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Abstract: Artificial neural network (ANN) based prediction of the response of a microbend 

fiber optic sensor is presented. To the best of our knowledge no similar work has been 

previously reported in the literature. Parallel corrugated plates with three deformation cycles, 

6 mm thickness of the spacer material and 16 mm mechanical periodicity between 

deformations were used in the microbend sensor. Multilayer Perceptron (MLP) with 

different training algorithms, Radial Basis Function (RBF) network and General Regression 

Neural Network (GRNN) are used as ANN models in this work. All of these models can 

predict the sensor responses with considerable errors. RBF has the best performance with 

the smallest mean square error (MSE) values of training and test results. Among the MLP 

algorithms and GRNN the Levenberg-Marquardt algorithm has good results. These models 

successfully predict the sensor responses, hence ANNs can be used as useful tool in the 

design of more robust fiber optic sensors.  

Keywords: artificial neural networks; fiber optic sensors; microbend sensors; multilayer 

perceptron; radial basis function; general regression neural network 

 

 

OPEN ACCESS 



Sensors 2009, 9              

 

 

7168 

1. Introduction 

 

Fiber optic sensors offer several advantages compared to conventional sensors. First, fiber optic 

sensors can easily be integrated into structures due to their small size and cylindrical geometry, forming 

what is called smart structures. They are also all-dielectric and immune to electromagnetic interference. 

Moreover, they are lightweight, robust and have large bandwidths. In addition to these advantages, 

improvements and cost reductions in fiber optic technology have also stimulated interest in fiber optic 

sensors in the last decade. 

Microbend sensors were among the earliest fiber optic sensors developed and have been employed by 

some researchers for sensing of many parameters since the 1980s. Typical applications include sensing 

of acoustic and displacement [1], pressure, acceleration, magnetic and electric fields [2], temperature [3] 

and pH [4].  

When a fiber is subjected to small deformations (microbends), light rays in the core of the fiber 

exceed the critical angle. This causes redistribution of energy between core and cladding modes. The 

guided higher order core modes couple to the cladding modes causing the light propagating in the fiber 

to decrease. This mode coupling can be achieved by placing the fiber in contact with a series of 

periodically positioned deformers. Hence, microbending causes the light intensity to decrease due to 

light leakage into the cladding. By monitoring and correlating the loss of light intensity, different types 

of microbend sensors can be designed [5]. In addition to the general advantages of fiber optic sensors, 

microbend sensors are easier to implement and have lower cost than other types of fiber optic sensor [6]. 

Artificial Neural Networks (ANNs) have become a popular artificial intelligence technique due to 

their ability to learn and fast real-time operation. They have been extensively investigated as a 

computational paradigm in which a deterministic description of the computation is either difficult to 

identify or too complex [7,8]. These characteristics made ANNs useful in optical fiber technology for 

the prediction of measurements of fiber optic sensors [9], development of intelligent fiber optic 

sensors [10], signal processing [11,12] and calibration [13].  

Researchers have also used ANNs in fiber optic sensor design in the following areas: recovery of 

information about strain and temperature from fiber optic sensors [14], signal processing of optical fiber 

pH sensor based on bromophenol blue doped with sol-gel film [15], pattern recognition in a three 

sensor multipoint optical fiber water sensor [16], pattern recognition in an optical fiber ethanol 

concentration sensor [17] and humidity estimation [18]. 

In this paper, we have used the normalized intensity as a function of applied force obtained from a 

microbend sensor to predict the response of the sensor by using ANNs since these can generate 

appropriate outputs for given inputs without any necessity for mathematical formulations between input 

and output data. To the best of our knowledge, no similar work has been presented in the literature. 

