host factors such as iron status, immune system, and diet fluctuation in the gut might be drawbacks
to studying iron and microbiota. Nevertheless, in vitro studies hint on microbial metabolism in the
presence of iron and nutrients. An in vitro colonic fermentation study using immobilized human
fecal microbiota to show the impact of Fe deficiency and sufficiency showed that during very low
Fe conditions, several taxa, including Roseburia, [Eubacterium] ectale, Clostridium Cluster IV members,
and Bacteroides were decreased, while members of the Lactobacillus and Enterobacteriaceae family were
increased, consistent with a decrease of SCFA, namely butyrate and propionate [96].Pharmaceuticals 2018, 11, x 8 of 20 
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Figure 3. Microbial and metabolic changes in the colonic lumen after oral iron administration. Orally
administered iron has a direct impact on alteration of microbial composition in the gut. It can result
in reduction in the beneficial microbiota and the expansion of pathobionts (A), and this can also
provide an opportunity for the expansion of enteric pathogens (B). The host metabolism is additionally
influenced with an increase in protein fermentation and reduction in carbohydrate metabolism (C).
Importantly, iron can induce the generation of reactive oxygen species (ROS) in the gut (D), which
causes oxidative stress and consequently, intestinal epithelial damage. In turn, the host intestinal
immune system responds with inflammation, intestinal damage, and possible infection.

Experimental animal studies further supported the findings in human studies. These studies
pointed out the similar usual suspects, such as elevated abundance of the Lactobacillus, Enterobacteriaceae
family as well as Enterococcus and reduced abundance of Bacteroides and Roseburia members in
iron-deprived mice and young Sprague Dawley rats [97,98]. Besides, relatively low numbers of
total anaerobes in the colons of iron-supplemented mice suggested that the provision of Fe(III)



Pharmaceuticals 2018, 11, 98 9 of 20

suppressed bacteria, likely by the oxidation of normally reduced environments [97]. In a study where
researchers only assessed Bacteroidetes, the Enterobacteriaceae family, and Firmicutes, the influence
of ferric iron on gut microbiota was investigated, but no effect was found [99]. In rats, iron dose
and a time-dependent study showed changes in these usual suspects with addition of changes in
Clostridium difficile enterotoxin [100]. In a further study with a genetic modification of iron metabolism
in mice, the relative abundance of five lactic acid bacteria were significantly different among the
mouse lines, suggesting that the deletion of iron metabolism-related genes in the host can affect the
intestinal gut composition [101]. It was also shown that a heme-rich diet decreased gut microbial
diversity. Major taxonomic changes included an increase in the relative abundance of Proteobacteria,
and a decrease in the abundance of Firmicutes, similar to Dextran Sulfate Sodium (DSS)-induced
colitis [102]. Additionally, the intestinal lumen may support the growth of bacteria-coding genes that
are related to heme uptake and release from RBCs. In return, gut microbiota can play a critical role
on iron absorption, as shown in a study in which metabolic changes due to prebiotic administration
affected iron absorption [75] via increasing the expression of iron regulatory genes in the colon and
duodenum, and an increase of Lactobacillaceae in the colon [103,104]. Further, a study with GF
rats showed a decrease in iron uptake compared to SPF mice, as mentioned before [77]. Among all
these studies, another important finding is that concentrations of SCFA and branched chain fatty
acids (BCFAs; isobutyrate and isovalerate) were altered in adult fecal microbiota and during in vitro
experimentation [98,105]. Specifically, low levels of butyrate and propionate were observed during
a luminal iron deficiency condition in rats, and luminal iron absorption might be enhanced by
Propionibacteria via the biosynthesis of propionate [106].

