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Abstract: Physical interactions between proteins are often difficult to decipher. The aim of this
paper is to present an algorithm that is designed to recognize binding patches and supporting
structural scaffolds of interacting heterodimer proteins using the Gaussian Network Model (GNM).
The recognition is based on the (self) adjustable identification of kinetically hot residues and their
connection to possible binding scaffolds. The kinetically hot residues are residues with the lowest
entropy, i.e., the highest contribution to the weighted sum of the fastest modes per chain extracted via
GNM. The algorithm adjusts the number of fast modes in the GNM’s weighted sum calculation using
the ratio of predicted and expected numbers of target residues (contact and the neighboring first-layer
residues). This approach produces very good results when applied to dimers with high protein
sequence length ratios. The protocol’s ability to recognize near native decoys was compared to the
ability of the residue-level statistical potential of Lu and Skolnick using the Sternberg and Vakser
decoy dimers sets. The statistical potential produced better overall results, but in a number of cases
its predicting ability was comparable, or even inferior, to the prediction ability of the adjustable GNM
approach. The results presented in this paper suggest that in heterodimers at least one protein has
interacting scaffold determined by the immovable, kinetically hot residues. In many cases, interacting
proteins (especially if being of noticeably different sizes) either behave as a rigid lock and key or,
presumably, exhibit the opposite dynamic behavior. While the binding surface of one protein is rigid
and stable, its partner’s interacting scaffold is more flexible and adaptable.

Keywords: protein-protein interactions; normal mode analysis; Gaussian Network Model;
protein decoys

1. Introduction

The revolutions in biotechnology of the past two decades opened an unprecedented ability
to analyze and organize biological information. The advent of the next generation sequencing
technologies and accompanying software tools enables the sequencing and analysis of complete
genomes, not only of whole species but of individual specimens also, often at a single cell level [1–3].
More than 90 million protein sequences have been deciphered so far, and that number grows at
an enormous rate [4], but the sequencing data alone is not sufficient to fully grasp the biological
process on the molecular level. The detailed information on structural and physical interactions of
biological molecules is of the utmost importance for the understanding of biological processes and
their proper treatment. However, the capacity to generate and adequately connect structural data,
i.e., protein, DNA, and RNA structures, to biological processes is diminutive in comparison to the
sequencing yield or even to diagnostic abilities. The analysis of human proteome reveals that almost
half of human genes and more than 60% of metabolic enzymes are expressed in majority of tissues [5],
but for the majority of them roles and interactions are still unknown. An even more pressing issue,

Pharmaceuticals 2018, 11, 29; doi:10.3390/ph11010029 www.mdpi.com/journal/pharmaceuticals

http://www.mdpi.com/journal/pharmaceuticals
http://www.mdpi.com
http://dx.doi.org/10.3390/ph11010029
http://www.mdpi.com/journal/pharmaceuticals


Pharmaceuticals 2018, 11, 29 2 of 26

and one that is very related to structural and sequencing information, is the high attrition rate in drug
development, a conclusion drawn in 2004 [6]. The past decade did not rectify this issue, as explained
in [7]. New approaches, such as the one described in this manuscript, or the analysis of ligand binding
behavior within a framework of chemico-biological space [8], may be a way toward a much better
compound filtering during preclinical trials and thus toward a more efficient drug design.

To fully comprehend the biological process on the molecular level we first have to understand
the physical laws that govern the interactions of biological polymers. Protein-DNA and protein-lipid
interactions had been successfully addressed [9–13], but the problems of protein folding [14,15]
and protein-protein interactions [16–21] are issues that still require the full attention of the research
community. Many attempts were made to develop a comprehensive protein-protein interaction
theory. The recognition of binding residues using an analysis of sequential and structural properties
of heteromeric, transient protein-protein interactions produced very good overall results, as shown
by Neuvirth et al. [22]. Chen and Zhou [23] used sequence profiles, as well as solvent accessibility
of spatially neighboring surface residues fed to neural networks to develop a successful binding
sites recognition protocol. By applying a linear combination of the energy score, interface propensity,
and residue conservation score, Liang et al. [24] achieved decent coverage and accuracy. Zhang et al.
focused their effort on the interface conservation across structure space [25], while Saccà et al.
introduced multilevel (protein, domain, and residue) binding recognition using the Semantic Based
Regularization Machine Learning framework [26]. It was shown that the three-dimensional structural
information, either based on data from PDB [27] or obtained from homology modeling, produces a
robust and efficient prediction of protein-protein interactions when applied with information on
structural neighbors of queried proteins and Bayesian classifiers [28]. The protein (co)expression also
attracts researchers’ attention. For instance, Bhardwaj and Lu [29] showed that the complexity of
co-expression profiles in protein networks rises with the increase of the interactions/connectedness of
the networks.

The application of coarse-grained force fields in the analysis of protein-protein associations
also attracted the attention of the research community [19,30]. Basdevant, Borgis, and Ha-Duong
analyzed the dimer association using the coarse-grained SCORPION force field model of protein
and solvent [31]. The force field model was able to recognize near native decoys of three different
protein complexes (out of thousands of analyzed decoys) and to efficiently simulate the dynamics
of recognition of a protein complex starting from different initial structures. A similar approach,
in a combination with a push-pull-release sampling strategy, was applied by Ravikumar, Huang,
and Yang to examine protein-protein association in a number of complexes [32]. M. Zacharias
combined bonded atomistic with coarse-grained, non-bonded interactions in his force-field model to
simulate peptide-protein docking and refinement from different stating geometries with acceptable
accuracy [33]. Solernou and Fernandez-Recio developed pyDockCG [34], a coarse-grained potential
for protein-protein docking scoring and refinement, based on the earlier UNRES model developed for
the protein structure prediction [35]. A coarse-grained approach (one pseudo atom per every three
residues) by Frembgen-Kesner and Elcock showed an ability to reproduce the absolute association rate
constants of wild-type and mutant protein pairs via Brownian motion simulations when hydrodynamic
interactions between diffusing proteins are included [36]. Chou and collaborators used Pseudo Amino
Acid Composition (PseAAC) and Wavelet Transforms as inputs to predict algorithms based on Random
forests, as well as Support Vector Machines to recognize protein binding sites [37–43].

The elucidation of physical interactions of proteins is appealing to the pharmaceutical industry
as well [44], with an emphasis on small molecule inhibitors of protein-protein interactions [45,46].
The interest of the pharmaceutical industry is not surprising, because mutations, which disrupt the
three-dimensional structure, can be cancer drivers [47].

The aim of this paper is to address the physical interactions between individual protein chains
that form protein dimers. The approach described here uses the structural information only and the
theory of phantom networks through its Gaussian network model (GNM) implementation [48–59].
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The GNM produces a set of vibrational modes via the eigenvalues and eigenvectors of the protein
Kirchhoff contact matrix. The fastest modes (with larger eigenvalues λ) are more localized and have
steeper energy walls with a larger decrease in entropy. They are, therefore, referred to as kinetically
hot residues. For more details, see the Supplementary Materials and [56].

The connection between kinetically hot residues and interface residues has been established
already [60]. The methodology described here moves forward and introduces a self-adjusting approach
that is aimed at recognizing binding surfaces and corresponding structural scaffolds (contact and
neighboring first-layer residues; that approach was initially given in [61,62]). The results depicted here
show that at least one of the proteins that forms a heterodimer has its contacting scaffold surrounded
or bounded through its kinetically hot residues. One of the partners (usually the longer one) has
binding areas and corresponding binding scaffolds defined by its kinetically hot residues, while its
partner is presumably more flexible. It may pass through structural adjustments, which means that the
recognition of its binding residues could be difficult with the coarse-grained methodology based on
the distribution of kinetically hot residues only. A similar difficulty is encountered in heterodimers
composed of similarly sized proteins (with similar chain lengths). Furthermore, with smaller proteins,
the adjustable GNM approach may be less precise, because the small protein size easily produces
many false positives. However, the fact that at least one of the binding partners has binding areas
defined by its kinetically hot residues (and thus is less movable than other residues) may suggest that
the heterodimer protein formation is entropically driven, i.e., that the protein chains often interact in
an attempt to increase the overall entropy (i.e., increase the entropy of rigid binding scaffolds).

