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Abstract: High-resolution images with wide field of view are important in realizing many 

applications of wireless multimedia sensor networks. Previous works that generally use 

multi-tier topology and provide such images by increasing the capabilities of camera sensor 

nodes lead to an increase in network cost. On the other hand, the resulting energy 

consumption is a considerable issue that has not been seriously considered in previous 

works. In this paper, high-resolution images with wide field of view are generated without 

increasing the total cost of network and with minimum energy dissipation. This is achieved 

by using image stitching in WMSNs, designing a two-tier network topology with new 

structure, and proposing a camera selection algorithm. In the proposed two-tier structure, 

low cost camera sensor nodes are used only in the lower-tier and sensor nodes without 

camera are considered in the upper-tier which decreases total network cost as much as 

possible. Also, since a simplified image stitching method is implemented and a new 

algorithm for selecting active nodes is utilized, energy dissipation in the network is 

decreased by applying the proposed methods. The results of simulations supported the 

preceding statements. 

Keywords: camera-based sensor networks; high-resolution and wide images; two-tier 

network topology; image stitching; camera selection problem; minimum wasted energy 
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1. Introduction 

Wireless multimedia sensor networks (WMSNs) are a new and emerging type of sensor networks 

that contain sensor nodes with capability of obtaining multimedia content such as video and audio 

streams, still images, and scalar sensor data from the environment [1,2]. Recently, some new 

applications for wireless multimedia sensor networks such as multimedia monitoring systems [3], 

advanced health care delivery [4], automated assistance for the elderly and family monitors [5], traffic 

avoidance, enforcement, and control systems [6] have appeared. 

Capturing images from a desired scene is necessary in many monitoring applications. By increasing 

the field of view and resolution of these images, more applications are realizable. One common way to 

achieve this goal is to use strong and costly cameras in a single-tier network topology that leads to 

more energy usage and cost. According to the characteristics of WMSNs, utilizing only these cameras 

is not acceptable. To have more feasible networks, most applications use different type of camera 

sensor nodes that are organized in multi-tier topologies. However, available multi-tier topologies have 

more than two tiers with high cost camera sensors in upper tiers which increases the network cost and 

complicates the network management. 

In this paper, a methodology to provide high resolution images with wide field of view in Camera-

Based WMSNs is presented that have following contributions: (i) utilizing an image stitching method 

in WMSNs, (ii) designing a two-tier network topology with new structures which has camera sensor 

nodes only in lower-tier, (iii) presenting a method that let upper-tier sensor nodes perform a simplified 

image stitching, and (iv) presenting an innovative algorithm for lower-tier camera nodes to have a 

good coverage of field for longer time by selecting them fairly. 

The presented network topology in this paper consists of just two tiers. Unlike common multi-tier 

WMSN topologies this topology has camera sensor nodes only in its lower-tier. Also, in the other 

topologies, multiple tiers are equipped with cameras and the capabilities of camera sensor nodes in 

them increase from lower-tier to Sink. As lower-tier camera nodes are low cost, it is possible to have 

high density in this tier and consequently highly overlapped coverage. This property which decreases 

the coverage failure is utilized to provide a suitable coverage for a longer time. The presented network 

upper-tier includes stronger sensor nodes without camera. This two-tier topology and its intra-tier and 

inter-tier communication methods have been described in Section 3.  

Having numerous low-resolution images, provided by many low cost sensor nodes in lower-tier, is 

not acceptable for many monitoring applications. Therefore, to create a high resolution and wide 

image, this paper simplifies and utilizes an image stitching method in a specific way which has been 

adapted to WMSNs constraints. As image stitching procedure requires a lot of processing overhead, 

the stitching method is distributed between Sink and upper-tier sensor nodes such that Sink performs 

main steps of methodology like image processing and some specific extracted information is sent to 

related nodes in the upper-tier by Sink. Having this information, upper-tier sensor nodes are able to 

perform stitching procedure with low computational overhead in the next times. By stitching images 

which have overlaps, the size of whole data that must be transmitted hierarchically through upper-tier 

to Sink decreases. Consequently, as the main reason of energy consumption is data transmission, 

decreasing the data transmission size prolongs the lifetime of upper-tier. More details about the 

stitching method are explained in subsection 4.1. 
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Energy consumption is the most important issue in WMSNs. Because the density of camera sensor 

nodes in the lower-tier is high and areas covered by them have large overlaps, therefore, selecting an 

appropriate subset of them that provides an acceptable coverage of desired area must be considered. 

Selecting a proper subset of nodes firstly satisfies the Sink request for the coverage of a desired area, 

and secondly, it puts unselected nodes in sleep mode and saves their energy, because not setting all 

nodes in active mode will prolong the lifetime of the lower-tier. In subsection 4.2, an algorithm named 

Fair Camera Node Selection algorithm (FCNS) performed by upper-tier sensors is presented to provide 

a good coverage of field in a way that each node is selected an almost equal number of times in 

multiple requests from Sink. Uniform selection of camera sensor nodes that avoids the early failure of 

some of them makes good coverage available for a longer time. A comprehensive description of its 

construction method is presented in subsection 4.2.1.  

All in all, by using image stitching in WMSNs based on the contributions presented in this paper, 

high-resolution images with wide field of view are provided while WMSNs constraints are considered. 

Moreover, contributed methods reduce energy dissipation and let the network preserves its 

functionality for a longer period of time. However, presented methods have high performance when 

there are not a lot of changes in the network topology like camera sensors locations. Therefore, these 

methods fit WMSNs applications whose sensor nodes have no mobility and whose cameras are placed 

in a fixed location. Analysis and simulations yielded expected results. 

The rest of the paper is organized as follows. Section 2 presents the related work. The topology of 

Two-Tier Camera-Based WMSNs is presented in Section 3. The methodology of generating high-

resolution images with minimum energy waste in camera-based WMSNs, including image stitching 

technique and camera sensor node selection algorithm, is introduced in Sections 4. Section 5 provides 

simulation and experimental results. Finally, Section 6 concludes the paper. 

