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1. Introduction

Transient receptor potential melastatin 8 (TRPM8) is a non-selective cation channel encoded
by the TRPM8 gene, first characterized as a detector of cold [1,2]. TRPM8 is found on both Aδ

and C fiber afferents, and in addition to activation by cold temperatures, TRPM8 is activated by
a number of chemical agonists that are known to produce cool sensations such as menthol, icilin,
and eucalyptol [3,4]. As a natural extension of these findings, much research over the past decade has
been devoted to the role of TRPM8-expressing afferents in the complex interpretation of hot and cold
temperatures. Furthermore, the role of TRPM8 in pain sensation has been debated; indeed, while a
large body of research has supported a role for TRPM8 in reducing or limiting pain sensation under
injury conditions, an equally large number of publications propose that TRPM8 actually exaggerates
pain after injury. From a pharmaceutical perspective, this complicates whether specific agonists
or antagonists of TRPM8 should be developed to treat different pain conditions. In this review,
we summarize the literature concerning the contribution of TRPM8 to both analgesia and nociception,
and provide an update on the current state of drug development involving this versatile protein.

2. The Role for TRPM8 in Mechanical and Heat Analgesia

Intimately tied to our understanding of a potential role for TRPM8 in promoting analgesia is
the effect of one of its prime agonists, menthol. Menthol is a common component of topical creams
that have long been used to reduce pain and provide a cooling sensation [5]. Although some data
has indicated that menthol may activate a variety of other channels, including transient receptor
potential Ankyrin 1 (TRPA1), gamma-aminobutyric acid (GABA), and voltage-gated calcium and
sodium channels [6,7], more recent studies have demonstrated that the prime target of menthol is
indeed TRPM8, as genetic deletion of this receptor in mice prevents responsiveness to menthol at both
the behavioral and cellular levels [8].

In animal studies, menthol has been shown to block the mechanical and heat hyperalgesia caused
by injection of inflammatory compounds such as Complete Freund’s Adjuvant (CFA) or the transient
receptor potential vanilloid 1 (TRPV1) agonist capsaicin [7,9,10]. Furthermore, injection of the TRPM8
agonist icilin significantly reduced the colonic damage observed in two different mouse models of
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inflammatory bowel disease [11]. In support of these inflammatory studies, it has been shown that
components of the “inflammatory soup” that develops after an injury can inhibit TRPM8. Andersson
and colleagues reported that low pH inactivates TRPM8, making it less responsive to the TRPM8
agonist icilin and cold temperatures (but interestingly not menthol) [12]. Similarly, another study
found that bradykinin, a key potentiator of pain and component of the inflammatory soup, reduces
TRPM8 activity through the action of protein kinase C in both the periphery and at the central synapse
in the dorsal horn [10].

Adding to the view that TRPM8 promotes analgesia following injury are data from studies in
which TRPM8 is either genetically deleted or experimentally knocked down. Proudfoot and colleagues
first demonstrated this concept in a chronic constriction injury (CCI) model. Experimental rats in this
study exhibited significantly reduced heat and mechanical pain behaviors when topical icilin was
applied to the paw, but this effect was completely reversed when TRPM8 expression was knocked
down via intrathecal injection of antisense oligonucleotides [13]. In similar experiments utilizing the
CCI model, cooling or applying menthol to the affected paw resulted in reduced hypersensitivity in
response to mechanical stimuli [14,15], but this effect was not seen when TRPM8 was knocked out
or when TRPM8-expressing afferents were ablated [14]. Likewise, one of the first studies to utilize
TRPM8 knockout mice demonstrated that TRPM8 was responsible for the analgesia provided by a cold
plate during the first phase of the formalin test [16], and later studies using mice deficient in TRPM8
showed that menthol was unable to exert its analgesic effects in models of inflammatory pain using
capsaicin or CFA [7].

