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Abstract: Inflammation, being a hallmark of many chronic diseases, including cancer, inflammatory
bowel disease, rheumatoid arthritis, and chronic kidney disease, negatively affects iron homeostasis,
leading to iron retention in macrophages of the mononuclear phagocyte system. Functional iron
deficiency is the consequence, leading to anemia of inflammation (AI). Iron deficiency, regardless of
anemia, has a detrimental impact on quality of life so that treatment is warranted. Therapeutic
strategies include (1) resolution of the underlying disease, (2) iron supplementation, and (3)
iron redistribution strategies. Deeper insights into the pathophysiology of AI has led to the
development of new therapeutics targeting inflammatory cytokines and the introduction of new
iron formulations. Moreover, the discovery that the hormone, hepcidin, plays a key regulatory role
in AI has stimulated the development of several therapeutic approaches targeting the function
of this peptide. Hence, inflammation-driven hepcidin elevation causes iron retention in cells
and tissues. Besides pathophysiological concepts and diagnostic approaches for AI, this review
discusses current guidelines for iron replacement therapies with special emphasis on benefits,
limitations, and unresolved questions concerning oral versus parenteral iron supplementation in
chronic inflammatory diseases. Furthermore, the review explores how therapies aiming at curing the
disease underlying AI can also affect anemia and discusses emerging hepcidin antagonizing drugs,
which are currently under preclinical or clinical investigation.

Keywords: Anemia of chronic disease; anemia of inflammation; hepcidin; anti-hepcidin therapy;
iron supplementation

1. Introduction

Iron has a crucial role in all living organisms. In humans, iron is essential for many biochemical
processes, including electron transfer reactions in mitochondria, the citric acid cycle, gene expression,
binding and transport of oxygen, regulation of cell growth and differentiation as well as the cellular
immune response [1]. From a systemic point of view, hepcidin, a liver-derived hormone, has been
found to be the master regulator of iron homeostasis, controlling cellular iron efflux [2]. Hepcidin binds
to the sole known iron exporter, ferroportin (FPN), mediating internalization and degradation of this
transporter [3,4]. As a further consequence, dietary iron absorption as well as iron release from cells,
such as macrophages, is prevented [5]. Hepcidin expression is regulated by different stimuli, such as
anemia, hypoxia, and inflammation [6]. Different molecular pathways involved in hepcidin expression
have been uncovered [7,8]. Among these, the bone morphogenetic protein (BMP)-SMAD signaling
pathway is the most critical. Liver endothelial cell-derived BMP6 and BMP2 have non-redundant
roles to induce hepcidin expression. However, BMP6 is the dominant ligand and a threshold
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signaling of BMP6 via the BMP-SMAD pathway is indispensable for sufficient and appropriate
hepcidin induction [9–12]. During inflammation, hepcidin expression is induced via the interleukin
(IL)6-JAK-STAT and Activin B-SMAD1/5/8 signaling pathways [2,13–15]. As FPN regulates iron
release from absorptive enterocytes in the duodenum and from iron recycling macrophages of
the mononuclear phagocyte system (MPS), elevated hepcidin levels during inflammation cause
diminished systemic iron availability [16]. While iron retention in the MPS appears to be beneficial for
host responses during infections, as it withholds this metal from invading extracellular pathogens,
anemia is an undesired, ultimate consequence of iron restriction in patients suffering from chronic
diseases [17–19]. Consequently, anemia of inflammation (AI) or anemia of chronic disease (ACD)
represents the most common disease-related complication in patients suffering from rheumatoid
arthritis (RA) inflammatory bowel diseases (IBD), cancer, infectious diseases, and chronic kidney
disease (CKD) [1,20–26].

Whereas the development and persistence of anemia in several diseases, including infections and
cancer, has been associated with a poor prognosis, the true impact of alterations in iron homeostasis
or anemia on the pathology of the underlying disease remains largely elusive [27]. However,
anemia negatively impacts on many aspects of the patients [28]. Moreover, iron exerts multiple
effects on immune cell differentiation, functionality, and plasticity, which has been studied in depth
toward the interconnection of iron homeostasis with the biology of M1 and M2 macrophages [29,30].
M1 macrophages, being either activated upon pathogen recognition or stimulated by cytokines (e.g.,
interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα), or IL1, IL6 and IL10), induce subtle
changes of transcellular iron fluxes, aiming to limit the availability of the essential nutrient iron for
circulating pathogens. Therefore, the term, “nutritional immunity”, has been proposed [31]. Thereafter,
cytokines directly or cytokine-inducible products, such as oxygen radicals and nitric oxide, regulate
the expression of critical iron transport and storage proteins [19,32–38]. Consequently, the accessibility
of iron for microbes is modulated and their growth and pathogenicity is impacted. Moreover, bacteria
can acquire iron from holo-transferrin. Therefore, limitation of circulating transferrin-bound iron levels
and mutations of the iron binding sites of transferrin were shown to be protective against infections
with circulating bacteria [39–41].