2. Related Work 

Recently, maximizing the coverage of an area, improving the resolution and increasing the field of 

view in WMSNs have all been studied in great depth. Equipping sensor nodes used in regular WMSNs 

with some extra resources or using image processing methods are instances of methods used in 

previous works which tried to satisfy these goals. Cameras which have the ability of pan, tilt, and zoom 

as well as moveable platforms are samples of resources that sensor nodes are equipped with [7–9]. 

Creating accurate or high-resolution images by processing a sequence of rough images, utilizing image 

fusion, and using new compression methods over row data are instances of image processing  

ways [10,11]. Some of related literature is described in the following paragraphs. 

In [7], the authors have maximized multimedia coverage in WMSNs by considering video sensor 

orientation. This method finds the best direction of camera sensors dynamically and depends on the 

circumstances not on setting camera sensors orientation once they have been deployed. The distributed 

algorithm which is proposed in order to perform this goal has two main steps: (i) minimizing the 

effects of occlusion in the environment and (ii) improving the cumulative quality of the information 

sensed from the region of interest. This algorithm improves robustness of WMSNs, because the 

direction of camera sensors could be updated after nodes fail due to the battery outage or  

external effects.  
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In [8], the authors have improved their previous work in [7] such that each sensor node determines 

the most beneficial orientation for its multimedia sensor so that the entire image of a field can be 

constructed using low-resolution snapshots from multiple sensors. In overall, this approach has some 

benefits: (i) the proposed algorithm is fully distributed using local information, so communication 

overhead is incurred only among neighboring nodes, (ii) with the flexibility to adjust orientations of 

the multimedia sensors, multimedia sensor nodes update the orientation of multimedia sensors on the 

fly to increase the multimedia coverage significantly, (iii) overlapped and occluded regions in the 

sensing field can be decreased by collecting the current pose of neighboring nodes and (iv) coverage is 

increased even for sparse networks by using self-orientation instead of random orientations when 

arbitrary obstacles exist in the sensor field. 

Although the mentioned approaches have solved some problems in WMSNs, they have some weak 

points. First and foremost, these approaches are based on single-tier topology, whereas according  

to [12] the topology of WMSNs must be multi-tier in order to achieve a balance between cost, 

coverage, functionality, and reliability. Also, these approaches are costly because they use strong 

nodes which are also equipped with extra resources like a rotatable platform for cameras. On the other 

hand, they are not suitable for real-time application because changing the orientation of camera sensors 

is performed by mechanical devices. Moreover, since there is no guarantee of covering the area related 

to a node by its neighbors, these approaches tried to reduce the number of sensor nodes, so the 

reliability of the WMSN is decreased. Therefore, if a node fails, some part of the field will not  

be covered. 

In [9], authors discussed a system architecture that uses controlled motion to provide virtual high-

resolution in a network of camera sensors. The motion abilities have been added to camera sensors 

include pan, tilt, and zoom, help avoiding obstacles and camera overlap. After detecting an interesting 

phenomenon, camera sensor tries to provide a new image of it which has acceptable level of details for 

recognition. This method is not suitable for real-time application, because if the tolerable delay in 

sensing is small, then only a limited range of motion may be feasible and capturing an image with 

adequate details for recognition is impossible. On the other hand, due to the existence of motion 

abilities in the sensors, this approach requires more energy consumption. 

An application-aware routing algorithm has been presented in [13] which decreases camera sensor 

overlap and optimizes the solution of the coverage problem in video-based sensor networks. In this 

method, it is assumed that all camera nodes are located on a plane surface like the ceiling of the 

monitored room and capture the images from a parallel plane. Since the topology of presented 

approach in [13] is single-tier, many sensor nodes get involved in data transmission and consequently 

the lifetime of the network decreases, although a compatible routing algorithm for WMSNs is 

presented. In addition, in spite of selecting suitable subset of nodes by routing algorithm, all raw data 

transit through the network because camera sensor nodes have low processing capabilities and cannot 

filter undesired data before sending them. 

Recently in [14] an image registration method for low-resolution visual sensor networks has been 

presented which is based on registering two images. However, the topology of sensor networks and 

communication criteria from image capturing node to Sink is not addressed in this work. But, as far as 

we know, optimization of energy consumption and achieving best coverage and resolution depend 

highly on network topology, communication methods between sensor nodes, and camera sensor 
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selection algorithms and techniques. In addition, the affine transform used in image registration is not 

suitable for sensor networks because camera nodes directions are slightly different. Finally, in order to 

create a large view of the area under observation in many applications, more than two images are 

needed to be registered. 

3. Two-Tier Camera-Based WMSNs Topology 

Considering the mentioned applications for Camera-Based WMSNs, monitoring is the common 

aspect of the most of these applications. High coverage, high reliability, low cost, and high 

functionality are essential for achieving higher performance in monitoring applications [15].  

According to the literature, almost all of the single-tier sensor networks satisfy merely one of the 

mentioned essential items that are necessary for improving performance in monitoring applications. 

For example, using many low cost cameras as sensor nodes increases the coverage and decreases the 

functionality because of limited capabilities of these nodes. On the other hand, using more powerful 

and expensive nodes increases the functionality but achieving the reliability by increasing the network 

density would be really costly. 

Multi-tier topologies have succeeded in creating a balance between cost, functionality, reliability, 

and coverage. For example, the lowest tier contains cheap sensors with poor functionality and quality 

while the higher one compensates for the lack of these items by stronger and more expensive nodes. 

Some practical examples of Multi-tier WMSNs are low-resolution-camera-based sensor nodes such as 

low-power Motes [16] nodes that are equipped with Cyclops cameras [17] in the lowest tier, stronger 

camera-based sensor nodes like Imote2 [18] nodes equipped with CMUCam3 [19], Mesheye [20], and 

Panoptes [21] which are placed in the higher tier and finally the nearest tier to Sink includes strongest 

camera-based sensor nodes like Stargate-XScale nodes [22] with Web-Cam. Also, in [23] an 

experimental multi-tier architecture has been introduced which is called SensEye. 