Not surprisingly, iron can promote the replication and virulence of gut enteric pathogens
including Salmonella, Shigella, and Campylobacter (Figure 3). Iron availability in the colon lumen is
a critical signal for the expression of virulent genes by pathogens and hosts. It has been shown
that a ferroportin-mediated efflux of iron, and consequent changes in the amounts of available
iron to Salmonella typhimurium can decrease the expression of the protein, favoring the growth
of this pathogen [107]. This observation was also investigated with different organisms residing
in macrophages, and it was supported with the general notion that cellular iron concentration is
one of the critical determinants for infectivity [108,109]. Besides the impact of iron availability to
pathogens, hepcidin-mediated iron sequestration also influences the host immune response by altering
macrophage cytokine production and function [110]. An in vitro study demonstrated that moderate
extracellular iron levels can give an advantage for invasion to Salmonella when it is cultured with
intestinal epithelial cells [105]. Furthermore, the survival of this enteric pathogen in the host cell may
partly depend on the host iron status. However, iron does not always elevate the viability and virulence
of pathogens. A recent study with a Citrobacter infection experimental mouse model showed that
dietary iron supplementation induced insulin resistance and increased glucose levels in the intestine
that help to suppress the pathogenicity of this bacterium. Additionally, dietary iron was able to drive
the selection of attenuated Citrobacter strains that can transmit and asymptomatically colonize naive
hosts [111]. In general, iron availability in the gut can have a large impact on the infection cycle of a
pathogen. The increased luminal iron and intracellular iron in enterocytes may exaggerate or reduce
the virulence of enteric pathogens. So far, relatively little is known about a potential link between iron
and intestinal infection, and more research is needed to investigate these concepts in detail.

Overall, oral iron intake can influence the gut microbiota of young and adult populations in the
short-term. However, we have still no idea of what is the potential effect of oral iron supplementation
in a long-term view for health and gastrointestinal-related infection problem. Given the importance
of the microbiota in shaping the development and function of the intestinal immune system [17–19],
iron-dependent changes in gut microbiota could have an impact on infant health and mucosal immune
responsiveness, which need to be further investigated with a larger perspective, with randomized
controlled trials in human patients yielding concrete clinical outcomes.
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6. Iron and Inflammatory Bowel Disease (IBD)

Dysbiosis, or imbalance of the gut microbial consortia disrupting their mutualism with the
host, may cause intestinal or systemic pathology, including chronic inflammatory bowel disease
(IBD) [112–114]. Crohn’s disease (CD) and ulcerative colitis (UC) are the two main forms of IBD,
each with an annual incidence of 10–30 per 100,000 in Europe and North America, and they are usually
diagnosed before age of 35. These are relapsing-remitting immune-mediated, chronic inflammatory
intestinal diseases, each with very diverse sub-phenotypes and heterogeneous responsiveness to
treatment [28,115]. Unfortunately, no treatment is satisfactory in about 30% of patients, leaving
life-long morbidity, malnutrition, and risk of malignancy. Among many complications of the disease,
anemia is the most common one and one third of IBD patients suffer from recurrent anemia. It is
a condition that develops when the human system lacks either enough healthy red blood cells or
hemoglobin. Many people carry on their lives without knowing that they have iron deficiency anemia.
Therefore, people are likely to experience symptoms for years without ever knowing the reason behind
them [116]. Iron deficiency anemia (IDA) and anemia of chronic disease (ACD) are the most common
causes of anemia in these patients, and they often occur simultaneously. Chronic bleeding in the GIT
or unbalanced iron absorption/iron homeostasis due to increased systemic hepcidin levels in the
presence of ongoing inflammation are the main reasons behind iron deficiency [8,117,118]. This has
tremendous impact on the quality of life of IBD patients. Chronic fatigue is commonly instigated by
anemia, and it may debilitate patients as much as abdominal pain or diarrhea. The ultimate therapeutic
goal is to improve the patient’s quality of life by changing the hemoglobin concentration and iron level
in those patients [119].

Iron absorption is down-regulated in IBD patients with the active disease, but it is normal in
quiescent IBD patients [120]. Patients with the active disease generally require iron supplementation.
However, one should be cautious with oral iron supplementation, which often leads to gastrointestinal
side effects such as nausea, abdominal pain, and diarrhea. Several experimental animal model studies
using transgenic models or chemically induced colitis suggested that oral iron administration could
exacerbate intestinal inflammation [121–125]. Mechanistically, this might be due to ferrous forms of oral
iron appearing to be poorly absorbed, and the iron-induced production of reactive oxygen species (ROS)
within the lumen of the gut, or the increased growth of pathobionts in the GIT that thrive on iron and
inflammation (Figure 3). It is well-characterized that the gut microbiota of IBD patients are relatively
different than non-IBD subjects, mostly with an increase of enteropathogenic strains, as shown by
many different groups [126–132]. Dietary iron supplementation leads to disease exacerbation and
a higher risk of infection, and an increased abundance of Enterobacteriaceae. Additionally, it has
been shown that the absence of luminal ferrous iron was associated with key changes in the intestinal
microbiota [125]. Many animal studies that we have also mentioned in Section 5 support the idea that
microbial differences might be enlarged upon iron supplementation into the gut.