A number of studies in humans also point toward a role for TRPM8 in mediating analgesia. In a
recent study, injections of the TRPA1 agonist cinnamaldehyde into the forearm resulted in significant
pain and neurogenic flare; however, simultaneous injection of menthol resulted in lower pain ratings,
elevated mechanical pain thresholds, and reduced neurogenic flare as compared to cinnamaldehyde
alone [17]. Two case studies also demonstrate the analgesic role of TRPM8 in patients suffering from
chronic neuropathic pain. One individual developed neuropathic pain after long-term dosing with
the chemotherapeutic Bortezomib, which causes neuropathy in up to 35% of patients. This individual
suffered from a severe burning sensation in his lower limbs and “lightning-like” sensations in his
hands. However, topical application of a 0.5% menthol cream to his lower extremities in a stocking
distribution and the lumbosacral region overlying the affected nerve roots resulted in a significant
improvement in response to suprathreshold mechanical stimuli and overall pain ratings [18]. Similarly,
in another case where a patient suffered from severe allodynia following a case of post-herpetic
neuralgia, application of menthol oil in concentrations of 2 or 10% resulted in a significant abatement
of symptoms [19]. Further proof of the analgesic effects through TRPM8 can be observed in the ability
of menthol or eucalyptol (another TRPM8 agonist) to prevent the irritant effects of acrolein and other
cigarette smoke components [20].

3. The Role of TRPM8 in Cold Hyperalgesia

Much data also suggests that TRPM8 plays a role in amplifying pain sensation after injury,
especially in models of neuropathic pain. Hypersensitivity to cold is a common complaint of
individuals with neuropathies, with 20–30% of individuals diagnosed with different types of
neuropathies complaining of cold hyperalgesia and elevated cold pain thresholds [21–23]. Likewise,
other studies report significant elevations in cold pain thresholds in patients treated with the
chemotherapeutic oxaliplatin, indicating that innocuous temperatures had become painful for these
individuals [23,24]. In addition to alterations in cold thresholds, these individuals also rated specific
cold temperatures as 3–4 times more painful than at baseline.

The cold hypersensitivity following neuropathic injury observed in human subjects has been
consistently paralleled in animal models of nerve injury, and has been further extended to identify
a definitive role for TRPM8 in mediating this pain. For instance, oxaliplatin-induced neuropathies in
mice cause cold hypersensitivity on the behavioral level and also result in an increased percentage
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of isolated sensory neurons that respond to cold temperatures [25,26]. When TRPM8 knockout
mice are utilized for these same experiments, this cold hyperalgesia is absent, implicating TRPM8
as a critical player in this phenomenon [25]. At this time it is unclear whether TRPM8 expression
increases after installation of oxaliplatin-induced neuropathy, with one study reporting increased
mRNA expression [27] and another reporting no change in mRNA expression levels [25].

Another popular neuropathic model is the CCI, in which ligatures are tied around the sciatic
nerve. This model has consistently been shown to cause cold hypersensitivity, and multiple studies
have reported that the increased responsiveness to the acetone evaporative cooling test following CCI
was significantly reduced when TRPM8 was genetically deleted or when TRPM8-expressing afferents
were chemically ablated [15,26]. Similarly, another study has reported that knockdown of TRPM8
with antisense oligonucleotides results in reduced responsiveness to cold as compared to animals
injected with the missense oligonucleotide [14]. Additionally, this study and others have reported
an increase in the number of neurons expressing TRPM8 [14,28,29] and an increase in total amount of
TRPM8 protein in the DRG following CCI surgery [14]. Functionally, an increased number of isolated
sensory neurons are responsive to cold and menthol after CCI, and these responses are potentiated as
compared to controls [28].