All in all, the purpose of multi-tier topologies is providing a balance between cost, functionality, 

coverage, and reliability to realize many WMSNs applications. Therefore, the presented topology is a 

multi-tier topology which unlike typical WMSNs topologies has only two tiers. The main differences 

between this topology and the others are that it has just low cost camera sensor nodes in lower-tier and 

its upper-tier consists of stronger nodes without camera that perform tasks like simplified image 

stitching and lower-tier management. Obviously, presented two-tier topology which has no camera in 

upper-tier cannot acquire a high-resolution image without using Image Stitching. The structure of 

upper-tier, lower-tier and the communication methods are explained in subsections 3.1 and  

3.2 respectively.  

3.1. Proposed Upper-Tier Structure: Wireless Network of Stronger Sensor Nodes without Camera 

Sensor nodes in the proposed upper-tier are not equipped with cameras but they have stronger 

processors, communication units, and more storage capacity. Stargate [22], Imote2 [18], and Yale 

XYZ [24] are practical instances of stronger sensor nodes. Their task is lower-tier management, 

information gathering and processing such as simplified image stitching, and transmitting the final 

result of this process to Sink. Moreover, all nodes in this tier are equipped with Global Positioning 
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System (GPS). Accordingly, Sink knows their geographical position and easily sends its queries to the 

related cluster head.  

Each of the stronger sensor nodes has the responsibility of multiple camera nodes in the lower-tier. 

Therefore, upper-tier contains fewer sensor nodes and less density compared to the lower-tier. At the 

beginning, stronger sensors nodes are placed by network manager so as their density would be uniform 

in the total covering field. However, the radio-covered areas by upper-tier sensor nodes have overlaps 

to increase the tolerance of the whole network versus a failure of upper-tier nodes, to prolong network 

lifetime an appropriate subset of nodes in this tier must be chosen to be in active mode. Clustering 

algorithms are suitable for selecting this subset. After determining the number of clusters, which 

depends on the application, and performing clustering action, it is adequate to set only one node 

(cluster head) in each cluster to active mode and leave the others in sleep mode. Moreover, to achieve 

good coverage; firstly, all nodes in the upper-tier should be classified into clusters with almost equal 

number of members; secondly, the selection of cluster heads (active nodes) should be in a way that 

their locations in upper-tier become uniform. The proposed algorithms in [25-27] are instances that can 

be employed here. 

After clustering and selecting cluster heads, a routing protocol is necessary for data transmission 

between each cluster head and Sink. As we know, hierarchical protocols are suitable for this tier 

because of their speed and low energy consumption. The protocols in [28,29] are instances which are 

suitable for this purpose. Figure 1 depicts the structure of the upper-tier. 

Figure 1. a) Symbolic figure of proposed upper-tier structure at the beginning.  

b) Symbolic figure of proposed upper-tier structure after clustering and routing. 

a) b) 

3.2. Proposed Lower-Tier Structure: Wireless Network of Sensor Nodes Equipped with Cameras 

Lower-tier is constructed of sensor nodes that are in contact with the physical environment. 

Therefore, in order to achieve practical multimedia applications in WMSNs, sensor nodes in this tier 

are equipped with cameras. Cyclops low-power camera sensor [17], CMUCam3 [19], Mesh-Eye [20], 

and Panoptes [21] are practical instances that can be utilized as camera nodes in this tier. 
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The task of each camera node is to capture still images and transmit them to its cluster head in the 

upper-tier. The connection between lower-tier and upper-tier is single hop and there is no interactivity 

between camera nodes. In order to have maximum coverage of environment, the number of camera 

nodes in this tier is high; therefore, the fault tolerance increases because if one of camera sensors fails, 

each part of area will be covered by another camera. Also at first, all camera sensors are placed by 

network manager in a way that their density would be uniform and the field is covered completely. In 

addition, the adjacent cameras are placed in almost same directions; it means that images of camera 

sensors which are nearer to each other have more overlaps and can be stitched to each other.  

Figure 2 a,b shows the placement of indoor and outdoor applications. As it is depicted in these figures, 

in some applications sensor are placed in a flat area while they have a 3-D placement in some others. 

Figure 2. a) Outdoor placement of a cluster. b) Indoor placement of a cluster. 

a) b) 

 

Each camera node covers a small section of environment, while the application purpose is to get 

high-resolution images that cover large areas. Hence, the nodes of this tier must be clustered based on 

their location to let the cluster head perform this task properly by stitching the images of each cluster. 

The acquired high-resolution image of each cluster head is independent from the other one and Sink 

requests it by sending a query to the corresponding cluster head. Supposing that nodes are placed with 

uniform density in this tier, if the number of node members in each cluster is equal, the areas which are 

covered by each cluster will be roughly the same size. As mentioned in subsection 3.1, the location of 

cluster heads in upper-tier are uniform; so, if every camera node which can connect to more than one 

cluster head selects the cluster head with fewer members, then the lower-tier clusters will 

automatically have almost equal member counts. To realize the mentioned goal, one possible algorithm 

used in this paper is Minimal Cardinality Variance Clustering (MSVC) [30]. In this algorithm, camera 

nodes are aware of their options for connecting to upper-tier cluster heads. Each camera node opts to 

connect to the cluster head which has the least number of child nodes. Obviously, if there is only one 

choice for connection, the camera node will connect to that cluster head. With regards to the structure 

of upper-tier and lower-tier, the overall view of two-tier heterogeneous sensor networks topology and 

its inter-tier or intra-tier communication is depicted in Figure 3. 
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Figure 3. Symbolic figure of proposed two-tier camera-based WMSN topology. 

 

4. High-Resolution Images in Camera-Based WMSNs  

The resolution and field of view of camera sensor nodes in WMSNs are low, while most 

applications of WMSNs need a high field of view with high quality. According to the literature, the 

previous methods solved this problem by using a hierarchy of cameras which contains stronger and 

more expensive cameras in higher tiers of it. But, the presented method uses image stitching to 

produce high quality images which cover wide areas by utilizing low cost camera sensor nodes just in 

lowest tier. The image stitching is the process of combining multiple images in order to produce an 

image with higher resolution and wider field of view. 