Of note, iron per se also affects immune effector pathways of macrophages and, subsequently,
T-cell differentiation by regulating IFNγ activity, nitric oxide formation, or T-helper cell
plasticity [42–46]. Thus, local and systemic iron availability determines not only microbial growth,
but also the efficacy of anti-microbial immune effector pathways. It appears that the alterations
of systemic and macrophage-responsible iron fluxes are specifically regulated depending on the
nature and localization of the pathogen [19,32,33,39,47]. The hepcidin–FPN axis has attracted specific
attention regarding alterations of iron fluxes during infections. Hepatocytes produce large amounts
of hepcidin following challenge with circulating bacteria, resulting in iron retention with the MPS
and low circulating iron levels [17,18]. Moreover, autocrine formation of hepcidin by macrophages
further reduces cellular iron availability for circulating pathogens [19,39,48,49]. In contrast, invasion of
cells and macrophages with bacteria, such as Listeria, Mycobacteria, or Salmonella, induces alternative
mechanisms. Specifically, the upregulation of FPN by different mechanisms results in macrophage
iron efflux and limitation of bacterial growth [50–54]. In addition, M1 macrophages and other
immune cells produce several factors, such as lipocalin-2, lactoferrin, and calprotectin, which limit the
bacterial access to iron [55–57]. Of note, in addition to iron flux regulation by the FPN-hepcidin axis,
several hepcidin-independent mechanisms have been identified that control iron trafficking during
infection [33,50,58–61].

In contrast, M2 macrophages exert anti-inflammatory effects and these cells are highly specialized
for iron recycling from senescent erythrocytes via erythrophagocytosis, yielding approximately 90% of
the daily needs of iron for erythropoiesis [30]. Iron is released from heme by the anti-inflammatory
enzyme, heme oxygenase-1 [62,63]. The latter enzyme has attracted specific interest because it exerts
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immune regulatory effects, but, importantly, it also exerts disease tolerance during certain infections
by limiting tissue damage, thereby improving the outcome from sepsis [64,65].

While it has long been known that iron is essential for the production of hemoglobin of red
blood cells, our knowledge on the regulation of iron homeostasis under steady state conditions
and in association with different pathologies has dramatically expanded over the past centuries
thanks to the identification and characterization of numerous iron genes and associated regulatory
molecules [1]. Indeed, unbiased iron supplementation or withdrawal therapy via phlebotomy dates
to the middle ages. However, due to our expanding knowledge on iron metabolism regulation
during inflammation, targeted modulation of specific iron metabolic pathways, including the
hepcidin-FPN axis, has emerged only recently [3,66,67]. Although we have several established and
novel iron therapies at hand, there are still many unresolved questions and unmet needs when
treating imbalances of iron homeostasis in patients with inflammatory diseases. This includes
lack of gold-standard tests to properly distinguish between absolute versus functional ID, lack of
knowledge regarding safe and efficient therapeutic start and end points as well as complications of
iron redistribution and supplementation strategies towards the course of the diseases underlying AI.

2. Diagnosis

The diagnosis of AI is based on several laboratory markers. Classically, hemoglobin levels are
decreased; markers of inflammation, such as C-reactive protein (CRP) or IL6, are increased; and
iron homeostasis is altered as follows: Circulating iron levels are low, transferrin saturation (Tf-Sat)
is reduced, and ferritin concentrations are normal or increased (Table 1) [68]. Diagnosis becomes
challenging if AI is associated with true ID (AI/ID), as there is still a lack of a gold standard for
differentiation between AI and AI/ID. However, as therapies to overcome anemia differ, proper
diagnosis and understanding of underlying pathophysiological regulations are necessary [69]. While
ferritin strongly correlates with the body’s iron stores in IDA, ferritin levels are not reliable during
inflammation. Thus, low ferritin levels (<30 mg/mL) in any case indicate true ID, but ferritin levels
are upregulated during inflammation largely independently of iron availability [70]. This fact has led
to corrections towards elevated cut-off values for ferritin during concomitant inflammation [71,72].
Until now, the gold standard for diagnosis of ID is still the microscopic evaluation of iron-stained bone
marrow aspirates, which is not routinely used due to its high invasiveness [73]. A recent study in
heart failure patients proposed to use serum iron and Tf-Sat instead of ferritin to diagnose true ID,
which was evaluated by bone marrow staining [74]. Compared to ferritin-based definition of ID (with
a sensitivity and specificity of 82% and 72%, respectively), the diagnosis of ID based on reduced Tf-Sat
(cut-off: ≤19.8%) and low serum iron (cut-off: ≤13 µmol/L) had an improved sensitivity (94%) and
specificity (84% and 88%) in this specific group of patients. Although these findings need further
confirmation among other disease entities, it highlights that ferritin-based definitions of ID appear to
be suboptimal.

As erythrocytes are the main consumers of iron and thus most affected by ID, efforts have been
undertaken to establish markers that are related to red blood cell morphology and iron content of these
cells. Alongside the well-established classical hematological indices of the mean corpuscular volume
(MCV) and mean corpuscular hemoglobin (MCH), new parameters, such as the hemoglobin content of
reticulocytes, percentage of hypochromic red blood cells, and the soluble TfR (sTfR), were introduced
as indicators of iron availability for the erythron and/or efficacy of erythropoiesis [68,75,76]. Some
studies recommend the sTfR as an alternative biomarker to distinguish between absolute (or true) and
functional ID. In general, absolute ID and higher rates of erythroid output causes an up-regulation
of the TfR on erythrocytes, which then concomitantly leads to higher detectable forms of its cleaved
monomer, the sTfR, in the plasma [77]. As inflammation negatively impacts erythropoiesis and TfR
expression, sTfR values are also altered during inflammation [26,36]. Therefore, the use of this marker
led to unsatisfactory sensitivity and specificity (83% and 50%, respectively) for the detection of ID
compared to bone marrow findings in a cohort of 180 anemic children in Mozambique [78]. Attempts
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to correct this marker for inflammation, using a sTfR versus log ferritin ratio, did not classify patients
properly, thus limiting the diagnostic potential of this test [79]. While these parameters add additional
information on true iron availability for erythropoiesis in patients with AI, none of these measurements
are adjudged as efficient for distinguishing between AI and AI/ID.