The term “kinetically hot residues” is similar to the term “hot spots” that is often used in protein
science, but these terms have much more in common than linguistics. Residues that often appear in
structurally preserved interfaces (in more than 50% of cases) are termed hot spots. The hot spots are
important, because they are general contributors to the binding free energy. They are screened using
the alanine-scanning mutagenesis and are therefore defined as spots where alanine mutation increases
the binding free energy at least 2.0 kcal/mol [63–69]. Bogan and Thorn [63] showed that hot spot
residues are enriched in tryptophan, tyrosine, and arginine, and that they are surrounded with residues
whose role is to occlude solvent from the hot spots (O-ring residues hypothesis). They also observed
that “(n)either the change in total side-chain solvent-accessible surface area on complex formation (∆ASA) nor
the sidechain ∆ASA of hydrophobic atoms is well correlated to the change in free energy” [63]. They concluded
that solvent occlusion is a necessary but not sufficient condition for a residue to be a hot spot. The hot
spots have been addressed using various computational methods [65]. Tuncbag et al. used information
on conservation, the solvent accessibility area, and the statistical pairwise residue potentials of the
interface residues to computationally determine hot spots. Their combined approach achieved both
accuracy and precision between 64% and 73% of the Alanine Scanning Energetics and Binding Interface
Databases. They observed that “conservation does not have significant effect in hot spot prediction as a single
feature”. However, their results indicate that the “residue occlusions from solvent and pairwise potentials are
found to be the main discriminative features in hot spot prediction”. Lise et al. [66,67] combined machine
learning and energy-based methods to predict hot spot residues. They applied standard energy terms
(Van der Waals potentials, solvation energy, hydrogen bonds, and Coulomb electrostatics) as input
features to Support Vector Machine (SVM) and Gaussian Processes learning protocols. They also
attempted to predict the change in binding free energy ∆∆G upon alanine substitution but achieved
only a limited success. Den et al. [70] also used Support Vector Machines with Random Forest selection
and Sequential Backward feature elimination to predict hot spots. They used various molecular
attributes (local structural entropy, side chain energy score, four-body pseudo-potential, weighted
relative surface area burial) as feature vector elements, as well as the residue neighborhood defined via
the Euclidian distances between residues/heavy atoms, with Voronoi diagram/Delaunay triangulation
employed to describe residue’s neighbors. They ended with 38 features, which the SVM protocol
utilized to predict hot spots very efficiently. Kozakov et al. [68] analyzed druggable hot-spots via a
computational method that places small organic molecules—probes (16 of them)—on a grid around
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target protein. The spots on the surface of the target protein that favorably interact with a number of
probes are clustered, and those clusters are ranked according to the average free energy. The consensus
regions (the regions that bind many probes) are taken to be hot spots. Their method is able to recognize
hot spots even in unbound cases. The authors concluded that according to their protocol, the hot spots
“possess a general tendency to bind organic compounds with a variety of structures, including key side chains of
the partner protein”. This sentence is emphasized, because the results depicted in this paper also show
that the binding interface of large host proteins is often determined by their own structure only. That
may imply that host proteins are receptive for other proteins and/or small molecules besides their
usually encountered binding partners. The method depicted here is also able to distinguish dimer
decoys that were created with structures of unbound chains (see Testing set analysis in this paper).
Similarly, Tuncbag et al. [69] observed that “globally different protein structures can interact via similar
architectural motifs”. They employed that fact through the PRISM algorithm that “utilizes rigid-body
structural comparisons of target proteins to known template protein-protein interfaces and flexible refinement
using a docking energy function.”

To develop a really useful prediction method for a biological system as demonstrated in a series
of recent publications (see, e.g., [71–85]), and especially in a set of publications relevant to the topic of
protein-protein, protein-ligand, and protein-drug interactions [37–43], one should observe and possibly
follow the 5-step methodology [86]; (I) how to construct or select a valid benchmark dataset to train
and test the predictor; (II) how to formulate a set of biological sequences or structure samples with an
effective mathematical expression that can truly reflect an intrinsic correlation with the targets to be
predicted; (III) how to introduce or develop a powerful algorithm (or engine) to operate the prediction;
(IV) how to properly perform cross-validation tests to objectively evaluate the anticipated accuracy
of the predictor; (V) how to establish a user-friendly web-server for the predictor that is accessible to
the public.

This paper follows the above-described 5-step methodology. It starts with an overview of methods
and tools (a short overview of the theoretical background of the Gaussian network model is given in the
Supplementary Materials). The definition of target residues, as well as the short description of training
and testing sets, is given after that. The first simple prediction protocol that is based on the five fastest
modes and the sequential influence of the hot residues only is given in the third chapter. The same
chapter describes a prediction approach that uses the modes that correspond to the upper 10% of
the eigenvalues range. After that, the paper offers a brief description of the behavior of dimers with
different sequence lengths of their protein constituents and introduces a significant improvement
in the prediction based on the adjustable number of fast modes. After that, the paper describes an
adjustable prediction protocol based on the 3D influence of hot residues, as well as the combination of
sequential and spatial approaches. Finally, the paper describes an evaluation of adjustable protocols
on the Sternberg [87] and Vakser decoy sets [88]. While doing so, the paper compares the adjustable
GNM to the Lu and Skolnick’s detailed, residue-level statistical potential approach to contact residues
recognition [89]. The paper ends with the Conclusion.

2. Materials and Methods

2.1. GNM Code

The software for the Adjustable Gaussian Network Model code is composed of several different
programs. The first program calculates contact maps and the corresponding eigenvectors and
eigenvalues [90] for both protein chains that form a protein dimer (given as a PDB file). To accomplish
that, the program first calculates the Kirchhoff contact matrix Γ for each protein. The matrix Γ

calculation is based on the distances between Cα atoms only, and those distances have to be less than
or equal to 7 Å to consider two residues in a contact [54–56]. The code then calculates and sorts Γ

matrix eigenvalues and eigenvectors. The eigenvectors are sorted according to their corresponding
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eigenvalues. Those eigenvalues and eigenvectors are used in the second part that (iteratively) calculates
the weighted sum of modes [57] as

〈(∆Ri)
2〉k1−k2 = (kBT/γ)
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∑
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This equation, normalized by dividing the sum by , produces mean square fluctuations of each
residue by a given set of modes (k1 to k2). The equation produces an estimate of a kinetic contribution
of each residue for a given set of modes. The above equation is very similar to the singular value
decomposition method [91] used in the linear least squares optimization method. For details on the
phantom networks and the Gaussian Network Model, see a short overview in the Supplementary
Materials. An additional code extracts contact and first-layer residues. Finally, the third set of routines
extracts neighboring residues and their distances for each residue per protein chain. That information
is later used in the spatial spreading of the influence of kinetically hot residues.

2.2. Targets

The aim of the methods presented here is to recognize contact patches on protein surfaces and
the corresponding scaffolds in the protein interiors. The first aim is to recognize contact residues.
These are amino acid residues in which at least one atom is at the maximum distance of 4.5 Å from
one or more atoms from the surface of the other chain. The distance of 4.5 Å corresponds to the size
of one water molecule. The second aim is to recognize the first-layer residues (FLR), i.e., residues in
contact with contact patches, but which are not contacts themselves. Therefore, those are neighboring
residues from the same protein (at the maximum atom-atom distance of 4.5 Å from contact residues).
They form scaffolds that surround contact residues (for a visual description of contact and first-layer
residues, see Figure S1 in the Supplementary Materials).