In contrast, intravenous iron therapy offers effective alternative management for iron deficiency
anemia, since it does not cause side effects and it is more efficient in restoring the iron status in
patients [133]. This generally is preferred when iron deficiency co-exists with anemia in clinically
active IBD patients. Direct administration of iron into the circulation requires formulations to prevent
the cellular toxicity of iron salts, and hence, intravenous iron is usually administered as ferric gluconate,
iron sucrose, iron dextran, and ferric carboxymaltose. A study with the intravenous administration
of ferric carboxymaltose showed that this therapy was found to be effective and well-tolerated in
IBD patients with iron deficiency [134]. In a complementary study in which iron was supplemented
either orally or intravenously, the researchers analyzed the effect of iron supplementation of the gut
microbiota and metabolites of IBD patients. Even though the route of supplementation did not affect
the species richness in the gut, oral iron changed the abundance of F. prausnitzii and Bifidobacterium [135].
Metabolically, high levels of phosphatidylglycerol (PG), palmitate, and its derivatives in the orally
iron-supplemented group were observed, whereas bile acids, tetrahydrodeoxycorticosterone, and other
cholesterol derivatives were the characteristics of the intravenously iron-supplemented group [135].
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This study identified that CD patients were more prone to iron-supplemented therapy shifts, and oral,
but not intravenous, iron therapy affected the presence of specific bacterial species and their products.

Nowadays, there are many good reasons to pay careful attention to iron metabolism than ever
before, when dealing with specifically IBD patients with anemia. Until we find a better treatment
to IBD, the primary goal is the optimization of supportive care to enhance the patient’s quality of
life. To do that, we need to better understand the fine-tuned balance between iron metabolism and
microbial population residing in the gut of IBD patients.

7. Iron and Colorectal Cancer

Iron is a limiting factor of growth for many pathobiont bacteria. Contrary, it can also promote a
shift in the ratio between pathobionts and gut commensals, with an increase in specific metabolites and
inflammation in the intestines. Therefore, a high concentration of iron in the colon leads us to question
whether or not iron might also be involved in the initiation or promotion of colonic diseases, specifically
colorectal cancer. Despite recent advances in cancer treatment, colorectal cancer still remains one
of the deadliest cancer types, with a significantly increased incidence in developing countries with
Westernized lifestyles. The incidence of colorectal cancer differs broadly between diverse human
populations. It has been suggested that dietary fiber content is of utmost importance, and that it is
inversely related to the occurrence of colonic cancer. Since Graf and Eton’s editorial comment in 1985,
multiple factors that drive the progression from healthy mucosa to colorectal carcinoma have been
identified [136,137]. Accumulating evidences with many in vitro studies and in vivo interventions
have consistently supported the role of iron in colorectal cancer risk via a mechanism of increased
oxygen radical synthesis and the role of phytic acid, a potent inhibitor of iron-mediated generation of
the hazardous oxidant, hydroxy radicals, reversing the augmentation of tumor risk [138–140].

A majority of the strongest studies confirm that both dietary iron and iron storage augment
colorectal cancer risk, as reviewed in these manuscripts [139,141]. A positive association between
iron storage (transferrin saturation) in the host system due to mutation in human hereditary
hemochromatosis (a.k.a. iron overload disorder; a disorder that causes the body to absorb too much iron
from the diet, and excess amount of iron is stored in the body’s tissues and organs, particularly the skin,
heart, liver, pancreas, and joints) gene (C282Y mutation), and the development of precancerous lesions
in the colon, colonic adenomas, or polyps were reported [142,143]. Additionally, five prospective
human cohort studies, including the data of 566,607 individuals and 4,734 cases of colon cancer, showed
that a high intake of heme iron was linked with an increased risk of colon cancer, even though one
cohort did not identify any association [144–148]. Yet, many critical studies hint on the significant role
of diet as a major player in colorectal cancer development [149]. Even though the hemochromatosis
gene probably does not play a major role in the majority of colorectal cancers, two different fields of
research, genetic and nutritional oncology, have united to find out the mechanisms that drive this type
of cancer. The findings that intraluminal iron via interactions with intestinal microbes, promotes of
hydroxy radicals, brings the gut microbiota, the hot subjects over the last 5–6 years, to this unity as a
third key factor, and shift recent investigations in the microbiota field, which have been largely driven
by advances in DNA sequencing (particularly of highly conserved hyper-variable regions of the 16S
ribosomal RNA genes in bacteria).