Due to camera sensor nodes limitations and the complexity of image stitching process, in order to 

reduce the volume of data transmission and prolonging network lifetime, process of creating high-

resolution images with maximum field of view consists of these stages. By the first request from Sink 

to the desired cluster head, the cluster head gathers the low-resolution images of all camera nodes in its 

cluster and sends all of them to Sink. Sink stitches these images to produce a high-resolution image as 

the result of the first query. A lot of efforts in image stitching process are taken to find transformation 

matrices. Hence, having these matrices beforehand makes stitching process really less complicated. So, 

Sink calculates these matrices and sends them to the cluster head to perform stitching in the subsequent 

queries (Details are explained in subsection 4.1). Also, based on stitched image a Coverage Data 

Structure is created by Sink (Details are explained in subsection 4.2.1). By the next queries, using this 

Coverage Data Structure and running Fair Camera Node Selection algorithm, the cluster head selects 

just a subset of camera nodes and gathers their images (subsection 4.2.2). Because the cluster head has 

transformation matrices, a simple procedure is adequate to stitch images of this selected subset before 

sending them to Sink. 
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4.1. Image Stitching Technique 

As Sink has no resource limitation, it performs image stitching process on the low-resolution 

images of a desired cluster head initially, extracts some necessary information and sends them to that 

cluster head. After receiving this information by the cluster head, it would be capable of stitching 

images by a simple process. Considering the nature of WMSNs, it is necessary for their topology to be 

reconfigured at periods which depend on the network application. The information transmitted by Sink 

is valid as long as the network topology has not been changed. On the other hand, after reconfiguration 

of the network topology, if it is the first time that Sink sends a query to a cluster head, it should stitch 

the received low-resolution images to send necessary information to the cluster head. Now, having this 

information, the cluster head stitches images with low computational overhead. Image stitching 

process that is used in extracting this information is explained as follows. 

Almost all image stitching methods can be put in one of the two broad categories: Direct  

Methods [31–34] and Feature-based methods [35–38]. Direct methods shift or rotate images related to 

each other and search for the best pixel-to-pixel match by minimizing a predefined error metric. But, 

Feature-Based methods extract features of each image at first and use them to register images in the 

next steps. So, these methods are faster whereas they suffer from low accuracy. However, after the 

presentation of SIFT feature extraction method [39], the accuracy problem has been solved. Recently, 

SIFT is utilized in many applications, especially in image stitching. Therefore, today, Feature-based 

methods are very popular in image stitching techniques. 

Nearly all image stitching methods need an initialization which must be typically done by the user 

such as approximately aligning the images or fixing image ordering. For example, REALVIZ Stitcher 

version 4 [40] has a user interface to roughly position the images with a mouse before automatic 

registration proceeds. Also, the PhotoStitch software bundled with Canon digital cameras requires a 

horizontal or vertical sweep, or a square matrix of images [38]. But the method presented by Matthew 

Brown and David G. Lowe [37,38] is a fully automated panoramic image stitching which does not 

need any human input. This method is insensitive to the ordering, orientation, scale, and illumination 

of the input images.  

Consequently, according to the camera-based WMSNs characteristics including: variant scale, 

orientation and illumination of camera sensor images and the fact that WMSNs are autonomous 

systems, Brown and Lowe’s method is suitable for image stitching in these types of networks. 

However, in this paper a simplified Brown and Lowe’s stitching method is proposed to satisfy camera-

based WMSNs limitations. Feature matching, Image matching and Blending are steps of this 

simplified stitching method.  

Feature matching and image matching construct image registration procedure whose aim is to find 

one transformation matrix for each image. This matrix is used to fix the image in its proper  

position [41] and the blending step blends registered images especially in borders and removes  

seams [37], consequently. The steps of this simplified stitching method are explained in details in the 

following subsections. 
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4.1.1. Feature Matching 

At first, features must be extracted from image to match them at the next step. For feature 

extracting, Brown and Lowe [38] image stitching method uses SIFT [39] algorithm which contains 

following stages:  

 Scale-space extrema detection: The difference-of-Gaussian function is used to search over all 

scales and image locations and identify potential interest points that are invariant to scale  

and orientation.  

 Key-point localization: The potential interest points which are less stable and have low contrast 

or are poorly localized along an edge are rejected.  

 Orientation assignment: In this stage, each point is assigned one or more orientation based on 

local image gradient directions. SIFT features are scale and orientation invariant because all 

future operations are performed on image data that has been transformed relative to its 

orientation, scale, and location. 

 Key-point descriptor: To compute descriptor vectors for key-points such that the descriptors are 

highly distinctive and invariant to the remaining variations like shape distortion and 

illumination, the local image gradients are measured at the selected scale in the region around 

each key-point. 

SIFT features are in a scale-space maxima/minima of a Difference of Gaussian (DOG) function. 

Each feature location has scale and orientation properties. Therefore, they have similarity-invariance in 

the frame which they are measured. The invariant descriptor is computed by accumulating local 

gradients in histograms of orientation. This causes the descriptor vector not to change with slight affine 

changes. This spatial accumulation is also important for shift invariance, since the interest point 

locations are typically only accurate in the 0–3 pixel range [42,43]. Using gradients that eliminates bias 

and normalizing the descriptor vector that eliminates gain achieve lead to illumination invariance. 

Since SIFT features are invariant under rotation and scale changes, this system can handle images with 

varying orientation and zoom. 

4.1.2. Image Matching 

In this step, the goal is to find all matching images. The ones having more matching features than a 

constant number would be considered as potential match images of current image. First, the RANSAC 

method [44] is used to select a set of inliers that are compatible with a homography between the 

images. Next, a probabilistic model is applied to verify the match. 

RANSAC is an iterative method to estimate parameters of a mathematical model from a set of data 

which contains outliers. In the case of image stitching, it selects sets of 4 feature correspondences and 

computes the homography H between them using the direct linear transformation (DLT) method [45]. 

This procedure repeats n = 500 times and the solution that has the maximum of inliers is selected. 