A number of reports indicating that hepcidin is competent to distinguish between IDA and AI in
several diseases, including RA, anemia of cancer, anemia of critical illness, and IBD, have suggested
hepcidin to be a promising biomarker in the future [16,80–83]. Moreover, other reports also
exist suggesting that plasma hepcidin levels could predict the response to oral iron in different
settings [84–87]. However, there are also reports from studies in hemodialysis patients to the
contrary, highlighting the need for further detailed investigations [88–90]. Further discussion
on hepcidin is presented in Section 3.2.2. The measurements of molecules that affect hepcidin
expression under different conditions may turn out to be of diagnostic benefit. Erythroferron,
hypoxia inducible factors (HIFs), and platelet derived growth factor BB are all signaling peptides
induced by hypoxia and were found to impact directly or via modulation of hepcidin on iron
availability for erythropoiesis [91–93]. The biomarkers of hypoxia thus hold promise to better
identify subjects suffering from AI/ID and to predict the erythroid response in patients with AI
with and without ID, once commercially available ELISAs are available [94–96]. Of importance,
none of these tests is currently standardized, which is a necessity to make them a reliable routine
biomarker for the evaluation of iron status. Consequently, trials investigating these parameters cannot
be easily compared, making interpretations even more difficult. However, according to a recent report,
a hepcidin reference standard allows equivalence and comparability between hepcidin measurement
results [97].

Despite ongoing efforts to find and establish new biomarkers, a recently published study
conducted in a cohort of IBD patients revealed that differentiation between AI and iron deficiency
anemia (IDA) and the combination thereof was only possible in 22% of all anemic patients, because
only CRP, hemoglobin, and ferritin levels were available as diagnostic markers. [98]. This highlights
that improvement of diagnostic approaches to identify patients with true ID in the setting of
inflammation is urgently needed and is still a challenging field of investigation.

Table 1. Diagnostic markers for the diagnosis of different types of inflammatory anemia.

Marker Anemia of
Inflammation

Anemia of Inflammation
plus Iron Deficiency

Anemia
Limitations/Comments

Bone marrow
iron staining Normal–Elevated Normal–Reduced

• Gold standard
• Invasive method, not

routinely used

Serum Iron Low Low Underlies diurnal variations

Ferritin Elevated Reduced–Normal–Elevated

• Most commonly used marker
• Ferritin is an acute phase protein

and does not accurately reflect
iron status during inflammation

• Ferritin < 30 ng/mL always
associated with true
iron deficiency

Transferrin Normal–Reduced Normal–High

Tf-Sat Low Low Dependent on iron and
transferrin levels

sTfR Normal–Elevated Elevated

• Good marker for needs of iron for
erythropoiesis in absence
of inflammation

• Values affected by inflammation
and ESA application
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Table 1. Cont.

Marker Anemia of
Inflammation

Anemia of Inflammation
plus Iron Deficiency

Anemia
Limitations/Comments

sTfR/log Ferritin Normal Elevated Used for differentiation, but there is a
lack of a prospective study

Hepcidin Elevated Normal–Reduced

• Expression is more affected by
iron deficiency (suppressing) than
by inflammation

• Not standardized
• Weak correlations in CKD patients
• Possible predictive parameter for

success of iron and/or
ESA treatment

Erythroferron Not known Not known

• Not standardized
• Higher ERFE levels in

CKD patients
• Positively correlated with serum

erythropoietin and negatively
with hemoglobin

MCV/MCH Normal Normal–Reduced If reduced, indication of iron deficiency

Reticulocyte Hb
content Normal–Reduced Reduced

Indicated insufficient iron availability
for erythropoiesis, not prospectively

studied

Hypochromic
RBC Normal Normal–Elevated

• Related to MCV, as a sensitive
marker for iron availability for
erythroid progenitors

• Cut-off values are different
between different machines

CRP Increased Increased

• Non-specific inflammatory marker
• Iron–independent parameter
• Correlation with severity

of anemia

IL6 Increased Increased
• Non-specific inflammatory marker
• Iron–independent parameter

3. Treatment Strategies

Treatment of ID and IDA is paramount as it is associated with several detrimental effects on quality
of life, exercise capacity, mental status, and activity of patients [99,100]. To this end, two strategies can
be pursued. First, treatment of the underlying disease; second, if a cure cannot be achieved, therapies
directly or indirectly addressing imbalances of iron homeostasis are indicated.