4. The Role of TRPM8 in Bladder Pain

Interstitial cystitis/bladder pain syndrome is a condition characterized by pain in the bladder
region and by urinary urgency and increased urination frequency [30]. Current therapeutics are
often insufficient for treating this condition, so the identification of new drug targets is of particular
interest. Much like in animal models of neuropathic pain, animal models of bladder pain reveal
TRPM8 to be pro-nociceptive. For instance, the use of a novel TRPM8 antagonist, AMTB, increased
intercontraction intervals in a rodent model of overactive bladder syndrome, and also decreased the
visceromotor reflex [31]. A similar phenomenon was observed in guinea pigs, as a novel TRPM8
antagonist reversed the reduction in bladder voiding volume induced by cold saline and menthol
infusion in to the bladder [32]. Whether these effects are mediated via inhibition of TRPM8 channels on
bladder-projecting afferents or on TRPM8 located in the bladder itself is unclear, as TRPM8 expression
at the mRNA and protein levels has been observed in both afferents innervating the bladder [31,33,34]
and in the bladder itself [34,35]. A recent study may shed some light on this, as recordings from C-fiber
afferents demonstrated reduced firing in response to bladder distention in the presence of menthol
when a novel TRPM8 antagonist was infused into the bladder [36]. Interestingly, increased TRPM8
immunostaining was observed in bladder samples from individuals with bladder pain syndrome, and
this was moderately correlated with increased pain scores in those patients [34].

5. The Role of TRPM8 in Migraine

In addition to its role in somatic pain sensation, recent genome-wide association studies have
found a significant correlation between migraine incidence and single nucleotide polymorphisms
(SNPs) located near the TRPM8 coding region (for a review see [37]). Interestingly, this connection
seems to be present only for individuals of Northern European ancestry [38–42], as studies involving
populations from Spain, India, and China found either no association or weak associations between
migraine incidence and SNPs near the TRPM8 locus [43–47].

These human studies have naturally sparked interest in exploring the contribution of TRPM8
to migraine through the use of rodent models. Unfortunately, these studies have found opposing
results concerning TRPM8’s involvement. Burgos-Vega and colleagues observed that application
of icilin to the dura mater resulted in reduced paw and facial withdrawal thresholds in response
to a mechanical stimulus, indicating that activation of TRPM8 caused migraine-like behaviors [48].
These behaviors were then subsequently blocked by dosing animals with a novel TRPM8 antagonist.
Perhaps most interesting, however, was that sumatriptan, a drug commonly used to treat migraines,
also prevented the migraine-like behaviors, which strongly implicates a role for TRPM8 in migraine
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generation. Conversely, a recent study by Ren and colleagues found opposing results, with application
of menthol to the dura mater relieving migraine-like symptoms brought on by the application of
inflammatory mediators to the dura. Symptom relief could then be subsequently blocked by injection
of a TRPM8 antagonist. Finally, adding even more confusion to the matter is a study from Huang et al.
that reported that TRPM8-expressing afferents were virtually absent from the dura [49]. However,
further interest in strategies targeting TRP channels as migraine therapeutics is supported by clinical
success of CGRP receptor antagonism since activation of TRP channels can elicit CGRP release [50].

6. Why is TRPM8 Analgesic in Some Cases and Nociceptive in Others?

An important point about TRPM8’s roles in nociception and analgesia is that activation of TRPM8
seems to consistently cause cold pain following injury, while simultaneously reducing mechanical and
heat pain. Therefore, whether to target TRPM8 with either an agonist or antagonist may depend on
which symptom is most troublesome to the patient; individuals with a primary complaint of mechanical
hyperalgesia may respond best to TRPM8 agonists, while those with cold hyperalgesia may respond
best to TRPM8 antagonists. Importantly, this is not to suggest that TRPM8 itself is sensitive to both
mechanical and cold stimuli; indeed, afferent recordings indicate that pharmacological blockade of
TRPM8 has no effect on baseline mechanical responsiveness [51] and genetic deletion of TRPM8 or
pharmacological ablation of TRPM8-expressing afferents does not impact behavioral responses to
mechanical stimuli [15]. Rather, it seems that the effects of TRPM8 agonism/antagonism are due to
effects at the spinal level, with TRPM8-expressing afferents either directly or indirectly inhibiting
mechanonociceptive afferents. Indeed, Proudfoot et al. reported that the analgesic effects of TRPM8
activation may be due to axoaxonic synapses on mechanonociceptive and heat-nociceptive afferent
terminals, which contain inhibitory mGluRII and mGluRIII receptors [13]. Thus, release of glutamate
from TRPM8-expressing afferents may decrease the amount of excitatory neurotransmitters released
onto nociceptive projection neurons in lamina I and II of the dorsal horn. There is also a suggestion that
topical menthol-induced pain relief may occur through blockade of voltage gated sodium channels [52].