Given the probability that a feature match is correct between a pair of matching images (the inlier 

probability) is pi, the probability of finding the correct transformation after n trials is: 

 
nr

ipcorrectisHp ))(1(1)(  (1) 
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After a large number of trials the probability of finding the correct homography is very high. For 

example, for an inlier probability pi = 0.5, the probability that the correct homography is not found 

after 500 trials is approximately 1 × 10-14. 

Brown and Lowe [38] use a probabilistic model for image matching verification which is explained 

in the following. For each pair of potentially matching images there are feature matches which are 

geometrically consistent (RANSAC inliers) and features that are inside the overlap area but not 

consistent (RANSAC outliers). 

The idea of this verification model is to compare the probabilities of whether this set of 

inliers/outliers was generated by a correct image match or by a false image match. For a given image 

the total number of features in the area of overlap is denoted nf and the number of inliers is denoted ni. 

The probabilistic event that this image matches correctly/incorrectly is represented by the binary 

variable m{1,0}. The event that the ith feature match f (i)  {0,1} is an inlier/outlier is assumed to be 

independent Bernoulli so that the total number of inliers is binomial: 

),;()1|):1(( 1pnnBmnfp fif  (2)

),;()0|):1(( 0pnnBmnfp fif  (3)

where p1 is the probability of a feature being an inlier of a correct image match, and p0 is the 

probability of a feature being an inlier of a false image match. The set of feature match variables 

 fniif ,...,2,1),(   is denoted by ):1( fnf . The number of inliers is shown by 
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Brown and Lowe [38] have chosen values P1 = 0.6 and P0 = 0.1. Now the posterior probability that 

an image match is correct is evaluated using Bayes’ Rule: 
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Choosing values p (m = 1) = 10-6 and pmin = 0.999 gives the condition: 

fi nn   (7)

For a correct image match, Brown and Lowe [38] have chosen α = 8.0 and β = 0.3. At the end of 

this step, all low-resolution images are registered. It means that a transformation matrix is found for 
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each image that transforms it to its correct position in the high-resolution-registered image. As the 

location of camera nodes are fixed, these matrixes could be used next time. Hence, the transformation 

matrix is sent to the related cluster head to give it the ability to register and finally stitch low-resolution 

images before sending them to Sink. It has two merits: first, after the first time calculation in Sink, 

there is no need to calculate these matrixes in cluster head and, second by stitching images before 

sending them, the network traffic between upper-tier and Sink is reduced significantly. 

4.1.3. Blending 

The purpose of blending step is to make overlapped image edges disappear and it is necessary 

because even after a perfect image registration, that is practically impossible, some image edges are 

still visible due to some effects such as vignetting (intensity decreases towards the edge of the image), 

parallax effects due to unwanted motion of the optical center, radial distortion, etc.  

Although there are good methods like the multi-band blending method presented by Brown and 

Lowe [38] which results in a very smooth and seamless image, the method used to blend the images in 

WMSNs should be simple. Whereas one of the stitching purposes in this application is to reduce the 

amount of transaction with Sink, stitching procedure should be performed in cluster heads which have 

resource limitations. In addition, it is not possible to send Brown and Lowe [38] multi-band maps to 

cluster heads because the stitching subset change by each query and new maps are needed. Besides, 

using different maps for each image in each query requires memory space in upper-tier nodes.  

Blending result is generated by overlapping images which have gradient transparency near the 

edges. So an opacity matrix is used for images as a map to determine opacity of pixels. Due to the fact 

that the nodes in lower-tier are homogeneous and the sizes of all images are equal, one predefined 

opacity map which is restored in upper-tier nodes is enough for all of the images. Figure 4 depicts  

this map. 

Figure 4. Predefined opacity map for blending. 

 

Using a general map for all images has merits and demerits. As mentioned before, storing only one 

map in each cluster head memory is adequate to blend all the images. Also, it is possible to perform 

image stitching completely in cluster heads and avoid sending all images to Sink. Stitching images in 

cluster head reduces the size of data transmission and consequently decreases network traffic between 

upper-tier and Sink and prolongs nodes lifetime in upper-tier (see subsection 5.3). Nevertheless, the 

result of this method is not as uniform and smooth as the result image of other ones.  
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All in all, in the response to Sink queries, except the first one, cluster head gathers the low-

resolution images of a proper subset of its camera nodes, applies the opacity map to them and 

transforms them by transformation matrices which have been sent to it after the first query by Sink. 

The result is a high-resolution image which is sent to Sink. How this proper subset of camera nodes is 

selected is described in the following.  

4.2. Camera Sensor Node Selection Algorithm with Good Coverage and Minimum Energy Dissipation  

As mentioned before, camera nodes in lower-tier are largely overlapped and a subset of them is 

adequate to create desired high-resolution image. Therefore, a new algorithm is proposed to be used in 

cluster head to provide a good coverage by selecting a subset of camera sensors. This algorithm is fair 

and creates a balance on energy consumption between lower-tier sensor nodes. It reduces the size of 

inter-tier transmission data and prolongs camera nodes lifetime in lower-tier. This algorithm uses a 

data structure called Coverage Data Structure whose creation procedure is explained in the following. 

4.2.1. Camera Node Selection Approach 

As mentioned before, it is unnecessary to select all sensors of a cluster head to create a high 

resolution image and a proper subset of them is adequate. Selecting a proper subset of camera sensor 

nodes is solved by the presented algorithm. By each query from Sink, cluster head selects this subset 

based on some information (Coverage Data Structure) which has been received after first query in a 

way that in long term the average of activation times between camera sensor nodes becomes equal. 

Consequently, a balance in nodes energy consumption is achieved and this balance makes a good 

coverage of desired area be provided for a longer time. Other sensors that are not in this active subset 

are in sleep mode, so lower-tier energy dissipation decreases and its life time increases as much as 

possible. It is obvious that by reducing the number of active nodes to cover the desired area, inter-tier 

network traffic and camera overlap area are decreased. In addition, it reduces the processing amount in 

cluster head and response time to Sink queries.  