 

2. Overview of Artificial Neural Networks 

 

Artificial Neural Networks (ANNs) are neuron-like processing elements which try to mimic simple 

nervous systems. An artificial neuron model comprises input(s) with weight(s), activation function(s) 

and output(s). The weights are adjusted until the desired output is generated for a given input. Several 

types of activation functions can be used in applications. Hyperbolic tangent and sigmoidal functions are 
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among the activation functions commonly used. ANNs are mainly used for classification, function 

approximation, clustering and regression. 

ANNs have different types of connections. Feed forward neural networks are the most popular 

model, used in many applications. They are also called Multi Layer Perceptron (MLP) networks.  

A MLP generally consists of an input layer, one or more hidden layers and an output layer. The 

processing units are arranged in layers [19]. 

Radial Basis Function (RBF) is another network model which is a class of hybrid connection model. 

Whilst they are essentially three-layer feed forward networks, RBF networks differ from classical MLP 

in three significant ways: there is only one set of trainable weights, from the hidden layer to the output 

layer; the nodes’ activation functions are non-standard and learning is affected by both supervised and 

unsupervised techniques [20]. 

The General Regression Neural Network (GRNN), which is a kind of radial basis network, is a 

powerful regression tool with a dynamic network structure. The network training speed is extremely 

fast. It is simple and can be easily implemented [20]. 

There are many training algorithms in the literature, so it is very difficult to know which training 

algorithm will be the fastest or more accurate for a given problem, as this depends on several factors, 

including complexity of the problem, the number of weights and biases in the network, the number of 

data points in the training set, the error goal and the task the network is to be used for [19]. The 

algorithms used to train MLP in this work are Gradient Descent with Adaptive Learning Rate 

Backpropagation (DA), Resillient Backpropagation (RB), Fletcher-Reeves Update (FRU),  

Polak-Ribiere Conjuage Gradient (CGP), Conjugate Gradient with Powell/Beale Restarts (CGB), 

Scaled Conjugate Gradient (SCG), Broyden-Fletcher-Goldfarb-Shanno (BFGS), and  

Levenberg-Marquardt (LM). 

The DA is a technique in which the learning rate is allowed to change during the training process. 

With standard steepest descent, the learning rate is held constant throughout training. The purpose of 

the RB method is to eliminate the harmful effects of the magnitudes of the partial derivatives. Only the 

sign of derivative is used to determine the direction of the weight update; the magnitude of the 

derivative has no effect on the weight update. The size of the weight is determined by a separate update 

value. The FRU is a network training function that updates weights and bias values according to the 

conjugate gradient backpropagation with Fletcher-Reeves updates. It has the smallest storage 

requirements of the conjugate gradient algorithms. The CGP is a network training function that updates 

weight and bias values according to the conjugate gradient backpropagation with Polak-Ribiere updates. 

The CGB is a network training function that updates weight and bias values according to the conjugate 

gradient backpropagation with Powell/Beale Restarts. The SCG is a member of the class of the 

conjugate gradient method is the only conjugate gradient algorithm that requires no line search. The 

BFGS is a quasi-Newton method which is an alternative to the conjugate gradient methods for fast 

optimization. The LM is a network training function that updates weight and bias values according to 

the Levenberg-Marquardt optimization. The LM algorithm was designed to approach second order 

training speed without using a Hessian matrix [8,19]. 
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3. Microbend Sensor Measurements and Experimental Procedure 

 

The geometry of a sensing region of a microbend sensor is shown in Figure 1. The sensing region 

consists of two corrugated plates. The corrugations are cylindrical rods with fixed diameters. The fiber 

is pressed between these plates by applying different forces to the top plate. Optical fiber passes through 

these corrugated plates. Both ends of the fiber inside the sensor are relaxed to keep away elastic factors 

of the fiber. Λ is the mechanical periodicity (deformer tooth spacing), ls is the corrugation size 

(thickness of the spacer material between the deformer plates) and cylindrical rods are the corrugations 

(bends). 

Figure 1. The geometry of the sensing region. 