2.3. Training Set

The training set is comprised of 433 protein dimer complexes (see Supplementary Materials for
the full list of dimers; this set is inspired by the Chen dimer set). It is separated into heterodimer
and homodimers, using two criteria: (1) If the ratio of protein lengths (protein sequence length is the
number of its amino acid residues) in a dimer complex is greater than 2, that complex is considered
to be heterodimer; (2) If the ratio of protein lengths is smaller than 2, the Smith-Waterman sequence
alignment algorithm [92] is applied to recognize and separate dimers in which proteins sequences are
highly similar. This approach was applied following the homology modeling principle that says that
high sequence similarity implies structural similarity [93–96]. In some cases, proteins were considered
to be heterodimers, although they have a high sequence similarity due to large sequence gaps (1IAI and
1EKI). Therefore, the first group contains dimers in which constituents do not bear obvious structural
similarity, while the second group has members that are sequentially and structurally highly similar.
The dimers were separated into two groups, because heterodimers and homodimers may exhibit
different binding mechanisms. Different behaviors of these two groups may imply that their kinetically
hot residues may not be have the same role in protein binding. This approach was used because the
Gaussian Network Model is based on structural organization of residues, i.e., on the spatial distribution
of Cα atoms in proteins.

Of 433 dimers, 139 are heterodimers, and the rest are homodimers. Majority of proteins in our
training set have sequences shorter than 300 residues, but we also have a number of proteins longer than
400 residues. The distribution of chain lengths is shown in Figure S2 in the Supplementary Materials.



Pharmaceuticals 2018, 11, 29 6 of 26

2.4. Testing Sets

The Sternberg [87] and Vakser [88] decoy sets are numerically created decoy sets created for
testing and evaluation of protein binding prediction protocols. Each decoy set is based on a naturally
occurring protein dimer complex with a known structure. Each individual decoy from a set is a protein
complex numerically created by joining two (or more) individual proteins based on the corresponding
non-bound structures.

The Sternberg decoys sets [87] are comprised of 100 decoys each with first four being near native
structures and the first one being the native structure itself. The decoys are generated using unbound
structures of the chains that form native dimer structures. In this work only dimer sets were used
(10 sets). The adjustable GNM algorithms were applied independently to both proteins per decoy.

Every Vakser set contains 110 decoys. Certain number of those decoys are near native structures
(in most cases, 10 of decoys in a set are near native, as determined by their root mean square deviations
from the native structure(s)). Only dimer sets (41 of the 61 decoy sets) were used in this research.

3. Results and Discussion

3.1. Simplest 1D Prediction (Sequential Neighbors Influence only) Based on 5 Fastest Modes

The first attempted method is based on the approach of Demirel et al. [57], which used five
fastest modes to recognize kinetically hot residues in proteins. With a direct implementation of their
scheme, the first step was the calculation of the weighted sum (Equation (1)). With normalized sum,
only residues with the normalized amplitude higher than 0.05 (hot residues) were tested against
extracted contact and first-layer residues. The number of hot residues is usually smaller than the
number of contact or first-layer residues. To account for that, the influence of hot residues was
spread to their sequential neighbors using sequence information obtained from their structure PDB
files (to account for possible missing residues). The influence of hot residues was spread linearly,
to sequential neighbors only, because proteins are polymer chains with physically connected residues.
That implies that sequentially neighboring residues should exhibit correlated behavior. For chains
longer than 100 amino acids, hot residues and 8 their sequential neighbors upstream and downstream
were labeled as predictions (four upstream, four downstream). For shorter chains, the influence
was spread to 6 neighboring residues only. The labeled residues are assumed to be either contact or
first-layer residues. This approach was used on all 433 dimers regardless of the sequence length or the
nature (hetero or homodimer) of a particular dimer complex.

Figure 1a shows the algorithm output for all 866 proteins (433 dimers). The ratio (percentage) of
true predictions versus ratio of false prediction per protein is depicted on a two dimensional Cartesian
plane, i.e., as a scatterplot. The ratio of true predictions per protein is the number of true predictions
over the total number of targets (contact and first-layer residues). They are true positives. The ratio
of false predictions per protein is the number of residues falsely predicted as being either contact or
FLR over the total number of non-target residues, and they treated as false positives. The Cartesian
plane is separated into two parts by a diagonal going from the lover left to the upper right quadrant.
The proteins above the diagonal are considered as satisfying prediction, because the ratio of their true
positives over false positives is over 1. The proteins under the diagonal are, obviously, unsatisfying,
i.e., they are considered bad predictions. The chains (i.e., predictions) in the upper left quadrant we
define as good predictions (the ratio of true positives is above 0.5, and the ratio of false positives lower
or equal to 0.5). In addition, very bad predictions are taken to be the ones that fall into the lower left
quadrant (the ratio of false positives is over 0.5, and the ratio of true positives lower or equal than 0.5).
Henceforth, these two measures, percentage of good predictions and percentage of bad predictions,
besides true positives mean, and false positives mean, will be used as measures of the quality of the
prediction methods. There are obviously better definitions of good and bad prediction. The two used
in this research were applied primarily for the algorithm tuning, because they are easy to interpret
and implement.
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Figure 1a clearly shows that satisfying and unsatisfying predictions are almost equally distributed.
The true and false means are 43.09% and 40.78%, respectively. The percentage of good predictions
(22.17%) is higher than the percentage of very bad predictions (12.70%), but the amount of good
predictions is still not good enough for the general purpose application. However, the distribution of
good and bad predictions is not uniform over the protein chain lengths, as the histogram in Figure
S3 in the Supplementary Materials nicely depicts. The prediction method based on the five fastest
modes is much more successful with shorter (and thus less voluminous) proteins than with longer
ones. With proteins longer than 100 residues, but shorter than 200, the prediction algorithm was
not satisfying at all, because it put more predictions in the lower right quadrant than in upper left.
However, with proteins shorter than 100 residues, it put much more predictions in the upper left
(good predictions) than in lower right quadrant, which means that 5 modes may be only good for
smaller proteins.

To test the assumption that heterodimers behave differently from homodimers, the above-described
method was applied on heterodimers only (278 chains). Figure 1b depicts the results of that analysis.
It is obvious that more predictions are in the upper left quadrant than in the lower right. That indicates
that hot residues and their neighbors, recognized using only five fastest modes, are much closer to
binding patches on the surface and in the interior of heterodimer chains. On average, there are 50.74%
of true positives and 42.68% of false positives. The distribution of good and very bad predictions is
better than with the complete set (see Figure S4 in Supplementary Materials) but is still not satisfactory
enough, because there is only 31.29% of good predictions (87 chains in the upper left quadrant) and
11.15% of bad ones (31 proteins are in the lower right quadrant).

Figure S5 in the Supplementary Materials depicts the example of this initial approach on four
different protein chains. It shows the weighted sums for those four proteins, their contact and first later
residues (expressed as the ratio of atoms per the total number of atoms in residue), and the predictions.
It is clearly visible that, for the longer proteins (chain P from 1BVN in particular), five fastest modes fail
at predicting the target residues. For shorter chains (2SNI chain E, 1UDI chain E, and 1CXZ chain A),
five modes are better at connecting the kinetically hot residues to contact and FLR patches, but the
overall prediction is still not very favorable, because the percent of the accurately predicted contact
and FLR residues is comparatively small.
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false positives mean is 46.27%. There is 23.02% of good predictions (64 chains) and 14.39% of very
bad predictions (40 chains). (d) Prediction output for the simple approach based on the modes that
correspond to top 10% of the eigenvalues range, for heterodimer chains with high sequence length
ratios (the chain length ratio >2, the individual chain lengths longer than 80 residues). The true positives
mean is 52.03%, and the false positives mean is 40.67%. There is 33.01% of good predictions (34 chains)
and 6.80% of very bad predictions (7 chains).