3.1. “First line”: Treatment of the Underlying Inflammation

If possible, treatment of the underlying disease is decidedly the pivotal approach to treat
AI. Resolution of inflammation results in the normalization of hepcidin levels, leading to the
correction of macrophage iron retention and normalization of duodenal iron uptake. In addition,
the negative cytokine-mediated proliferative effects on hematopoiesis are abrogated, overall leading
to anemia improvement. One approach, which has been shown to be effective, is the neutralization
of inflammatory cytokines. Accordingly, targeted therapy using an anti-IL6 receptor antibody
(Tocilizumab) improved anemia in patients suffering from multicentric Castleman’s disease (MCD),
a lymphoproliferative disorder where IL6 was found to be the main cytokine contributing to its
pathogenesis [101,102]. Of note, IL6 is one major driver for hypoferremia in patients suffering from
AI [2]. Further work-up revealed that anemia amelioration due to IL6 receptor blockade is related to
down-regulation of hepcidin levels [103,104]. In parallel, a monoclonal anti-IL6 antibody (Siltuximab)
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has also been evaluated for its potential to decrease hepcidin plasma levels and consequently improved
anemia not only in patients suffering from MCD, but also in subjects with multiple myeloma and solid
tumors [105–107].

Of interest, not only systemic, but also autocrine hepcidin expression in macrophages has been
found to be of importance in AI and possibly also for iron distribution in cancer cells [48,108].
In patients with ovarian cancer, polarization towards an M1 phenotype and high IL6 levels were
associated with more profound anemia. Treatment with Tocilizumab resulted in the reversion of iron
restriction and improvement of anemia, supporting previous evidence that anti IL6-directed therapy
may be effective for anemia in cancer [108,109].

TNFα is also a target to treat the underlying complications and ameliorate anemia. Monoclonal
antibodies directed against TNFα (e.g., Infliximab, Adalimumab, Golimumab) are routinely applied
in patients suffering from RA and IBD. As TNFα’s contribution to AI is different from IL6,
the beneficial effect on anemia was ascribed to discontinuation of TNFα’s negative impact on bone
marrow erythropoiesis or, likewise, erythrocyte’s half-life, without having direct effects on hepcidin
levels [15,110–114]. However, a study investigating two different TNFα inhibitors in IBD patients
found that the beneficial effect of anti-TNFα is indirect and it is mediated via down-regulation of
IL6 [115]. Anti-TNF therapy may also reduce intravascular radical formation, thereby preventing
the radical-mediated damage of erythrocyte membranes and increasing their circulating half-life.
Moreover, comparative evaluation of TNFα inhibitors and Tocilizumab revealed that IL6-mediated
therapy, directly affecting hepcidin levels, is more effective than TNFα inhibitors in respect to anemia
correction [116]. Furthermore, hematological response after one year of anti-TNFα treatment was only
observed in 34% of patients, even with oral iron supplementation [117].

Patients suffering from myeloproliferative neoplasms (MPN) have been shown to develop anemia,
in part as a consequence of elevated hepcidin levels [118]. As mutations related to the activity of Janus
kinase 2 (Jak2), resulting in constant activation, were found to be central to the pathogenesis of MPN,
Jak2 inhibitors became one treatment option However, erythropoietin (EPO) is an essential hormone
for sufficient production of red blood cells and also signals via the JAK2 pathway [119]. Consequently,
anemia dose-dependently developed in patients who were treated with a JAK2 inhibitor (Ruxolitinib)
and this was a dose-limiting adverse event [120,121]. In contrast, results from a phase II study for the
treatment of myelofibrosis with a different Jak2 inhibitor (Momelotinib) surprisingly resulted even
in an improvement of anemia [122]. Further dissection of the underlying mechanisms demonstrated
that Momelotinib not only effectively inhibited Jak2 signaling, but also blocked ACVR1/ALK2-driven
induction of hepcidin, resulting in an egress of iron from macrophages to sites of erythropoiesis [123].

Although these therapies are effective in lowering hepcidin levels and therefore ameliorate the
anemia seen in chronic diseases, these therapies are probably not be suitable for sole treatment of AI
because of potential side effects of these therapies, such as increased risk of infections due to impaired
host responses [124]. A compromise might be a combinatorial therapeutic approach to target both the
improvement of iron status and the treatment of infections.

3.2. Iron Supplementation and Iron Redistribution Therapies

Despite ongoing development of new treatment strategies and efforts towards personalized-based
medicine, diseases, such as cancer, chronic heart failure, autoimmune diseases, and end stage
kidney diseases, are proving unattainable because of persistent chronic inflammation. This being
the case, anemia must be addressed via different approaches. Besides direct iron supplementation,
iron redistribution strategies are emerging. The choice of the most appropriate therapy depends
on the categorization of anemia whether there is pure AI with functional ID versus AI in
combination with true ID. While iron replacement therapy appears to be mandatory in the latter
setting, iron supplementation is questionable in patients with pure AI and strategies aiming at iron
redistribution from macrophages to the circulation may be the more pragmatic approach.
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3.2.1. Iron Supplementation