Sink sends Coverage Data Structure to cluster heads along with stitching related information 

(transformation matrixes) in order to perform the presented algorithm. To calculate this information, 

after stitching low-resolution images captured by all camera sensors, Sink grids the final result that is a 

high resolution image (see Figure 5b). Also, it specifies which grid cells are covered by the image of 

each camera sensor (see Figure 5c,d). The result of this process is an array, which each element of it 

corresponds to a grid cell covered by more than one camera. Each element points to a linked list call 

Sensor List. Linked list (Sensor List) assigned to each grid cell (element) includes camera sensor 

nodes’ IDs which cover this gird cell. Figure 5e shows a sample of this data structure. Most of the grid 

cells are covered by multiple cameras because camera sensors have overlaps and each sensor image 

covers multiple gird cells. The grid cells which are not covered by more than one camera are not 

included in data structure. The reason is in case they were included, the corresponding cameras would 

be kept in active mode to cover them and the corresponding camera nodes would lose its  

energy quickly. 
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Figure 5. Creating coverage data structure. 

 
Camera 1 Camera 2 Camera 3 Camera 4 

a) Hypothetical Images of Camera Sensors of a Cluster. 

  

b) High-Resolution Result Image of Stitching Low-

resolution Images. 

c) Grided Result Image. Hatched grid cell are not 

covered by more than one camera; therefore, 

are not included in Coverage Data Structure. 

 

2 3

1 2

1 4

1 3

23

24

25

1

2

Grid Number Camera Sensor Node ID

26

4

1 2

1 2
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Also, the size of grid cells is an important issue. When a grid cell is not completely covered by a 

camera sensor node image, another camera must be selected to cover it. Consequently, the overlap of 

selected cameras expands. As the size of grid cells reduces more, the probability of covering them 

increase and less areas of camera images are wasted. By decreasing the size of grid cells, therefore, 

total overlap decreases and less number of camera sensor nodes is required to be in active mode to 

cover the desired area. However, decreasing the size of grid cells increases their number; consequently, 

the algorithm runtime prolongs and requires more memory. 

If there are N grid cells, M camera nodes and in average each grid cell is covered by K camera 

nodes, in the best case, the algorithm finds a proper subset whose computational order is O (N × K). In 

the worst case, the proper subset is found which has a computational order of O (M × N × K). So, 

according to the memory volume and processing power of upper-tier nodes, the size of grid cells (N) 

should be specified. Also, K is achieved by Equation (8) after creating the Coverage Data Structure. In 

Equation (8), SensorList (i) is a linked list in Coverage Data Structure that includes all camera sensor 

nodes IDs which cover the ith grid cell: 

 



N

i

iSensorListlength
N

K
1

)( 
1

(8)

4.2.2. Fair Camera Node Selection Algorithm 

After first query from Sink, and having all necessary information (transformation matrixes and 

Coverage Data Structure) which have been sent to the related cluster head, cluster head selects subset 

of camera sensor nodes based on the Fair Camera Node Selection algorithm to respond to subsequent 

queries. Presented algorithm selects this subset in a way that each node is selected almost equal times 

in multiple queries. It avoids the early failure of some sensor nodes and consequently a good coverage 

of field is provided for a longer time. The steps of Fair Camera Node Selection are explained in  

the following: 

 

 Initialization: As mentioned before each camera sensor covers multiple grids, so after selecting 

a sensor to cover a specific grid cell, some other cells will be automatically covered by the 

same sensor and selecting another sensor to cover them is unnecessary. Accordingly, an array 

of flags called “Uncovered Grids” is needed to identify which grid cells are covered. Each 

element of this array corresponds to a grid cell and if an element in this array is marked 

(includes 1), it means that the corresponding grid cell is uncovered. If the element is unmarked 

(includes 0), it is covered by a camera in previous algorithm iterations. As is shown in  

Figure 6A, all elements of “Uncovered Grids” are marked (set to 1) at the beginning of the 

algorithm. In addition, “Start Grid” is a variable that identifies which grid cell must be covered 

first in this query and by each query it cycles between grid cells (see Figure 6A). This rotation 

between grid cells that changes the first grid cell to be covered causes a pseudo-random 

selection. Selected cameras are added to a set called “Active Set” which is empty at the 

beginning (see Figure 6A).  
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 Checking the Answer: If there is no marked grid cell in “Uncovered Grids” as an uncovered one, 

the algorithm task is completed and desired answer is in the “Active Set”. Otherwise, the grid 

cells which are uncovered must be covered in the next steps (see Figure 6B). 

 Finding an Uncovered Grid Cell: Here, as there is still uncovered grid cell(s), we are sure that 

another camera must be selected. “Selected Grid” is a variable that identifies the grid which 

must be covered now and was set to “Start Grid” at the start of algorithm (see Figure 6A). If the 

“Selected Grid” is already covered (see Figure 6C), it must be set as the next uncovered grid 

(see Figure 6D) and this process goes on until an uncovered grid cell is found.  

 Camera Sensor Selection and Related Updates: After the uncovered grid cell is found in previous 

step, in this step one of the cameras that cover it must be chosen. In the Coverage Data Structure, 

each grid cell has a list of sensor cameras covering it. First sensor node (header) in the sensor list 

of “Selected Grid” is selected as “Selected Sensor” and is added to the “Active set”. After this, as 

each camera sensor covers more than one grid cell, corresponding elements of all grid cells 

covered by “Selected Sensor” are unmarked (set to 0) in the “Uncovered Grids”. In addition, 

“Selected Sensor” is moved to the end of all sensor lists in the Coverage Data Structure in order to 

let the other sensors be selected in the next queries. To perform these tasks, a search through all 

lists is required (see Figure 6E). Then algorithm returns to Checking the Answer step. 

Figure 6. Flowchart of fire camera node selection algorithm. 
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At first it appears that using a random selection for uncovered grid cells instead of selecting them 

one after another (using “Start Grid” variable) is more fair but running tests have shown that they have 

no difference in results and all sensors are selected almost equal times. The result of this test is shown 

in subsection 5.2. Since random selection requires more processing and the result of both methods are 

almost the same, in order to decrease response time to Sink queries and preventing from processing 

power dissipation, it is better not to use it. 