3.2. First Attempt to Improve the Prediction

3.2.1. Prediction Based on the Fast Modes That Corresponds to Top 10% of the Eigenvalues

The previous analysis and the corresponding distribution of good and bad predictions over
the protein sequence lengths indicate that the weighted sum based on five modes only is not able
to decipher the contact patterns on the surface and in the interior of proteins. With shorter protein
chains (up to 100 residues), the weighted sum of five fastest modes is able to give a satisfying
prediction of binding and first-layer residues, but with longer chains, the prediction efficiency fails
(Figures S3 and S4 in the Supplementary Materials). Therefore, it can be assumed that the number of
modes should be adapted to each individual protein. That number would be difficult to determine
knowing only the length of a protein chain, because, when sorted, the distribution of the mode
intensities (eigenvalues) is not a linear function of the mode index (see Figure S6 in the Supplementary
Materials). The distribution of eigenvalues depends on the chain’s length, as well as on the protein’s
three-dimensional configuration. Therefore, a new approach with a variable number of modes that
corresponds to the top 10% of the eigenvalues span for every protein was attempted. Figure S6 nicely
depicts that top ten percent of eigenvalues are covered by five modes for the protein 1ETT chain H,
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itself made of 231 amino acid residues. The protein chain P from dimer 1BVN (496 residues) has
14 modes covering top 10%, and the protein chain A from 1QGK (876 residues) has 29 fastest modes
covering the top 10% of eigenvalues. There is a correlation between the number of residues and the
number of fast modes, but it is not strictly linear.

When this approach is applied to heterodimers, the amount of true positives becomes increased.
That can be observed with the four protein chains analyzed previously (Figure S7 in the Supplementary
Materials). However, the percentage of false positives also gets increased. With the whole set of
heterodimers (278 protein chains), the overall improvement is miniscule, the true positives mean is
52.52%, and the false positives mean of 46.27% (Figure 1c). The increase of the false positives mean
corresponds to the decrease of the number of good predictions to 23.02% of the total number of proteins
(64 proteins), as well as the increase of the very bad prediction to 14.39% (40). The distribution of good
and very bad predictions over the chain lengths shows that this approach is not ideal for all protein
chains (Figure S8 in the Supplementary Materials). The bad predictions are dominant for proteins
longer than 100 residues and shorter than 200 residues. However, this approach is able to accurately
access contact and first-layer residues in a protein with very high number of residues (876, chain A
from 1QGK).

3.2.2. Analysis of Heterodimers with Very Different Sequence Lengths

Heterodimers are protein complexes composed of two protein chains with no apparent sequential
and structural similarity. What forms such entities? What kind of attraction forces two or more different
protein chains to from a stable structure? In protein-DNA or protein-lipid interactions, electrostatic
forces are often the key binding factors, but with protein interactions such forces usually have a small
or negligible influence.

When a protein dimer is analyzed, one may wonder whether its two constituents evolved
separately, or whether they created by a mutation that broke a single protein chain into two separate
parts. If we expand this premise, we can assume that such mutation can more easily survive if a point
of separation is close to the terminal ends of the initial, single chain (single mutation is, of course,
a euphemism for a much more complex random biological process). In that case, a longer sub-chain
has a higher probability of preserving its fold and function, because it will be highly homologous
to the initial chain (homology implies similar folding patterns, see [93–96]). The probability of
surviving is much higher than with mutations that break a protein into constituents of similar sizes.
Namely, a protein produced by an asymmetric breaking will more easily preserve its fold and have
more of a chance of surviving evolutionary pressures. That may also imply that a protein with longer
sequence (more voluminous protein), produced by that single mutation, when interacting with its
shorter partner (if that partner survived throughout evolution), may preserve its fold during (and upon)
the binding. Similarly, if dimer constituents evolved separately, longer partners may be less prone
to significant structural changes during the binding due to their sheer size. All this may imply that
kinetically hot residues may determine the shape and the position of a scaffold that determines binding
spots in individual heterodimer chains.

To test this assumption, the previously analyzed heterodimers were divided into two groups
according to the length ratios of their constituents. The heterodimers with sequence length
ratios higher than two were analyzed separately from the rest of heterodimers. Figure S9 in the
Supplementary Materials depicts the analysis of the heterodimer chain lengths. The panel (a) depicts
the sequence length for each monomer, with longer monomers given via the green line and shorter via
the blue line. The panel (b) depicts the corresponding sequence length ratios. The vertical line separates
heterodimers into heterodimers with sequence length ratios higher than two from heterodimers with
smaller sequence length ratios. The chains with sequence lengths shorter than 80 were eliminated from
this group to reduce the occurrence of chains with high percentage of both true and false positives.

Figure 1d depicts the results of the analysis of heterodimers with high sequence length ratios of
constituents. In the analysis, only modes that corresponded to top 10% of eigenvalues range were
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used. This approach, although based on a smaller subset of proteins, shows a visible improvement.
It is obvious that the number of proteins with badly characterized target residues (proteins in which
the ratio of true positives vs. false positives is less than 1) is reduced. The true positive mean is 52.03%,
and the false positive mean is 40.67%. Although only 6.80% of predictions are characterized as very
bad (7 proteins), the method is still not satisfactory, because only 33.01% of all chains (34 proteins)
are in the upper left quadrant (good predictions). The distribution of good vs. very bad predictions
(Figure S10 in the Supplementary Materials) shows much better behavior of this prediction method
over the protein sequence lengths than the previous two attempts.

The same analysis, performed on proteins forming heterodimers with low sequence length
ratios (for proteins with more than 80 residues), reveals a different picture (Figure S11 in the
Supplementary Materials). There is only 13.64% of good predictions (18 proteins out of 132) versus
20.45% of very bad predictions (27 proteins). The true positives mean is 52.75%, a value very similar
to the true negatives mean of 53.18%. The distribution of good vs. very bad predictions (Figure S12
in Supplementary Materials) is also not very favorable to good predictions and indicates a negative
correlation between kinetically hot residues and binding scaffolds in heterodimers of similar size.

3.3. Prediction Based on the Adjustable Number of Modes

The previous attempts to recognize contact and first-layer residues via the Gaussian Network
Model were based on a static approach in which protein dimer structures were analyzed using
either 5 fastest normal modes or modes that corresponded to the top 10% of the eigenvalues range.
Those approaches showed that kinetically hot residues may play a role in protein-protein interactions,
but they did not offer enough proof for that assertion. With some protein chains they produced
excellent results, but with some they failed. More importantly, the percentage of good predictions
(the amount of chains with more than 50% of true positives and less than 50% of false positives) was
comparatively small (always less than 40% of all the chains analyzed). Many of the proteins had a very
high percentage of both true positives and false positives. In addition, a significant number of proteins
had a very small percentage of both true and false predictions. All of this implied that prediction
algorithm had to be improved.

The analysis of the average percentage of targets per sequence length reveals that the amount
of targets and the chain length are inversely proportional. Larger proteins with longer sequences
have a smaller percentage of contact and first-layer residues than shorter chains. Figure 2 depicts
the distribution of targets over the protein sequence lengths. It clearly shows that small proteins
(shorter sequence lengths) have much higher ratio of contact and first-layer residues than larger
proteins (longer amino acid sequence lengths).

The information on the targets distribution can be used to improve the prediction approach.
The prediction can be adjusted to each particular protein chain through a comparison of the current
prediction output, i.e., current ratio of predictions (the total number of residues assigned to be either
contact or first-layer residues by the algorithm) over the total number of residues, to the expected,
i.e., average, percentage of targets for that protein’s sequence length class. The improvement of the
prediction algorithm can be performed as follows:

– If the overall percentage of predictions is too large for that protein’s sequence length class
(for example, if the percentage of predictions is larger than 60% of the total number of residues),
the number of fast modes should be reduced by one, and the whole prediction procedure should
be repeated (Equation (1)).

– If the percentage of predictions is too small for the protein’s sequence length class (e.g., less than
20% of all residues), the number of fast modes should be increased by one, and the whole
prediction procedure should be repeated (Equation (1)).

– The procedure should be repeated until the percentage of predictions does not fit between the
maximum and minimum amount of predictions for a given sequence length.