In general, iron can be directly supplemented either via the oral or intravenous (i.v.) route.
However, this decision is based on several factors, including the availability and cost of drugs,
the underlying disease, the degree of inflammation, therapeutic efficacy, and side effects, but also
on patients’ compliance and convenience (Table 2). Oral iron may be used in ID and mild
to moderate anemia, specifically among patients with a stable disease or only a low grade of
inflammation [14,15,69,125]. Oral iron may also be effective in patients with AI and combined true ID
due to the fact that ID-mediated inhibition of hepcidin expression dominates over inflammation-driven
hepcidin induction [126,127]. Indications when i.v. iron therapy should be initiated are not that straight
forward, based on the low grade of available evidence, and heterogeneity between guidelines for
different disease entities [128]. However, i.v. iron may be used if oral iron therapy is ineffective,
causes therapy-related side effects, and in patients with impaired oral iron absorption (Table 2).
Of note, guidelines for recommendations whether to use oral or iv iron supplementation vary in
different countries, in particular with regard to CKD. Examples include the Canadian guidelines,
the Caring for Australians with Renal Impairment (CARI), the National Institute for Health and Care
Excellence (NICE), and the Kidney Disease: Improving Global Outcomes (KDIGO), with each of them
having their own guidelines and diagnostic algorithms, as well as choice of preferred administration
route (oral vs. i.v.) [129–132]. This situation is far from being satisfactory as it causes deterrence and
confusion among physicians and highlights the necessity of prospective clinical outcome data from
rigorously conducted randomized controlled trials.

Nevertheless, the importance of i.v. iron supplementation among CKD patients became clear when
the first human EPO preparation was licensed for use in dialysis-associated anemia nearly 30 years ago.
Patients who suffered from EPO hypo-responsiveness experienced resolution of this condition with
concomitant administration of i.v. iron. Hence, KDIGO guidelines propose that iron therapy should be
aimed to treat ID, increase iron stores prior to initiation of therapy with erythropoiesis stimulating
asgents (ESA), and enhance the response to these drugs [129].

In addition, within the last few years, concerns regarding the use of ESA (including EPO) for the
treatment of anemia in CKD patients have been raised [133,134]. This was because of increased risk of
adverse clinical outcomes, such as stroke and venous thromboembolic disease, culminating in high
mortality [113–116]. Indeed, the US Food and Drug Administration (FDA) released a black box warning
on the use of high EPO doses. Consequently, iron supplementation, either alone or in combination
with ESA agents, are recommended as front-line options [129–132]. The latter is also related to findings
of the TREAT (Trial to Reduce Cardiovascular Events with Aranesp® Therapy) study, which not only
emphasized the possible risks related to ESA therapy, but also revealed that iron therapy increases
hemoglobin levels and is capable of delaying the initiation need of ESA therapy [133,134]. Furthermore,
another multicenter, prospective, and randomized study, FIND-CKD (Ferinject® assessment in patients
with IDA and non-dialysis-dependent chronic kidney disease), reported that both i.v. and oral
iron supplementation were capable of maintaining hemoglobin levels, thus reducing the dosages of
ESA [135]. However, a recent randomized trial in non-dialyzed patients with CKD found that the use
of i.v. iron was associated with an increased risk for adverse cardiovascular events and infections
when compared to oral iron treatment [136].

Iron supplementation in patients with IBD is also still far from being consistent and many
questions are still open, including the value of iron supplementation in subjects without anemia, or the
preferred route of iron supplementation. Anemia seen in IBD is unique, as most patients suffer from
AI together with ID, which is the consequence of continuous blood loss by the inflammatory mucosa
and impaired iron intake as a consequence of malnutrition [125,137,138]. I.v. iron, as a sole treatment,
has been shown to correct anemia in more than 80% of patients [139]. According to the European
Crohn’s and Colitis Organisation (ECCO) guidelines published in 2015, iron supplementation is
recommended whenever IDA is present. In contrast to recommendations made for CKD patients,
iron supplementation aims to normalize hemoglobin levels in patients with IBD [140]. I.v. iron is
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recommended in patients with a clinically active disease, previous intolerance to oral iron, severe
anemia (Hb < 10 g/dL), and who have initiated combination therapy with an ESA. Otherwise,
oral iron therapy may be applied. However, several comparative studies, where i.v. versus oral
iron supplementation was investigated, revealed that in IBD patients with AI and true ID and low
disease activity, oral iron is as effective as i.v. iron to correct anemia [141–146]. Although AI is listed as
a common cause for “non-IDA” in IBD subjects, no guidelines are provided regarding the practice
of iron supplementation for these patients. Indeed, data from clinical trials on this issue are scarce.
However, in view of published evidence that IBD patients with anemia have higher CRP values and a
more active disease status, the necessity for further evaluation of this eventual relationship and its
clinical management is evident [147,148].

In conclusion, no matter which subtype of AI is present, today’s evidence and treatment
recommendations are based on altered biomarkers of haematology and inflammation and their
correction, while end-point data on the effects of iron therapies (e.g., death, survival and disease
resolution or progression) are almost completely lacking. Moreover, hardly any information from
prospective trials is available regarding optimal therapeutic targets (e.g., hemoglobin or ferritin
levels), which, however, may be different according to the underlying disease. One pioneering study
(PIVOTAL for Proactive IV Iron Therapy in Hemodialysis Patients) addressed some of these end-points
(risk of death, major adverse cardiovascular events, and infection) in patients undergoing hemodialysis
and has just been published [149,150]. A high-dose regimen of i.v. iron (400 mg of iron sucrose per
month, administered in a proactive fashion) was compared to a low-dose regimen (0 mg–400 mg of
iron sucrose per month, administered in a reactive fashion). While the high iron regimen led to a
reduced cumulative dose of administered ESA, there was no association with any of the end-points.
How this study will influence existing guidelines and iron supplementation strategies remains to
be seen.