Recent reports showed that Bacteroides/Prevotella, Clostridum, Streptococcus bovis, and Enterococcus
faecalis can produce genotoxic metabolites, such as hydrogen sulphide and secondary bile salts, which
likely promote inflammation and carcinogenesis [150–153]. In defence, B. longum and L. acidophilus are
gut-protective commensals [154,155]. They form a protective barrier against colonization by pathogenic
bacteria, and they produce butyrate that act as an anti-carcinogenic agent [156]. Additionally, strains
of Bifidobacteriaceae family can affect free radical formation by binding iron to their surface, and they
promote daily renewal of the colon epithelium, while strains of Lactobacillus can reduce the mutagenic
effect of bile acids [154,155]. Moreover, antibiotic-based clearance of gut pathobionts reduced the
incidence of colon cancer, and altered gut microbiota in mice [157]. These findings were supported
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with human studies. Advanced colorectal adenoma or carcinoma patients were shown to be deficient
in lactic acid-producing commensals [158]. Whether reverting this microbial profile in the patient’s
gut might have an effect on disease progression is the one burning question, and even though gut
microbiota-dependent dietary changes are promising against colorectal carcinoma, these methods still
require further investigation.

8. Concluding Remarks

Iron deficiency is a globally serious problem, and it can be corrected to avoid any serious health
issues in individuals suffering from it. In this review, we discussed the multi-faceted effects of iron,
its administration, and its role on host–microbiota interaction(s) in health and disease (Figure 3).
So far, we have a clear view that oral iron administration may impact the gut microbiota profile,
and it is the main preferable therapy, even though this has serious gastrointestinal problems including
diarrhea, morbidity, and mortality in children, mainly in Africa. From this, the “chicken–egg” question
arises, as scientists struggle to find better explanations for iron homeostasis based on iron-dependent
fluctuations in the host response, and the growth of gut bugs in the presence of inflammation. It is
likely that intestinal microbiota and iron homeostasis are the key parts, but not the only parts, of a
more complex interplay that triggers the inflammatory response in the intestines, which can lead to
IBD or colorectal cancer. Impressive advancements have been made during the past few years in
biomedical science and computation biology, and we are now at a level of better characterization of
gut microbiota-dependent inflammatory responses and its direct connection to iron metabolism.
Until today, many human studies have only reported observed correlations, and more work is
necessary to prove a causal relationship between iron-gut bacteria interactions and the development
of gut inflammatory diseases and colorectal cancer. Experimental animal models have assisted in
understanding how the gut microbiota interact with excessive amounts of unabsorbed luminal iron,
and modern iron therapeutic administration methods for iron deficient populations [159].
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Abbreviations

ACD Anaemia of chronic disease
BCFA Branched chain fatty acids
BMPs Bone morphogenetic proteins
CD Crohn’s disease
DCYTB Duodenal Cytochrome B
DMT1 Divalent Metal Transporter 1
GF Germ-free
GI Gastrointestinal
H2O2 Hydrogen peroxide
HEPH Hephaestin
HMOX1 Heme Oxygenase 1
IBD Inflammatory bowel disease
IBS Irritable bowel syndrome
IDA Iron deficiency anemia
Nramp1 Natural Resistance-Associated

https://creativecommons.org/licenses/by/3.0/legalcode


Pharmaceuticals 2018, 11, 98 13 of 20

PG Phosphatidylglycerol
RBC Red blood cell
ROS Reactive oxygen species
SCFA Short-chain fatty acids
SLC40A1 Solute Carrier Family 40 Member 1
SLC46A1 Solute Carrier Family 46 Member 1
SNP Single nucleotide polymorphisms
SOD Superoxide dismutase
SPF Specific pathogen-free
UC Ulcerative colitis
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