Pharmaceuticals 2018, 11, 29 11 of 26
Pharmaceuticals 2018, 11, x  11 of 26 

 

 

Figure 2. Distribution of targets per sequence length for 414 dimers that belong to the training set depicted 
as a heat map. The burgundy square designates a length/percent pair with a highest concentration of 
chains. Yellow and light green squares are length/percent pairs with a medium number of chains. The dark 
blue squares are length/percent pairs with low occupancy. The navy areas designate zero chain occupancy. 
It is obvious that the percent of targets is a decreasing function of the sequence length. 

3.3.1. One-Dimensional Linear Prediction 

A simple strategy adjusts the number of modes for each particular chain: if the number of 
residues in a chain is less than or equal to 300, too many predictions are taken to be 60%. In that case, 
i.e., if the amount of predictions is over 60% of all residues, the number of modes is reduced by one, 
and the prediction procedure is repeated (Equation (1)). Similarly, if the number of residues is greater 
than 300, too many predictions are taken to be 50%. Furthermore, if the chain length is less or equal 
to 500 residues, too few predictions are taken to be 40%. For cases like that, the number of modes is 
increased by one, and the whole procedure is repeated. For longer chains, too few predictions are 
20%. To avoid infinite loops, only one increase followed by a decrease is allowed, and vice versa. The 
prediction procedure itself spreads the influence of kinetically hot residues linearly upstream and 
downstream along the sequence, as with the previously described methods. The procedure starts 
with a number of modes that correspond to the top 10% of eigenvalues range for the protein being 
analyzed. This approach ensures that longer proteins have enough predictions, and that shorter ones 
are not saturated with too many false positives.  

(a) 

Figure 2. Distribution of targets per sequence length for 414 dimers that belong to the training
set depicted as a heat map. The burgundy square designates a length/percent pair with a highest
concentration of chains. Yellow and light green squares are length/percent pairs with a medium
number of chains. The dark blue squares are length/percent pairs with low occupancy. The navy areas
designate zero chain occupancy. It is obvious that the percent of targets is a decreasing function of the
sequence length.

3.3.1. One-Dimensional Linear Prediction

A simple strategy adjusts the number of modes for each particular chain: if the number of
residues in a chain is less than or equal to 300, too many predictions are taken to be 60%. In that
case, i.e., if the amount of predictions is over 60% of all residues, the number of modes is reduced by
one, and the prediction procedure is repeated (Equation (1)). Similarly, if the number of residues is
greater than 300, too many predictions are taken to be 50%. Furthermore, if the chain length is less
or equal to 500 residues, too few predictions are taken to be 40%. For cases like that, the number of
modes is increased by one, and the whole procedure is repeated. For longer chains, too few predictions
are 20%. To avoid infinite loops, only one increase followed by a decrease is allowed, and vice versa.
The prediction procedure itself spreads the influence of kinetically hot residues linearly upstream and
downstream along the sequence, as with the previously described methods. The procedure starts with
a number of modes that correspond to the top 10% of eigenvalues range for the protein being analyzed.
This approach ensures that longer proteins have enough predictions, and that shorter ones are not
saturated with too many false positives.
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14.56% of very bad predictions (15 chains). (b) Algorithm output for the prediction based on the 
adjustable number of fastest modes per chain and the variable 3D influence per hot residue (the 
influence of a hot residue is spread to spatial neighbors closer than 6 or 8 Å), for chains in dimers with 
high sequence length ratios (Length ratio > 2, length > 80 residues). The true positives mean true is 
53.77%, and false positives mean is 41.29%. There is 56.31% of good predictions (58 chains) and 8.74% 
of very bad predictions (9 chains). (c) Algorithm output for the prediction based on the adjustable 
number of fastest modes per chain and combined 1D & 3D influences of hot residues, for chains in 
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analysis shows a remarkable improvement over the previous prediction attempts. The true positives 
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Figure 3. (a) Algorithm output for the prediction based on the adjustable number of fastest modes per
chain and sequential influence of hot residues, for high sequence-length ratio dimer chains (length ratio
greater than two, chain length greater than 80 residues). The true positives mean true is 53.27%, and the
false positives mean is 42.05%. There is 56.31% of good predictions (58 of 103 chains) and only 14.56%
of very bad predictions (15 chains). (b) Algorithm output for the prediction based on the adjustable
number of fastest modes per chain and the variable 3D influence per hot residue (the influence of a hot
residue is spread to spatial neighbors closer than 6 or 8 Å), for chains in dimers with high sequence
length ratios (Length ratio > 2, length > 80 residues). The true positives mean true is 53.77%, and false
positives mean is 41.29%. There is 56.31% of good predictions (58 chains) and 8.74% of very bad
predictions (9 chains). (c) Algorithm output for the prediction based on the adjustable number of
fastest modes per chain and combined 1D & 3D influences of hot residues, for chains in dimers with
high sequence length ratio (Length ratio > 2, length > 80 residues). The true positives mean is 56.77%,
and the false positives mean is 43.21%. There is 63.11% of good predictions (65 chains) and 11.65% of
very bad predictions (12 chains).

Figure 3a shows how this adaptable approach works with heterodimers with high sequence
length ratios (the length ratio larger than two and chain lengths longer than 80). The statistical analysis
shows a remarkable improvement over the previous prediction attempts. The true positives mean
is 53.27%, and the false positives mean is 42.05%. There is 56.31% of good predictions (58 proteins) and
only 14.56% of very bad predictions (15 proteins). The distribution of good and very bad predictions
over the chain lengths is also very favorable (Figure S13 in the Supplementary Materials).

The analysis performed on the four chains used previously to describe the prediction procedure
confirms the above results (Figure S14 in the Supplementary Materials). For the three longest protein
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chains, 1BVN chain P, 2SNI chain E, and 1UDI chain E, the percent of true positives is over 50%, and the
percent of false positives is less than 50%. The protein chain E of 1UDI has a highest difference between
the true and false positives, which is an indication of a high correlation between the kinetically hot
residues and contact scaffolds for that chain. Only the shortest example, 1CXZ chain A, has both true
and false positives over 50%.

When this approach is applied to heterodimer proteins with low sequence length ratios
(with the chains longer than 80 residues), the results are less than satisfactory (Figure S15 in the
Supplementary Materials). The true positives mean is 50.39%, and the false positives mean is 49.53%.
The amount of good and bed predictions is very close, namely, there is 34.85% of good predictions
(upper left quadrant, 46 of 132 proteins) and 27.27% of very bad predictions (lower left quadrant,
36 proteins). The distribution of good and bad predictions is also not favorable (Figure S16 in the
Supplementary Materials).

3.3.2. 3D Spatial Prediction—Variable Influence of Hot Residues

The adjustable algorithm introduced in the previous chapter uses sequential neighbors only to
spread the influence of hot residues. It produces good predictions of contact and first-layer residues
but offers a room for improvement. The prediction can be improved if spatial neighbors, instead of
sequential ones, are used to spread the influence of hot residues. This approach is much closer to the
true nature of the GNM algorithm that uses only spatial distances between Cα atoms and disregards
any sequential/connectivity information. To apply this approach, the maximum cutoff Cα-Cα distance
from the center of a hot residue was introduced, from which its influence can be spread. The cutoff
distance of 6 Å was applied with for shorter protein chains (for sequence lengths shorter than 250),
and the cutoff of 8 Å was applied for longer protein chains. All residues that are within the sphere
centered at the Cα atom of the hot residue and within the assigned cutoff distance are considered to be
“predictions”, i.e., they are assumed to be either contact or first-layer residues. All other residues are
rejected (for that particular hot residue). The two cutoff values were estimated empirically. To extract
spatial neighbors, distances between residues (Cα-Cα distances) were calculated for each particular
protein and sorted in ascending order.