Table 2. Characteristics of oral and intravenous iron therapy.

Indication(s) Benefits Limitations Uncertainties/Comments

Oral iron

• True iron deficiency
• Combined true and

functional iron
deficiency with low
grade inflammation

• Low costs
• Easy to apply
• Effective if

applied appropriately

• High pill burden
• Low bioavailability
• High rate

of non-responders
• Ineffective in the

presence of high
hepcidin levels

• Gastro-intestinal
side effects

• Low compliance

• Identification of the
underlying cause

• Absorption defect must
be excluded

• No predictor for response
• Oral iron as a trigger for

cancer or
intestinal inflammation

• Effects on gut microbiome
• Disease specific

therapeutic start
and endpoints

Intravenous
iron

• True and functional
iron deficiency

• Absorption defects
• Severe anemia
• Intolerance to oral

iron therapy
• Lack of efficacy of

oral iron therapy

• Faster replacement of
iron stores than with
oral iron

• Fewer gastro-intestinal
side effects

• New i.v. iron
formulations allowing
high single
dose administration

• Effective in the presence
of inflammation

• Better control
of compliance

• Rare but possible life
threatening
anaphylactic reactions

• Route of application
requires consultation
of a physician

• Higher costs
• Hypophosphatemia

• Long-term outcome on
underlying disease unclear

• No predictor of response
• Possible iron-induced

oxidative/nitrosative stress
• Unknown efficacy in

patients with more
advanced inflammation
and/or high
hepcidin levels

• Disease specific
therapeutic start
and endpoints

3.2.2. Hepcidin Modulation

As mentioned above, hepcidin is the master regulator of systemic iron homeostasis, as this
hormone is decisive for FPN expression, regulating iron efflux [151]. Thus, circulating levels of
hepcidin determine the transfer of iron from the diet via the duodenum and release of iron from
macrophages of the MPS. Since hepcidin is central to the pathophysiology of AI, several strategies
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that either modulate the synthesis of hepcidin or neutralize its activity have been developed [152,153].
The purpose of hepcidin modulation is to reverse iron retention in the MPS, thus enhancing iron
availability for erythropoiesis in AI. As multiple causes lead to AI (e.g., negative impact of cytokines
on erythropoiesis, impaired EPO activity), it needs to be investigated if increase of iron availability on
its own is sufficient to effectively restore hemoglobin levels. Alternatively, a combination with an ESA
could lead to a more favorable outcome [25,154–158].

The first approach that has been used were antibodies directed against hepcidin, which initially
were only effective to reverse anemia in animal models when combined with ESA, whereas a
subsequently developed human antibody modulated iron homeostasis in mice and cynomolgus
monkeys without concomitant ESA administration [159].

Another approach for hepcidin neutralization is based on the use of antichalins (bioengineered
lipocalin; small ligand-binding protein) or aptamers (also called Spiegelmer or Lexaptepid pegol
L-stereoisomeric RNA aptamer). Indeed, these compounds have also been proven to be effective in
preclinical models, and phase I trials have been successfully completed. In detail, positive data were
obtained from a phase I study for the anticalin PRS-080 thus a phase II study was initiated, which
is evaluating the effect of PRS-080 administration in anemic hemodialysis CKD patients (https://
clinicaltrials.gov/ct2/show/NCT03325621) [160]. The outcomes of this clinical study on anti-hepcidin
treatment are awaited. In addition, details on the impact of this compound on iron metabolism in
cynomolgus monkeys has just recently been published [161]. In parallel, a placebo-controlled study on
the safety, pharmacokinetics, and pharmacodynamics of the spiegelmer NOX-H94 in healthy humans
demonstrated that hepcidin was inhibited dose-dependently, thus causing an increase in serum iron
and Tf-Sat [162]. Furthermore, clinical phase II studies for the treatment of AI in patients suffering
from multiple myeloma, low grade non-, or Hodgkin lymphoma, and ESA-hypo-responsive chronic
hemodialysis patients have shown favorable effects, but cohorts were small, so further assessment is
warranted [163,164].

As BMPs, specifically BMP2 and BMP6, are potent inducers of hepcidin, inhibition of the
BMP-SMAD pathway is an attractive therapeutic approach to control hepcidin production [10–12,165].
Since this pathway is highly complex, involving different players, many possible targets can be
contemplated [166]: First, BMP sequestration is one strategy. Therefore, BMP6 antibodies, a soluble
hemojuvelin–Fc fusion protein, and modified heparins have been developed [167–170]. A phase I
clinical trial of such a latter compound (Roneparstat, SST0001), which has competitive heparanase
inhibitor properties, has been conducted in patients suffering from multiple myeloma, regarding
its anti-myeloma effect, dosing, and safety profile (https://clinicaltrials.gov/ct2/show/record/
NCT01764880) [171]. Impacts on hepcidin and iron metabolism have not been published yet.