5. Analyses and Simulation Results 

5.1. Simulation Environment 

In order to simulate presented methods, OMNet++ [46] network simulator and MATLAB have been 

used. It is assumed that when the clustering algorithm is performed in upper-tier, all nodes are 

clustered in groups where most of them have four members. Also, a node is selected as a cluster head 

of each cluster such that the locations of cluster heads in entire upper-tier become uniform. It is 

supposed that each cluster head reach Sink after three hops. In order to create this hierarchical 

structure, HDA algorithm [28] is used. Whereas upper-tier sensor nodes are equipped with GPS, Sink 

knows their geographical position and sends the queries to the related cluster head.  

The lower-tier consists of homogenous camera sensor nodes with image resolution 320 × 240 and it 

is assumed that each image is in gray-scale. As camera sensors in lower-tier are near to each other and 

are placed in almost same direction (see subsection 3.2), camera sensors of each cluster have 

considerable overlaps. It is assumed that each cluster in lower-tier has 24 members in average. 

Needless to say, sensor nodes in upper-tier are different from lower-tier nodes. Also, each camera node 

can reach its cluster head in upper-tier by one hop. In order to get precise results from the simulations, 

the parameters of CC2420 [47] Chipcon transceiver, listed in Table 1, are used for transceiver part of 

sensor nodes in both tiers. 

Table 1. CC2420 Transceiver parameters. 

Parameter Value 

Bit Rate 250 kbps 

Listen Power 60 mJ/sec 

Receive Power 63 mJ/sec 

Transmission Power 57 mJ/sec 

Setup Time 1msec 

Communication Distance 300m 

 

In the simulations, it is assumed that desired area is related to the specific cluster head. Initially, at 

first query from Sink, all low-resolution images of camera sensors in the related cluster head, which 

belong to requested area, are sent to Sink. Figure 7 shows the assumed low-resolution images which 

are captured from the desired area by camera sensor nodes that are connected to the specified cluster 

head. The images are captured from cameras which are placed in a 3-D field [with the size of around  
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3 m (width) × 3.5 m (height) × 1 m (depth)]. Besides, the distance of desired area (the door) and 

cameras in average is about 3.5 m. 

Figure 7. Assumed Camera Sensor Node Gray-Scale Images with Resolutions 320 × 240 

Managed by Specific Cluster Head in Upper-Tier. 

  
Camera ID = 1 Camera ID = 2 Camera ID = 3 Camera ID = 4 Camera ID = 5 

  
Camera ID = 6 Camera ID = 7 Camera ID = 8 Camera ID = 9 Camera ID = 10 

  
Camera ID = 11 Camera ID = 12 Camera ID = 13 Camera ID = 14 Camera ID = 15 

  
Camera ID = 16 Camera ID = 17 Camera ID = 18 Camera ID = 19 Camera ID = 20 

 

 

 

 Camera ID = 21 Camera ID = 22 Camera ID = 23 Camera ID = 24  

After first query and stitching in Sink based on all low-resolution camera images that are related to 

specific cluster head, the results of stitching procedure are: transformation matrixes, A Coverage Data 

Structure and a high-resolution image. Using Equation (8) each grid cell in average covered by  

3.68 cameras (K = 3.68). The high-resolution and wide stitched image produced from all low-

resolution camera sensor images of desired area in Sink is shown in Figure 8.  

As mentioned in subsection 4.2.1, Coverage Data Structure is created based on stitched high-

resolution image gridded in Sink. In generating this data structure, the size of grid cells is assumed to 

be 80 × 60 so number of grid cells which are covered by more than one camera (N) is 288. In the 

following subsections, we are going to analyze several aspects of the proposed methods. 
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Figure 8. High-resolution and wide stitched image in sink. 

 

5.2. Analyses on the Fair Camera Node Selection (FCNS) Algorithm  

In this subsection, performance and fairness of the presented node selection algorithm in  

subsection 4.2.2 is simulated and analyzed. Coverage Data Structure related to the high-resolution 

image in Figure 8 which is produced by stitching low-resolution images in Figure 7 are used in these 

simulations. At first, using a random selection for uncovered grid cells instead of selecting them 

sequentially is analyzed. It is assumed that Sink sends some queries to the specific cluster head and the 

standard deviation of camera sensor activation times are computed for each group of the queries.  

The computational results are shown in Figure 9. Using the random selection for uncovered grid cells 

or selecting them sequentially (pseudo-random) has no difference in results. Whereas computational 

overhead in pseudo-random selection is less than random selection, it is suitable for presented camera 

selection algorithm. 

Figure 9. Computing standard deviation of camera activation times for each group of  

the queries. 
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Simulation results in Figure 9 show that the presented algorithm has low standard deviation in 

camera sensor activation times (less than 1.0). Consequently, this algorithm is fair enough and selects 

camera sensor nodes in each group of queries almost equal times. However, to show that equalization 

of camera sensor activation times is useful in achieving a high-resolution image with complete 

coverage for a longer time, a greedy set cover algorithm [48] is compared with presented algorithm. 

The aim of greedy set cover algorithm is to cover entire desired area with minimum number of 

cameras which is named Minimum Camera Node Selection (MCNS). In this comparison, it is assumed 

that Sink sends multiple groups of queries to the specific cluster head and numbers of selected camera 

sensors are computed for each group of queries. The results of these computations are shown in Table 2. 

Table 2. Numbers of camera sensor selections. 