Figure 3b depicts the algorithm output for the heterodimers with the sequence length ratios
higher than two for protein chains with a chain length longer than 80 residues. The true positives mean
is 53.77%, and false positives mean is 41.29%. There is 56.31% of good predictions (58 proteins) and
only 8.74% of very bad predictions (8 proteins). There is also a noticeable number of predictions with
a very favorable ratio of true positives vs. false positives, which are outside the upper left quadrant
and thus do not belong to the good predictions as we defined them. Figure S17 in the Supplementary
Materials shows the distribution of good and very bad predictions. Figure S18 in the Supplementary
Materials shows the predictions for the four examples used previously.

With proteins from low sequence length ratio dimers, the results are not as good. The true
positives mean is 52.22%, and the false positives mean is 48.81%. There is 42.42% of good predictions
(56 proteins) and 27.27% of very bad predictions (36 proteins). See Figures S19 and S20 in the
Supplementary Materials.

3.3.3. Combining the Sequential and Spatial Approaches

The two methods described previously base their prediction on the adjustable number of modes.
The first method spreads the influence of hot residues linearly, i.e., to sequential neighbors only,
while the second method spreads the influence to spatial neighbors within a sphere of a given
cutoff radius. The first method treats a protein chain as a set of amino acids that are chained
together. The second method only sees the spatial-3D neighborhood of a hot residue and rejects
the fact that the protein is an ordered set of amino acids that are physically connected. This chapter
introduces the combination of the sequential and 3D spatial approaches in attempt to boost the
overall prediction. By combining the one-dimensional linear approach with the three-dimensional
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one, the residue connectivity information is included into the structure based method, which thus
takes into account the chain-like nature of proteins (GNM method disregards chain connectivity and
uses only physical distances between Cα atoms to calculate the protein connectivity matrix). In this
combined approach, the influence of a hot residue is first spread linearly to its sequential neighbors
(upstream and downstream along the sequence). After that, the influence is spread to the hot residue’s
spatial neighbors whose Cα atoms are within a sphere of a given cutoff radius with a center in the hot
residue’s Cα atom (the radius is 6 or 8 Å, depending on the sequence length).

Figure 3c shows the effects of the combined approach. When applied to the set of heterodimers
with a high sequence length ratio, this approach produces an increase in the true positives
mean (56.77%) without a significant increase in the false positives mean (43.21%). More importantly,
the combined approach puts 63.11% of proteins in the upper left quadrant (good predictions,
65 proteins), but keeps very bad predictions at a reasonably low 11.65% (12 proteins). The number
of good predictions for sequence lengths between 200 and 300 is slightly increased, as well as the
number of predictions for sequence lengths between 400 and 500 (see Figure S21 in the Supplementary
Materials). This change may indicate that method based on the variable influence of hot residues
on their spatial neighborhood works better with longer protein chains. That may be expected,
because bigger proteins with longer sequences have more modes and offer finer resolution with
the weighted sum than smaller proteins with shorter sequences. See also Figure S22 for the four
examples used previously.

With the proteins from low sequence-length ratio dimers, the situation is, as expected, not as
good. The true positives mean is 51.57% to the false positives of 50.00%. There is 37.88% of predictions
in the upper left quadrant (50 out of 132 proteins) to 29.55% in the lower right quadrant (39 proteins),
see Figures S23 and S24 in the Supplementary Materials.

When both proteins per dimer are addressed as a pair using the combined approach (adjustable
GNM, plus 1D & 3D influence of kinetically hot residues), the analysis confirms that heterodimers with
high sequence length ratios often behave quite differently from heterodimers with low sequence length
ratios (see Figure 4). In majority of cases belonging to the former group, at least one protein has contact
and first-layer residues gathered around its kinetically hot residues (as recognized by the adjustable
GNM). Figure 4a shows that 85.29% of the high sequence length ratio dimers has at least one chain in
the upper left quadrant (32.35% of those dimers has both chains in the upper left quadrant, and 53%
only one chain), as opposed to 58.46% of the low sequence length dimers (only 18.46% of them have
both chains in the upper left quadrant). Only 8.82% of the high sequence length ratio dimers has none
of the chains above the diagonal, as opposed to 27.69% of the low sequence length dimers (Figure 4b).
In 47% of cases, the high sequence length ratio dimers have both chains above the diagonal (44.12% of
high sequence dimers has only one). On the other hand, 29.23% of the low sequence length ratio dimers
have both chains above the diagonal (43.08% of low sequence heterodimers has only one chain above
the diagonal). This analysis suggests that proteins that form high sequence-length ratio heterodimers
(sequence length ration higher than 2) often behave like a rigid lock and key. They have at least one
rigid interfacial surface (often both surfaces are rigid). Chains forming low sequence-length ratio
dimers are presumably more flexible in that respect and more often than not have one of the chains
more flexible than the other. That protein chain adjusts its conformations for a tighter fit. This should
not be a general conclusion because smaller (sequentially shorter) protein chains have a large number of
false positives, simply because they have relatively large total number of targets (contact and first-layer
residues, see Figure 2). A similar observation was made by Martin and Lavery [97]. They concluded
that the surface of a small chain easily gets saturated with contacts when bound to a larger partner.
With larger proteins, contact residues are highly localized. They also observed that docking hits tend to
accumulate closer to the geometrical center of the protein. That observation is in concordance with the
approach presented here, which, besides contact residues, also uses first-layer residues to enhance the
prediction. Residues in the geometrical center are surrounded with a large number of neighbors and
have higher packing density. They are, therefore, more stable and thus emphasized by the fast modes.
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Figure 4. Number of correctly predicted chains per heterodimer using the combined (1D and 3D)
adjustable approach, for dimers in which both chains are longer than 80 residues. Two cases are
analyzed: heterodimers with long sequence length ratios (>2) and heterodimers with short sequence
length ratio (≤2). (a) Number of chains per dimer in the upper left quadrant. (b) Number of chains
per heterodimer above the main diagonal (the diagoanal that passes through the lower left and upper
right quadrants).

3.4. Prediction Algorithms Comparison

In the previous chapters a number of methods for the contact and first-layer residues prediction
were presented. The presentation started with a very simple approach based on the fixed number
of modes (5) and ended with a protocol that adjusts the number of modes to the analyzed chain
and spreads the influence of a hot residue in the adaptable fashion using the sequential and spatial
influence of hot residues. The true evaluation of these protocols can be done only through a direct
comparison of their prediction efficiencies. The comparison of the true positives mean vs. the false
positives mean and comparison of their good vs. very bad predictions are obvious measures of the
quality of the prediction, and we used them here (see Figure 5). As the figure shows, the true prediction
improvement is achieved only with the adjustable number of modes (prediction protocol d in the
Figure 5a,b). Additional improvements are achieved with the full 3D influence spread (protocol e in
Figure 5a,b), as well as with the combination of sequential (1D) and spatial (3D) approaches (protocol f
in Figure 5a,b).
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Figure 5. (A) Prediction algorithms comparison expressed as a plot of the true positives mean and the
false positives mean percentages for each algorithm described previously. The first two algorithms
were applied on all heterodimer chains. In all other cases, algorithms were applied on the heterodimer
chains with high sequence-length ratios. The algorithms are (a) all heterodimers, 5 fastest modes; (b) all
heterodimers, fastest modes corresponding to top 10% of eigenvalues range; (c) high sequence length
ratio, fastest modes corresponding to top 10% of eigenvalues range; (d) adjustable number of modes,
1D influence; (e) adjustable modes, 3D influence, within a sphere with a radius of 6 or 8 Å; and (f)
algorithms d and e combined. (B) Prediction algorithms comparison expressed as a percentage of good
and very bad chains. The first two algorithms were applied on all heterodimer chains. In all other
cases, algorithms were applied on the chains with high sequence-length ratios. The algorithms are (a)
all heterodimers, 5 fastest modes; (b) all heterodimers, with fastest modes corresponding to top 10%
of eigenvalues range; (c) high sequence length ratio, with fastest modes corresponding to top 10% of
eigenvalues range; (d) adjustable number of modes, 1D influence; (e) adjustable modes, 3D influence,
within a sphere with a radius of 6 or 8 Å; (f) algorithms d and e combined.