Representing one step further down the BMP/SMAD pathway, efforts have been undertaken
to target the BMP receptor (BMPR). TP-0184, a small-molecule inhibitor of ALK2 activity,
has entered a phase I study this year (https://clinicaltrials.gov/ct2/show/NCT03429218), after having
shown promising effects on hepcidin suppression in vitro and in preclinical mouse models [172].
Not only BMPR, but also BMP co-receptors, have been investigated as hepcidin lowering strategies.
Two monoclonal antibodies targeting hemojuvelin have been developed, and are still in preclinical
development [173].

A third reasonable approach to counteract hepcidin activity is to block hepcidin-induced
internalization of FPN. Even though a phase II trial for such a stabilizing FPN antibody has been
successfully completed in 2015, its further development has been stopped [174,175].

Notably, EPO at high doses can decrease hepcidin levels [176]. This effect is only of short duration
and seems to be indirect, as signals derived from expanding erythroid progenitors in the bone marrow
mediate this suppression [177,178]. Indeed, among CKD patients, no long-term effects of EPO on
hepcidin levels have been observed, which, however, may also be partly related to impaired urinary
hepcidin excretion [179]. In addition, HIF-prolyl hydroxylase inhibitors (HIF-PHIs), stabilizing HIFs,
and thus activating HIF-controlled pathways, such as intrinsic EPO expression, have been reported

https://clinicaltrials.gov/ct2/show/NCT03325621
https://clinicaltrials.gov/ct2/show/NCT03325621
https://clinicaltrials.gov/ct2/show/record/NCT01764880
https://clinicaltrials.gov/ct2/show/record/NCT01764880
https://clinicaltrials.gov/ct2/show/NCT03429218
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to impact on iron homeostasis [93,180]. However, these effects can be traced back to transcriptional
regulation, resulting in enhanced expression of specific iron transporters in the intestine (such as FPN
and divalent metal transporter 1), thereby promoting iron absorption. Table 3 gives an overview of the
drugs that directly or indirectly modulate hepcidin levels.

Table 3. Drugs impacting on hepcidin-mediated alteration of iron homeostasis.

Name(s) Primary Indication(s) Target Drug Type Mechanism

Tocilizumab

• Rheumatoid arthritis
• Systemic juvenile

idiopathic arthritis
• Giant cell arteritis
• MCD
• Cytokine release syndrome

IL6R Humanized monoclonal
antibody IL6 signaling inhibition

Siltuximab MCD IL6 Chimeric monoclonal
Antibody IL6 binding

Infliximab

• IBD (Crohn’s disease,
Ulcerative colitis)

• Rheumatoid arthritis
• Psoriatic arthritis
• Ankylosing spondylitis
• Psoriasis

TNFα Chimeric monoclonal
antibody TNFα binding/blocker

Adalimumab

• IBD (Crohn’s disease,
Ulcerative colitis)

• Rheumatoid arthritis
• Psoriatic arthritis
• Ankylosing spondylitis
• Psoriasis
• Hidradenitis suppurativa

Juvenile idiopathic arthritis

TNFα Humanized monoclonal
antibody TNFα binding/blocker

Momelotinib
GS-0387
CYT-387

Myelofibrosis JAK1 and
JAK2 Small molecule

• Jak1 and
Jak2 inhibition

• Blockig of hepcidin
production via
ALK2 inhibition

CSJ137
• Hepcidin modulation
• Anemia amelioration BMP6 Antibody BMP6 binding/blocking

SST0001
RO-82
RO-68

NAc-91
NAcRO-00

• Myeloma therapy
• Hepcidin modulation BMP6 Modified heparin BMP6 binding

TP-0184

• Antitumor activity in advanced
solid tumors

• Hepcidin modulation
• Anemia amelioration

ALK2 Small molecule ALK2 inhibition

h5F9.23,
h5F9-AM8

• Hepcidin modulation
• Anemia amelioration HJV/RGMc Antibody BMP Co-receptor binding

binding

Spiegelmer
Aptamers

NOX-H94H

• Hepcidin modulation
• Anemia amelioration Hepcidin

Lexaptepid pegol
L-stereoisomeric RNA

aptamer
Hepcidin binding

PRS-080
• Hepcidin modulation
• Anemia amelioration Hepcidin Antichalin,

bioengineered lipocalin Hepcidin binding

Erythropoetin Anemia EpoR Protein Induction of Erythroferron
and blockage of hepcidin

4. Perspectives

Anemia, being the final consequence of imbalances in iron homeostasis, in the setting of chronic
diseases must be recognized as a clinical condition contributing to the morbidity of patients and
awareness for ID must be improved. Indeed, due to the knowledge gap in clearly defining and
diagnosing this condition, IDA, AI, and combined AI/ID are often used mutually. However, ID itself
precedes anemia and should be detected, even outside the context of anemia. Efforts to counteract
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this common misconception have been made and a group of experts has proposed the following
overarching definition for ID: “Iron deficiency is a health-related condition in which iron availability
is insufficient to meet the body’s needs and which can be present with or without anemia” [181].
Of importance, ID is not only associated with anemia, but also higher morbidity and mortality
among certain chronic diseases, which could be alleviated after treatment [100,182–185]. For example,
in patients suffering from chronic heart failure, ID has been shown to adversely impact performance
status and quality of life, including prolonged hospitalizations independent of anemia [186–188].
Another significant upcoming challenge will be the management of anemia of the elderly, which
often has a heterogeneous and multifactorial etiology, but is also specifically related to age-related
changes [189].

