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Abstract: Localization is one of the most important subjects in Wireless Sensor Networks 
(WSNs). To reduce the number of beacons and adopt probabilistic methods, some particle 
filter-based mobile beacon-assisted localization approaches have been proposed, such as 
Mobile Beacon-assisted Localization (MBL), Adapting MBL (A-MBL), and the method 
proposed by Hang et al. Some new significant problems arise in these approaches, however. 
The first question is which probability distribution should be selected as the dynamic 
model in the prediction stage. The second is whether the unknown node adopts neighbors’ 
observation in the update stage. The third is how to find a self-adapting mechanism to 
achieve more flexibility in the adapting stage. In this paper, we give the theoretical analysis 
and experimental evaluations to suggest which probability distribution in the dynamic 
model should be adopted to improve the efficiency in the prediction stage. We also give the 
condition for whether the unknown node should use the observations from its neighbors to 
improve the accuracy. Finally, we propose a Self-Adapting Mobile Beacon-assisted 
Localization (SA-MBL) approach to achieve more flexibility and achieve almost the same 
performance with A-MBL. 
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1. Introduction  
 

Recent advancements in wireless communications and electronics have enabled the development of 
low-cost sensor networks [1]. There are several essential issues (e.g., localization, deployment, and 
coverage) in Wireless Sensor Networks (WSNs). Localization is one of the most important subjects 
because the location information is typically usefully for coverage, deployment, routing, location 
service, target tracking, and rescues [2].  

The localization of static WSNs relies on several beacons which know their locations scattered 
throughout the sensor networks and the precision of the localization increases with the number of 
beacons [3]. To reduce the number of beacons, many mobile beacon-assisted approaches have been 
proposed. These approaches can be categorized based on whether the localization techniques are 
Range-based or Range-free, whether the localization algorithms are Centralized or Distributed, and 
whether the localization results are Deterministic or Probabilistic. 

Compared with previous works on mobile beacon-assisted localization [4-15], Mobile Beacon-
assisted Localization (MBL) [3] integrates many more of the advantages of the methods, such as 
range-free technique, distributed algorithm and probabilistic approach. Paper [3] also proposes another 
localization approach based on MBL, called Adapting MBL (A-MBL), to increase the efficiency and 
accuracy of MBL by adapting the size of sample sets and the parameter of the dynamic model during 
the estimation process. Evaluation results show that the accuracy of these approaches outperforms 
some other approaches [13,16] when both of them use only a single mobile beacon for localization in 
static WSNs. Some new significant problems arise about A-MBL, however. 
 
Dynamic model  

 
In general, the prediction stage in the particle filters uses the dynamic model to predict the state 

probability density forward from one measurement time to the next. Particularly in particle filters 
based mobile beacon-assisted localization, the dynamic model is needed for unknown nodes to provide 
enough variability in choosing new samples, i.e., which is used to limit a sample impoverishment 
phenomenon. MBL (or A-MBL) and Hang et al. [14] adopt uniform distribution and normal 
distribution as the dynamic model, respectively. To the best of our knowledge, no theoretical analysis 
or experimental evaluations are given to explain why this particular dynamic model should be adopted, 
however. In fact, on one hand, the choice of the dynamic model will affect the accuracy of localization 
results. On the other hand, the approach to simulating random variables of the dynamic model will 
affect the efficiency of localization process. To this end, an appropriate dynamic model should 
improve the location accuracy when locating unknown nodes and time efficiency when simulating 
random variables. 
 
Neighbors’ observation 

 
In general, the update operation uses the latest measurement to modify the prediction probability 

density. Particularly in particle filters based mobile beacon-assisted localization, the unknown node 
filters the impossible samples based on new observations. MBL (or A-MBL) only relies on the 
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observations from the beacon. This has two advantages. First, the number of unknown nodes will not 
affect the accuracy of localization. Second, the computation and communication costs drop drastically, 
since nodes are no longer involved in the localization of other nodes [16]. Typically, network protocols 
maintain information about their neighbors in order to make informed decisions for routing, 
aggregation, and dissemination [17]. Some proposed approaches, such as Mobile and Static sensor 
network Localization (MSL) [16], use observations from the neighbors of unknown nodes, which may 
have greater communication costs, to increase efficiency and accuracy. It is still unknown whether or 
not to use observations from the neighbors in mobile beacon-assisted approaches, however. It is known 
that adopting neighbors’ observation should improve the location accuracy when locating unknown 
nodes and communication efficiency when collecting observations. 
 