Figure 6 illustrates the ability of the adjustable approach (1D and 3D influences combined) to
recognize binding scaffolds. It nicely depicts than in some cases, the adjustable GNM very accurately
predicts the binding scaffolds.
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Figure 6. Ability of the adjustable 1D&3D GNM algorithm to predict binding scaffolds. It is depicted
via four heterodimers (PDB ID codes 1BRC, 1DTD, 1WEJ, and 1QGK). The analyzed chains are blue,
depicted using the whole atom representation, with the adjustable GNM predictions colored yellow.
Partnering chains are red and depicted as ribbons. (a) Chains E and I from the protein 1BRC. The chain
E was analyzed with the adjustable GNM. This is a very good prediction. There is 75.29% true positives,
with 47.41% false positives. (b) Chains A and B from the protein 1DTD. The chain A was analyzed
with the adjustable GNM. This is a very good prediction. There is 71.08% true positives, and only
30.45% false positives. For the chain A, only residues 363 to 665 are given in the PDB file. There is a
Zinc atom and four water molecules embedded in the interface (not shown). The binding interface
is defined only using the weighted sum (Equation (1)). (c) Chains L and F from the protein 1WEJ.
The chain L was analyzed with the adjustable GNM. This is a very good prediction. There is 92.73%
true positives, and 42.67% false positives. (d) Chains A and B from 1QGK. The chain A was analyzed
with the adjustable GNM. This is a very good prediction. There is 88.58% true positives, and only
36.83% false positives.

The analysis of the relationship between the number of modes and sequence length (Table S1
and Figure S25 in the Supplementary Materials) reveals an interesting trend. For protein chains
shorter than 600 residues, with accurately predicted contact and first-layer residues via the combined
approach, the relationship between the number of fast modes n and the sequence length s is roughly
linear (m = 2.1831 + 0.014254 × s, i.e., m ≈ 2.1831 + (1/70) × s). However, when longer chains are
included, the relationship becomes quadratic (m = 3.4794 + (0.00030756) × s + (2.8381 × 10-5) × s2).
Those relationships are strongly influenced by the distribution of chains in the training set (Figure S1
in the Supplementary Materials). A more uniform distribution will probably change the shapes/slopes
of these two lines. It should be noted that two relationships are close to each other for chains
shorter than 600 residues; Figure S25 in the Supplementary Materials nicely depicts those trends.
Haliloglu et al. [60] used a cutoff of 15% of the number of residues to establish a number of modes
used in kinetically hot residues recognition. Our results show that the number of fast modes is
generally smaller.

3.5. Vakser and Sternberg Decoy Sets

Previous chapters dealt with the development of the contact residues recognition protocol.
This chapter depicts how the adjustable protocol behaves with the Vakser [88] and Sternberg decoy
sets [87]. Those decoy sets are numerically created protein structure sets created with the intention of
evaluating the quality of protein binding prediction protocols. To properly evaluate the adjustable
GNM protocols, for each decoy in both sets, contact and first-layer residues were calculated for each
protein that formed a dimer. All adjustable GNM algorithms were tested, and the 3D adjustable
approach showed the best overall results.
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For each decoy pair, the binding energy was calculated using the statistical potential of Lu and
Skolnick [89]. That energy was used to compare and evaluate the adjustable GNM prediction protocol
against a residue level statistical potential. The residue-residue based approach of Lu and Skolnick
assesses the strength of each decoy (taking both chains together) using an empirical statistical potential
(given as a 20 × 20 matrix). The binding affinity of each decoy is expressed as a potential energy
of binding. The lower that energy is, the more probable the decoy is, according to the statistical
potential method.

Figure 7 depicts the behavior of decoys on the true/false scatter plot used in previous chapters via
two decoy subsets (1CHO and 2SIC). The standing of each protein chain is calculated as its Cartesian
distance from the point with coordinates (0, 1), i.e., the standing of a protein is its “distance” from
a point with 0% of false predictions and 100% true predictions. Figure 8 depicts the behavior of the
adjustable GNM in combination with the statistical potential using the same two decoy subsets.
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Figure 7. Protein dimer decoys recognition using the adjustable GNM protocol. The influence of hot
residues is spread to spatial neighbors closer than 6 or 8 Å. Subplots (a) and (b) are from the Vakser
decoy sets (PDB ID 1CHO). Blue circles depict neutral decoys regardless (neither native nor far from it).
Decoys far from native structure are green, and near native ones are red. Subplots (c) and (d) are from
the Sternberg decoy sets (PDB ID 2SIC). Green dots depict far from native decoys. Near native decoys
are blue, and the native structure is a red circle.

The quality of the assessment of both methods (adjustable GNM and statistical potential) is
expressed via two scores: the best status of a near native decoy among the all decoys, and the coverage,
i.e., the number of near native decoys among the best n decoys, in which n is the number of near native
decoys. Those two evaluations are depicted in Tables S2 and S3, and in Figures S26 and S27 in the
Supplementary Materials. The combination of the two approaches is given in the last 6 columns of the
Tables S2 and S3. The combined standing is given as a Cartesian distance of a chain with two scores
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between 1 and 110 (100 for Vakser) from the point with coordinates (1, 1). The point (1, 1) corresponds
to a structure that should be first according to the both methods.

Our analysis reveals that in 19 out of 41 Vakser decoys sets (1AVW_AV, 1BUI_AC, 1BVN_PT,
1CHO_EI, 1EWY_AC, 1FM9_DA, 1GPQ_DA, 1HE1_CA, 1MA9_AB, 1OPH_AB, 1PPF_EI, 1UGH_EI,
1WQ1_GR, 1YVB_AI, 2BKR_AB, 2FI4_EI, 2SNI_EI, 3SIC_EI, 2BTF_AP), and in 4 out of 10 Sternberg
decoys sets (1BRC, 1UGH, 1WQ1, 2SIC), either one or both chains are properly accessed by
the adjustable GNM method. Those observations are even more significant if decoy sets badly
characterized by both methods (adjustable GNM and statistical potential) are removed from the
analysis (Vakser sets 1F6M_AC, 1G6V_AK, 1GPQ_DA, 1TX6_AI, and Sternberg set 1AVZ). The chains
that form these dimers probably experience significant structural rearrangements during or upon
the binding. In most cases, the longer chain is better assessed through the adjustable GNM than
its shorter partner, which was to be expected following the assumption of the opposite behavior
of binding partners, but in some cases (Vakser sets 1BVN_PT, 1GPQ_DA, 1HE1_CA, 1MA9_AB,
2BKR_AB, 2BTF_AP) the shorter partner has a higher score. The adjustable GNM protocol is fairly
successful in predicting near native structures. That information should be taken in the light of fact that
near native decoys are based on nonbound structures, which makes the protocol even more successful.
Similar ability was reported by Kozakov et al. [68]. The statistical potential produces much better
overall results, but in some cases (Vakser set 1PPF_EI, for example) the structural evaluation of the
decoys set was better than the evaluation using the empirical statistical potential.
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Figure 8. Comparison of the abilities of the adjustable spatial GNM approach and the statistical
potential to distinguish near native decoys/structures from false decoys. Blue dots depict neutral
decoys. Decoys far from native structure are green, and near native ones are red. Two decoys sets are
depicted (1CHO from Vakser set, and 2SIC from Sternberg set), with two chains per example. The left
plot in each example corresponds to the longer chain, and the right plot to its shorter pair. The circular
segments in the lower left corners correspond to the distances of the n-th best chain according to the
combined approach of the adjustable GNM and the statistical potential, in which n is the number of
near native structures. It is a good measure of the concordance between the two methods.
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4. Conclusions

This paper addresses the physical interactions of proteins, which is an important issue in molecular
biology and biophysics. It depicts a method based on the theory of phantom networks [48,49,52] and
its Gaussian Network Model expansion [54–57,60]. The described methodology attempts to relate the
stable, kinetically hot residues, together with residues in their direct neighborhood (together termed
binding scaffolds), to the binding residues on the surface and in the interior of the proteins forming
protein dimers. As the number of residues emphasized by GNM is usually smaller than the number of
target residues, an improvement of GNM was developed to spread the influence of each kinetically
hot residue to its neighbors in an adjustable fashion. The paper first describes a method based on a
small and fixed number of fast modes and a similar approach that uses the fast modes that correspond
to the upper 10% of the eigenvalues span. Both approaches offer only a limited ability to correlate
the kinetically hot residues and the binding scaffolds. A limited improvement was achieved with
heterodimers with a significant difference in chain length. The true improvement was produced when
the number of modes was allowed to fluctuate until the number of predictions matched the expected
number of targets for a given sequence length. The combination of sequential and spatial influence
was shown to have the best ability to recognize the target residues. That may imply that connectivity
information, although not explicit in the Gaussian Network Model, partially determines the kinetic
behavior of residues. Therefore, it should be used together with the graph representation of protein
structure in the analysis of the behavior of proteins and their contact patterns.