Query 

Number = 15 

Camera ID 1 2 3 4 5 6 7 8 9 10 11 12 

Camera Selection Times 

with FCNS Algorithm 
8 7 8 7 8 8 9 8 7 7 8 8 

Camera Selection Times 

with MCNS Algorithm 
8 7 8 7 8 0 0 15 7 15 0 6 

Query 

Number = 15 

Camera ID 13 14 15 16 17 18 19 20 21 22 23 24 

Camera Selection Times 

with FCNS Algorithm 
7 8 8 8 6 8 8 8 8 8 9 9 

Camera Selection Times 

with MCNS Algorithm 
6 3 15 0 0 0 15 15 11 4 15 0 

Query 

Number = 30 

Camera ID 1 2 3 4 5 6 7 8 9 10 11 12 

Camera Selection Times 

with FCNS Algorithm 
15 15 15 15 15 15 16 16 15 15 15 15 

Camera Selection Times 

with MCNS Algorithm 
15 15 14 16 12 0 0 30 18 30 0 9 

Query 

Number = 30 

Camera ID 13 14 15 16 17 18 19 20 21 22 23 24 

Camera Selection Times 

with FCNS Algorithm 
15 15 16 15 14 15 16 15 16 15 17 16 

Camera Selection Times 

with MCNS Algorithm 
10 11 30 0 0 0 30 30 14 16 30 0 

Analyzing the results in Table 2 shows that for each group of the queries the average number of 

selected nodes by MCNS algorithm is lower than presented algorithm. But, often, MCNS algorithm 

selects sensor nodes that cover more grid cells than the other nodes. Therefore, some nodes are used 

more than others. Unbalanced usage of the camera nodes causes energy to diminish faster for nodes 
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which are selected more. Consequently, by losing some nodes before the other ones, responding to 

queries with good coverage is impossible.  

To analyze the coverage issue in detail, another simulation is presented. The aim of this simulation 

is to compare coverage of desired area in many queries by presented algorithm and Minimum Camera 

Node Selection algorithm. The simulation has the same assumptions of subsection 5.1 (such as 

Coverage Data Structure, network topology) and it is related to a cluster head with 24 camera nodes. 

Also, it is assumed that all camera nodes have 2J energy at the beginning and according to Table 1 

each camera will fail after 30 times of activation. Figure 10 depicts the average coverage percent of 

both algorithms in 60 queries.  

Figure 10. Comparing FCNS and MCNS algorithms. 
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As Figure 10 shows, the coverage percent of the presented algorithm is high in roughly the first  

60 queries and then the coverage reduces extremely because many nodes fail almost together. But, 

coverage percent of MCNS reduces by about 20% after 30th and 60th queries because of some nodes 

failure. Simulation results show: although the presented algorithm gets minimum coverage more 

quickly, it provides good coverage for longer time in comparison with MCNS. 

5.3. Analyzing Computational Overhead and Energy Efficiency in High Resolution Image Generation 

In this subsection, the computational overhead of stitching low-resolution images, the energy 

efficiency of presented methods and quality of generated high resolution images are simulated and 

analyzed. It is assumed that after the first query and sending required information to the related cluster 

head, Sink sends 10 queries to cluster head and obtain high-resolution images in response to these 

queries. Also, as mentioned in subsection 5.1, related cluster head is located three hops far from Sink 

and transmission schemes in EQV-Architecture [49] are used to transmit stitched image to Sink through 

the upper-tier. As mentioned before, having the transformation matrices and blending maps, cluster 

head can stitch its camera sensor images with low computational overhead before sending them to Sink. 

In order to do so, every pixel of each selected low-resolution image must be transferred to its position in 

the high-resolution image by related transformation matrix and its opacity level in blending map be 
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applied to them. Despite the result of simplified stitching method is not as good as the original one 

containing a multiband blending, it is worth utilizing because its low computational overhead lets the 

stitching be performed by cluster heads. For example, in this simulation, image stitching in cluster head 

by available transformation matrices requires approximately 21% computation of whole image stitching 

process from the beginning by comparing average run time of both algorithms in 10 run. On the other 

hand, reusing transformation matrices causes 79% computational performance. 

Moreover, using the Coverage Data Structure, cluster head is able to select proper active subset of 

sensor nodes. Figure 11 shows the stitched image of 8th query in the related cluster head. This high-

resolution image is created using low-resolution images that generated with camera IDs 24, 21, 23, 19, 

15, 17, 13, 8, 10, 9, 2, and 4.  

As mentioned before, the grid cells covered by only one camera node are omitted from Coverage 

Data structure. Therefore, the stitched image in cluster head created by proper subset of camera sensor 

images has some small difference from stitched image created by all camera sensor images. However, 

based on simulation results shown in Figure 11, the stitched image in cluster head is acceptable for 

many monitoring sensor network applications. 

Figure 11. The stitched image in cluster head for the response to 8th query. 

 

Stitching in the cluster head presented in this literature omits transmitting redundant data to Sink 

and let save more energy in the network. To show this, it is assumed that 10 queries are sent to the 

desired area in the third hop far from Sink. In order to perform this simulation, energy consumption of 

each query is computed and compared with energy consumed in case stitching is done in Sink. 

Figure 12 which shows the simulation results of these computations says that the stitching in cluster 

head has less energy consumption compared to Sink stitching. Inserting these results into the 

Equation (9) shows that the optimization of the energy consumption using stitching in the cluster head 

is approximately 26%. In this equation, Q is the query numbers that arrived from Sink.  
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Figure 12. Network energy consumption for the queries 1 to 10. 
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6. Conclusions 

In this article, a high-resolution and wide image of desired area based on the proposed methods and 

a new designed two-tier network topology structure has been presented. Also, energy consumption that 

is very important issue in WMSNs has been considered. The presented two-tier network topology has 

utilized sensor nodes with low-resolution camera only in lower-tier and stronger sensor nodes without 

camera in upper-tier. The proposed network topology structure causes energy dissipation to decrease 

as much as possible. 

The presented camera sensor selection algorithm causes equal energy consumption between camera 

nodes because it selects camera sensor nodes in a fair manner to produce an active camera subset. 

Consequently, the high-resolution and wide image with complete coverage of desired area is obtained 

for a longer time. Also, the proposed stitching method in the cluster head stitches the low-resolution 

camera sensor images and sends only a high resolution stitched image to Sink without redundant 

information. The simulation results show that stitching low-resolution images in the cluster head leads 

to 26% of energy efficiency. All in all, in this paper, using image stitching in WMSNs led to 

minimization of the energy dissipation and the obtained high-resolution image is suitable to satisfy 

many monitoring camera-based WMSNs applications. 
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