 

 

Intensity modulation caused by microbending in multimode fibers can be exploited as a transduction 

mechanism for detecting environmental changes. The change in light transmission, ΔT, through a 

microbend sensor can be formulated as: 
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where ΔX is the deformer plates’ displacement, ΔT/ ΔX is the sensitivity, ΔF is the applied force, As is 

the area, ls is thickness of spacer, Ys is the Young’s modulus, and the kf is the effective spring constant 

of the optical fiber [2]. The effective spring constant can be expressed as follows:  

3
1

43
fk

Yd 

 
       (2) 

where Y is the effective Young’s modulus, d is the diameter of fiber and η is the number of bent 

intervals [9]. 

From Equations (1) and (2), it can be seen that if a force applied to the microbend sensor (ΔF), the 

intensity of the light at the output of the fiber will change. In addition, the geometrical parameters of the 

deformer such as mechanical periodicity, deformer cross sectional area, deformations spacing and 

number of corrugations will affect the output intensity of light. Since microbend sensors fall into the 

group of intrinsic fiber optic sensors, the fiber properties such as Young’s modulus and diameter of the 

fiber will affect the output intensity too.  
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To understand the behaviour of fiber optic microbend sensors, an experiment was conducted. The 

optical intensity was measured as a function of applied force to the microbend deformer set. The 

experimental setup consisted of a 16 mW solid-state laser with a 650 nm wavelength, a step index 

multimode silica fiber with a numerical aperture (NA) of 0.37, and core/cladding/jacket dimensions of 

200/230/500 μm, microbend deformer and a power-meter. Schematic and picture of the experimental 

setup are shown in Figures 2 and 3, respectively. Light obtained from a solid state laser and coupled 

into the multimode fiber with a 20X objective lens. All the sensors had three deformation cycles. 

Experiment was conducted by increasing force from 0 N to 58.66 N. The working range of this 

experiment is between 0.98 N and 83.385 N. For each applied force, the output light intensity was 

measured by using photodetector. The deformer spacing was 12 mm and the mechanical periodicity was 

16 mm with three deformation cycles.  

Figure 2. Schematic of experimental setup. 

 

Figure 3. Experimental setup. 

 

 

Figure 4 shows the results obtained from this experiment. From this figure it can be observed that as 

the applied force increases, the output light intensity decreases. The amount of light loss while 

increasing the force is an important parameter for sensitivity in fiber optic microbend sensors since the 

magnitude of the measurand can be determined by correlating the loss of light intensity.  
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Figure 4. The sensor response (normalized intensity) in terms of F. 
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4. Application of ANN to Microbend Sensor and Results 

 

MLP with different algorithms (RBF and GRNN) have been used to estimate the microbend sensor 

response. The input and output variables of ANN models are force (F) and normalized intensity, 

respectively. The general structure of the networks proposed in this paper is shown in Figure 5.  

Figure 5. General structure of the networks proposed in this work. 

 

 

F is a known parameter and can be utilized for the prediction of the sensor response. A training 

dataset consisted of randomly selected F vs. normalized intensity is exploited to the network and the 

network is trained. After the training process, new responses are predicted for unseen F values. 

Thirteen samples were used in the network. Eight of these samples were used in the training dataset. 

The performance of the algorithms used in the network is compared in terms of their mean square errors 

(MSEs). The training algorithms and the number of hidden neurons used in MLP network are given in 

Table 1. The training MSEs results of MLP are given in Table 2. These results show that the LM 

algorithm has the smallest MSE value, even though it has one of the smallest numbers of neurons.  
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Table 1. The training algorithms and number of hidden neurons in MLP. 

Algorithm Number of Hidden Neurons in MLP 

M
L

P
 

DA 6 

RB 6 

FRU 5 

PRU 4 

CGB 4 

SCG 3 

BFGS 5 

LM 4 

Table 2. The MSEs of different training algorithms for MLP. 