The adjustable GNM protocols were tested on Sternberg [87] and Vakser [88] decoy sets. With both
sets, the adjustable GNM approach with the spatial spread only achieved a noticeable success
in predicting target residues. The combined approach using both the adjustable GNM and the
statistical potential of Lu and Skolnick [89] improved the prediction in comparison to the pure
adjustable approach.

The approach described here can be an excellent guide to a more efficient drug design,
especially for the design of small molecule inhibitors of protein-protein interactions [44–47].
The algorithm(s) depicted here can help in filtering “in-house” databases [45] and thus facilitate
the drug screening process.

As pointed out in [98] and demonstrated in a series of recent publications (see,
e.g., [71–73,75,79,82,83,85,99–102]), user-friendly and publicly accessible web-servers represent the
future direction for developing more useful and practical prediction methods. Actually, many
practically useful web-servers have had an increasing impact on medical science [103],
driving medicinal chemistry into an unprecedented revolution. We shall make efforts in our future
work to provide a web-server for the prediction method presented in this paper.

The adjustable approach, although able to dynamically connect the kinetically hot residues
and binding patches and the corresponding structural scaffolds, still has a space for improvement.
For instance, the application of surface area descriptors may reduce the false positives rate. A better
estimation of the number of expected target residues may also improve the prediction. The application
of the latest protein-protein and protein-ligand databases [46] may also help in that regard.

This work was primarily focused on the behavior of heterodimers. Homodimers were not
explored in detail. Their behavior should be addressed more thoroughly, for example, by using a
combination of slow and fast modes [30]. Furthermore, the slow modes describe global motions
of chain segments and may lead toward a better understanding of the conformational changes that
proteins undergo during and upon binding. Those changes still lack proper quantification [104].

The importance of this work is twofold. First, it gives an efficient algorithm that is able to decipher
individual protein-protein interactions, and it offers a theoretical insight into the mechanism of protein
binding. Second, it shows that a simple approach based only on the statistic of residue-residue
interactions may lead to overfitting; thus, the shape of partnering protein chains, as well as the absolute
and relative size of the interacting proteins (molecules), should be also taken into account.
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The fact that in heterodimers, at least one of the proteins has its binding scaffold determined by the
kinetically hot residues may imply that protein-protein interactions are, at least partially, entropically
driven [105]. Highly organized pockets delineated by kinetically hot residues attract physically smaller
partnering proteins in an attempt to increase the total entropy of the system (i.e., to decrease the
structural order defined by unmovable, kinetically hot residues). This observation opens an area for
further research.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8247/11/1/29/s1,
Figure S1: An illustration of the targets, Figure S2: Protein chain lengths distribution for both heterodimers and
homodimers, Figure S3: Prediction histogram based on the analysis of all chains over the sequence lengths for
the simple prediction approach based on five fastest modes, Figure S4: Prediction histogram for heterodimer
chains only, for the simple prediction approach based on the 5 fastest modes, Figure S5: An example of the one
dimensional, i.e., sequential approach to prediction, for 4 different chains (1BVN chain P, 2SNI chain E, 1UDI
chain E and 1CXZ chain A), Figure S6: Distributions of eigenvalues for three different protein chains (dimer
1ETT chains H, dimer 1BVN chain P and dimer 1QGK chain A), Figure S7: An example of the 1D prediction
(sequential neighbors influence only) based on the fastest 10% of modes per chain, for 4 different chains (1BVN
chain P, 2SNI chain E, 1UDI chain E and 1CXZ chain A), Figure S8: Prediction histogram for heterodimer chains
only, for the prediction approach based on the modes that correspond to top 10% of the eigenvalues span,
Figure S9: Dimer chain lengths for the set of 139 different heterodimers, Figure S10: Prediction histogram, for
chains in heterodimers with high sequence length ratios for the prediction approach based on the modes which
correspond to top 10% of eigenvalues span, Figure S11: Prediction output for chains in heterodimers with low
sequence length ratios for the prediction approach based on modes corresponding to top 10% of eigenvalues
range, Figure S12: Prediction histogram over the sequence lengths for the simple prediction approach based on
the fastest 10% of modes for each chain, for chains in heterodimers with low sequence length ratios, Figure S13:
Histogram of predictions over the sequence lengths for the prediction approach based on the adjustable number
of fast modes, with the 1D influence of hot residues, for chains in dimers with high sequence length ratio, Figure
S14: Examples of the prediction based on the adjustable number of fast modes and the sequential influence of
hot residues, Figure S15: Prediction output based on the approach that uses an adjustable number of fastest
modes per chain and sequential influence of hot residues, for low sequence-length ratio dimer chains, Figure S16:
Prediction histogram over the sequence lengths for the prediction approach based on the adjustable number of
fast modes, for the 1D influence of hot residues, for chains in dimers with low sequence length ratio, Figure S17:
Prediction histogram over the sequence lengths for the prediction approach based on the adjustable number
of fast modes and variable 3D influence per hot residue, for chains in dimers with high sequence length ratio,
Figure S18: Examples of the prediction based on the adjustable number of fast modes and the sequential influence
of hot residues, Figure S19: Prediction output for the prediction approach based on the adjustable number of
fastest modes per chain and the variable 3D influence per hot residue, for chains in dimers with low sequence
length ratios, Figure S20: Prediction histogram over the sequence lengths for the prediction approach based
on the adjustable number of fast modes and the variable 3D influence per hot residue, for chains in dimers
with low sequence length ratio, Figure S21: Prediction histogram over the sequence lengths for the prediction
approach based on the adjustable number of fast modes and combined 1D & fixed 3D influence per hot residue
for chains in dimers with high sequence length ratio (length ratio higher than 2, length > 80 residues), Figure S22:
Examples of the prediction based on the adjustable number of fast modes and combined 1D & 3D influence per
hot residue, Figure S23: Prediction output for the prediction approach based on the adjustable number of fastest
modes per chain and combined 1D & 3D influences of hot residues, for chains in dimers with low sequence
length ratio, Figure S24: Prediction histogram over the sequence lengths for the prediction approach based on
the adjustable number of fast modes and combined 1D & fixed 3D influence per hot residue for chains in dimers
with low sequence length ratio, Figure S25: Linear and quadratic relationships of the number of modes per chain,
for successfully characterized heterodimer chains from dimers with high sequence length ratios, Figure S26:
Comparison of the abilities of the adjustable 3D GNM approach, the statistical potential and their combination to
distinguish near native decoys from the false decoys, Figure S27, Comparison of the abilities of the adjustable
3D GNM approach, the statistical potential and their combination to distinguish near native decoys from the
false decoys, Table S1: The summary of good predictions, Table S2: The efficiency of the adjustable prediction
algorithm (3D algorithm with variable number of modes) with the Vakser decoy sets, Table S3: The efficiency of
the adjustable prediction algorithm (3D algorithm with variable number of modes) with the Sternberg decoy sets.
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