At the same time, cold hyperalgesia following injury may be due to activation of a separate
population of TRPM8-expressing nociceptors that relay painful information to the central nervous
system. These nociceptors may have reduced thresholds for activation under injury conditions, leading
to the observed strong hyperalgesic responses to cold. Additionally, they may be triggered by especially
strong stimuli that facilitate TRPM8 activation; indeed, studies in humans consistently report that
application of high concentrations of menthol (30%–40%) induces pain, cold allodynia, and cold
hyperalgesia [53–55], whereas the lower concentrations used in topical agents induce analgesia.

7. Development of TRPM8 Antagonists for Chronic Pain

Antagonists of TRPM8 as therapeutics for chronic pain, migraine or inflammation have been
pursued over the recent decade by many pharmaceutical companies such as Hydra Biosciences,
Glenmark, Janssen, Pfizer, Bayer, Grunenthal, Mitsubishi Tanabe, RaQualia, Dompe/Axxam, BASF,
Dendreon and Amgen. These efforts have led to the publication of many patents (for a review
see [56–58]).

Janssen has published several potent and selective small molecule antagonists that suppresses
icilin-induced wet-dog shakes, cold pressor response, as well as cold-induced allodynia in
a neuropathic pain model in rats with a similar resulting dose-response range of effect in either
of the cold-induced endpoints [59–63]. Glenmark also similarly reported efficacy with their antagonist
in both wet-dog shakes and oxaliplatin-induced cold allodynia at the same 30 mg/kg dose [64].
RaQualia published RQ-00203078 which is a single digit nM antagonist at human or rat TRPM8 that
also potently blocks icilin-induced wet-dog shakes in rats and is now commercially available, though
evaluation in analgesic models has not been published [65].

AMG2850 is a ~200 nM potent and selective antagonist from Amgen that blocks both TRPM8
agonist-induced behavioral responses (wet-dog shakes) and cold-induced increases in blood pressure
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(cold pressor test)—both considered pharmacodynamic models of TRPM8 antagonism in vivo.
Although the effect in cold allodynia was not evaluated, the effective dose would presumably be
similar to that in the reported cold endpoint, the cold pressor test. There was, however, no evidence
of meaningful reversal of inflammatory nor neuropathic-induced mechanical hypersensitivities in
rats. This lack of efficacy occurred even at unbound plasma concentrations in excess of 21-fold
the IC90 pharmacodynamic model suggesting that TRPM8 does not play a role in these mechanical
pain behaviors at what would be reasonably considered more than enough target coverage [51,66,67],
thus casting doubt on the therapeutic potential of TRPM8 as an analgesic in non-cold related conditions.

Pfizer did advance to clinical trials with a ~100 nM molecule, PF-05105679, which successfully
inhibited the cold pressor response in humans, but also produced hot sensations that were both
unexpected and considered adverse. The lack of therapeutic index to this event coupled with the
short half-life in humans limited further clinical progression as well as the ability to evaluate the
analgesic effect [32,68]. It has been demonstrated that cutaneous TRPM8 controls autonomic and
behavioral thermoeffectors involved in body temperature maintenance with antagonists decreasing
body temperature in rodents [26,69–71]. While the Pfizer antagonist did not produce a significant
alteration of body temperature in healthy volunteers, further understanding is needed to elucidate
whether and how these hot sensations may be on-target side effects in humans.

Chemotherapeutic drug-induced cold allodynia can be dose limiting, resulting in the cessation
of treatment, enduring years beyond treatment, and for which there are currently no proven
therapies [72–74]. Since chemotherapy is associated with changes in TRPM8 expression [25,75], perhaps
TRPM8 antagonists could be beneficial in the prevention and/or reversal of this chemotherapy-induced
cold allodynia. Or, perhaps TRPM8 antagonists could still be useful therapeutics for any other
cold-related painful allodynia or hyperalgesia associated with other neuropathic or inflammatory
conditions or even migraine or bladder pain. Currently, there are no ongoing trials with TRPM8
antagonists [76].
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