Algorithm Mean Square Error (MSE) 

M
L

P
 

DA 1.9320E-07 

RB 1.7005E-07 

FRU 1.7415E-09 

PRU 5.9327E-09 

CGB 1.9657E-07 

SCG 1.0030E-06 

BFGS 5.2094E-09 

LM 8.2732E-16 

 

The training MSEs results of RBF and GRNN are given in Table 3. From the results it can be 

inferred that RBF and GRNN algorithms have small MSE values in comparison with the different MLP 

algorithms. However, among the algorithms RBF has the best performance with the smallest MSE value. 

Table 3. The MSEs of RBF and GRNN 

RBF 4.1600E-32 

GRNN 3.1917E-20 

 

The prediction performances of different ANN models proposed in this work have been tested with 

five experimental data sets obtained from the fiber optic microbend sensor described in the experimental 

procedure in Section 2. The comparisons of the sensor responses and the ANN model outputs are given 

in Table 4. From this comparison it can be perceived that RBF has the smallest MSE value. The worst 

MSE value belongs to BFGS. The best (RBF) and the worst (BFGS) ANN outputs with respect to 

MSEs are graphically compared with the experimental results in Figure 5. 
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Table 4. Comparison of the sensor responses and the ANN outputs. 

F(N) Sensor Response 
ANN Model Outputs 

DA RB FRU PRU PBR SCG BFGS LM RBF GRNN 

4.905 0.997 0.9956 0.9944 0.9912 0.9915 0.9912 0.9950 0.9912 0.9917 0.9951 0.9945 

14.715 0.988 0.9800 0.9839 0.9846 0.9861 0.9859 0.9829 0.9847 0.9862 0.9837 0.9830 

24.525 0.971 0.9687 0.9649 0.9693 0.9667 0.9673 0.9701 0.9683 0.9664 0.9696 0.9700 

44.145 0.945 0.9507 0.9452 0.9409 0.9429 0.9444 0.9488 0.9409 0.9424 0.9472 0.9455 

53.955 0.923 0.9263 0.9261 0.9336 0.9319 0.9294 0.9244 0.9336 0.9321 0.9237 0.9275 

 MSE 2.2926E-05 1.4086E-05 3.5452E-05 2.7194E-05 1.8612E-05 9.4440E-06 3.6198E-05 2.8412E-05 5.8780E-06 1.0550E-05 

Figure 5. Comparisons of the best and the worst ANN outputs with the sensor responses. 
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5. Conclusions 

 

Different ANN approaches have been proposed in this work to predict the response of a fiber optic 

microbend sensor. First it can be said that ANN approaches can tolerate measurement errors of fiber 

optic microbend sensors. Performance comparisons demonstrate that all of the ANN models used in this 

paper can predict the sensor responses with considerable errors. RBF has the best performance with the 

smallest MSE values of training and test results. GRNN and Levenberg-Marquardt algorithm among the 

MLP algorithms also have good results. These models successfully predict the sensor responses. From 

this work it can be concluded that the proposed technique is a useful tool in the design of more robust 

fiber optic sensors.  

 

References and Notes 

 

1. Lagakos, N.; Trott, W.J.; Hickman, T.R.; Cole, J.H.; Bucaro, J.A. Microbend fiber-optic sensor as 

extended hydrophone. IEEE J. Quantum Electron. 1982, 18, 1633–1638. 

2. Lagakos, N.; Cole, J.H.; Bucaro, J.A Microbend fiber optic sensor. Appl. Opt. 1987, 26,  

2171–2180. 

3. Lumholt, O.; Bjarklev, A.; Dahl, P.S.; Larsen, C.C.; Hedeegard, P.J.; Rasmussen, T.; Rotwitth, K. 

Simple fiber-optic low-temperature sensor that uses microbending loss. Opt. Lett. 1991, 16,  

1355–1357. 

4. Lee, S.T.; Aneeshkumar, B.; Radhakrishnan, P.; Vallabhan, C.P.G.; Nampoori, V.P.N. A 

microbend fiber optic pH sensor. Opt. Commun. 2002, 205, 253–256. 