Although AI is a condition that should be treated, there is also an evolutionary rational for iron
restriction during inflammation: Iron restriction is beneficial during acute infections, especially to
withhold iron from circulating microbes [19,39]. Malaria represents one of the best studied examples
in this context [65,190,191]. The fact that red blood cells are the host for plasmodia highlights their
dependency on iron metabolism. An important finding was just recently made to better understand
underlying pathomechanisms: FPN expression on red blood cells is critical to prevent detrimental
intracellular iron accumulation and hemolysis, all in all leading to a more severe course of malaria.
Of interest, these authors found that a human mutation in FPN (Q248H), which is unresponsive to
hepcidin-mediated degradation, has been positively selected in sub-Saharan African populations [192].
Thus, anti-hepcidin treatment strategies as listed above could be discussed as a treatment option for
malaria in the future. Despite anemia being associated with this infection, iron supplementation has
been shown to be detrimental. This is also in line with studies showing that iron supplementation in
children of developing countries resulted in higher morbidity and mortality from infections [193,194].

Moreover, there is increasing evidence for the role of iron availability for the gut microbiome
and oral versus i.v. iron have different effects on the composition of the microbiome [143,195,196].
This is of interest, because the composition of the gut microbiome was found to play decisive roles for
the progression of IBD and carcinogenesis in different mouse models [197]. Further workup in vitro
showed that certain iron formulations (ferric citrate and ferric ethylenediaminetetraacetic acid) also
bear the risk of exacerbation of colon cancer advancement in an amphiregulin-dependent fashion,
however, it needs to be defined whether or not the dosages used in such models are relevant for
humans [198].

Another issue of general importance are the effects of iron supplementation or hepcidin
targeting strategies on immune regulation. This is based on the observation that iron impacts on
the differentiation and proliferation of immune cells, but also directly impacts on immune effector
pathways either by promoting oxygen radical formation or inhibiting pro-inflammatory cytokine
production or anti-microbial immune effector pathways of macrophages [29,199,200]. Pre-clinical and
clinical models have shown that iron supplementation reduces TNFα formation in CKD patients while
negatively impacting on the host response in mammalian models of invasive fungal infection [44,201].
Thus, depending on the underlying disease, iron supplementation could have disease modifying
effects through its regulatory effects on the immune function [44,202].

5. Conclusions

Anemia and ID in the setting of chronic inflammatory diseases are leading causes of morbidity
worldwide. While we have gained significant knowledge on the mechanism underlying iron
misdistribution and development of AI, highlighting the role of immune mediators and the iron
hormone hepcidin, there is still the need for reliable biomarkers to evaluate iron homeostasis
in patients suffering from inflammatory diseases and to choose the best therapy or to predict
its efficacy. Specifically, distinction between AI versus AI combined with true iron deficiency is
of importance because these groups of patients may likewise need different iron redistribution
therapies. The development of new drugs (e.g., hepcidin antagonists) and the improvement of
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old drugs (novel formulation for oral and intravenous iron preparations) are the subject of future
investigations. Although there is good evidence that iron supplementation improves quality
of life, the effect of iron supplementation on the course of an underlying disease or associated
co-morbidities are poorly understood. There is only limited information on therapeutic start- and
end-points for iron supplementation and anemia correction in such patients. However, negligence
of anemia and iron deficiency may also exacerbate the underlying disease state and cause clinical
deterioration [203,204]. Thus, there is still a lot to learn to optimize and personalize treatment in
subjects with AI. Therefore, investigations through pre-clinical models, but also through prospective
randomized trials, are urgently needed to gain more detailed insights into this clinically very frequent,
but poorly understood condition.
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Abbreviations

ACD Anemia of chronic disease
ACVR Activin A receptor
AI Anemia of inflammation
ALK Activin receptor-like kinase
BMP Bone morphogenic protein
BMPR Bone morphogenic protein receptor
CKD Chronic kidney disease
CRP C-reactive protein
EPO Erythropoietin
EPOR Erythropoietin receptor
ERFE Erythroferrone
ESA Erythropoiesis stimulating agent
FDA Food and drug administration
FPN Ferroportin-1 AKA SLC40A1
Hb Hemoglobin
HIFs Hypoxia inducible factors
HIF-PHD Hypoxia inducible factor prolyl hydroxylase inhibitors
IBD Inflammatory bowel disease
ID Iron deficiency
IDA Iron deficiency anemia
IFNγ Interferon gamma
IL Interleukin
IL6R Interleukin 6 receptor
i.v. Intravenous
JAK Janus kinase
MCD Multicentric Castleman’s disease
MCH Mean corpuscular hemoglobin
MCV Mean corpuscular volume
MPN Myeloproliferative neoplasms
MPS Mononuclear Phagocyte system
RA Rheumatoid arthritis
RBC Red blood cell
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SMAD Homologues of Sma and Mad (mothers against decapentaplegic) proteins
STAT Signal transducer and activator of transcription
sTfR Soluble transferrin receptor
TfR Transferrin receptor
Tf-Sat Transferrin saturation
TNFα Tumor necrosis factor alpha
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