5. Berthold, J.W. Historical review of microbend fiber-optic sensors. J. Lightwave Technol. 1995, 13, 

1193–1199. 

6. Luo, F.; Liu, J.; Ma, N.; Morse, T.F.A Fiber optic microbend sensor for distributed sensing 

application in the structural strain monitoring. Sens. Actuat. 1999, 75, 41–44. 

7. Zurada J.M. Introduction to Artificial Neural Systems; West Publishing Company: St. Paul, MN, 

USA, 1992. 

8. Haykin, S. Neural Networks: A Comprehensive Foundation; Macmillan and IEEE Computer 

Society: New York, NY, USA, 1999. 

9. Saracoglu, O.G. An artificial neural network approach for the prediction of absorption 

measurements of an evanescent field fiber sensor. Sensors 2008, 8, 1585–1594. 

10. Dias, I.; Oliveira, R.; Frazão, O. Intelligent optical sensors using artificial neural network approach. 

Innov. Manufacturing Netw. 2008, 266, 289–294. 

11. Yang, Q.; Butler, C. Sensor signal processing using neural networks for a 3-D fiber-optic position 

sensor. Sens. Actuat. A 1994, 41, 102–109. 

12. Tu, Y.; Huang, S. Two kinds of neural network algorithms suitable for fiber optic sensing array 

signal processing. Opt. Eng. 1996, 35, 2196–2202. 

13. Wojtek, J.; Porada, E.; Beaulieu, M.; Eftimov, T.A. Automatic calibration of a fiber-optic strain 

sensor using a self-learning system. IEEE Trans. Instrum. Meas.1994, 43, 341–346. 

14. Chan, C.C.; Jin, W.; Rad, A.B.; Demokan, M.S. Simultaneous measurement of temperature and 

strain: an artificial neural network approach. IEEE Photonics Technol. Lett. 1998, 10, 854–856.  



Sensors 2009, 9              

 

 

7176 

15. Suah, F.B.M.; Ahmad, M.; Taib, M.N. Applications of artificial neural network on signal 

processing of optical fibre pH sensor based on bromophenol blue doped with sol-gel film. Sens. 

Actuat. B 2003, 90, 182–188. 

16. Lyons, W.B.; King, D.; Flanagan, C.; Lewis, E.; Ewald, H.; Lochmann, S.A 3 sensor multipoint 

optical fibre water sensor utilising artificial neural network pattern recognition. In Proceedings of 

15th Optical Fiber Sensors Conference Technical Digest, Portland, OR, USA, May 6–10, 2002; 

pp. 463–466. 

17. King, D.; Lyons, W.B.; Flanagan, V.; Lewis, E. An optical fibre ethanol concentration sensor 

utilizing Fourier transform signal processing analysis and artificial neural network pattern 

recognition. J. Opt. A: Pure Appl. Opt. 2003, 5, S69–S75. 

18. Sreenivasan, K.L.; Khijwania, S.K.; Philip, T.; Singh, J.P. Humidity estimation using neural 

network and optical fiber sensor. Microwave Opt. Technol. Lett. 2008, 51, 641–645. 

19. Coşkun, N.; Yıldırım, T. The effects of training algorithms in MLP network on image classification. 

In Proceedings of 13
th
 International Joint Conference on Neural Networks (IJCNN), Portland, OR, 

July 20–24, 2003; Vol. 2, pp. 1223–1226. 

20. Yazıcı, G.; Polat, Ö.; Yıldırım, T. Genetic optimizations for radial basis function and general 

regression neural networks. LNCS 2006, 4293, 348–356. 

© 2009 by the authors; licensee Molecular Diversity Preservation International, Basel, Switzerland. This 

article is an open-access article distributed under the terms and conditions of the Creative Commons 

Attribution license (http://creativecommons.org/licenses/by/3.0/). 