Adapting mechanism 

 
The parameters in the dynamic model will affect the accuracy and efficiency of particle filter-based 

mobile beacon-assisted localization. As an example concerning the number of samples [3,16,18], 
under the same conditions, keeping more samples improves efficiency at the beginning of localization. 
The time complexity of the update stage and the memory requirements to keep samples are both linear 
in the number of samples needed for the estimation, however. Another example about the parameter α 
in the dynamic model [3,18], a greater value of parameter in the dynamic model improves the 
efficiency at the beginning of localization and the accuracy at the other extreme. Though adopting 
predefined adjustment tables in A-MBL is convenient and effective, obtaining these tables is difficult. 
To this end, the key question in A-MBL is how to determine the number of samples and the value of 
parameter in the dynamic model to achieve more flexibility. It is known that the approach should be 
unrelated to the deployment region, the location time and the number of unknown nodes, i.e., the 
approach should be self-adapting. 

To address above problems, we first describe three different dynamic models and some related 
approaches to simulating random variables of the dynamic models. The theoretical analysis and 
experimental evaluation will be given to explain why the particular dynamic model should be adopted. 
Then, we describe how to make use of the neighbors’ observations in the update stage. Next, we give 
the condition whether the unknown node use the observation from the neighbors to improve the 
accuracy. Finally, we analysis and compare some approaches to judge the localization to reach the 
stable phase. As a result, a self-adapting mechanism will be proposed. 

Major contributions of this paper are as follows: 
 In order to improve the time efficiency in the prediction stage of particle filter-based mobile 

beacon-assisted localization, we give the theoretical analysis and experimental evaluations to 
suggest which probability distribution should be adopted in the dynamic model. 

 We give the condition for whether the unknown node should use the observation from its 
neighbors to improve the accuracy. 

 We propose a Self-Adapting Mobile Beacon-assisted Localization (SA-MBL) approach to 
achieve more flexibility and obtain almost the same performance as with A-MBL. 

The rest of this paper is organized as follows: Section 2 describes the algorithm of A-MBL.  
Section 3 analyses and discusses the different dynamic models, the neighbors’ observation, and the 
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self-adapting mechanism. Section 4 shows and discusses our evaluation results. Section 5 gives an 
overview of related works. Finally, Section 6 concludes our work. 
 
2. Related Work 
 

Much research has been done on mobile-beacon assisted localization for WSNs. A general survey 
can be found in [3]. Here, we provide a brief survey focusing only on Monte Carlo localization 
techniques suitable for static or dynamic WSNs. The range-free, distributed and probabilistic 
algorithm MCL [18] proposed by Hu et al. only works in mobile sensor networks. In the prediction 
phase, MCL applies the mobility model to each sample to obtain a set of new samples. The probability 
of current location based on previous location estimates is given by a uniform distribution.  

Different from MCL, in the range-free, distributed and probabilistic algorithms MSL and MSL*, 
each sensor node uses observations from only those neighbors that have better location estimates that it, 
i.e., the weight of a sample is determined using the neighbors’ observations besides the location 
announcements from the beacons. MSL modified the mobility model to allow this algorithm to work in 
static WSNs. As in the MCL, the uniform distribution is adopted as the mobility model in MSL. 

In addition, some Monte Carlo localization specially designed for static sensor networks have been 
proposed. Hang et al. in [14], discuss a hybrid (range-free and range-base), centralized and 
probabilistic algorithms in the context of the static WSNs localization using a single mobile beacon. 
This algorithm assigns a dynamic model to enable samples to move closer to the actual location, and 
the dynamic model adopts a normal distribution. After the location distribution of unknown node is 
update, the beacon will also update the location distribution of the unknown node’s neighbors based on 
the one-hop observation data between the pair of neighbors. MA-MCL [15] does a similar work which 
proposes a range-free, centralized and probabilistic localization approach. MA-MCL adopts a uniform 
distribution as the mobility model. 

In [3], we proposed a range-free, distributed and probabilistic MBL approach. This approach 
outperforms both MSL and Arrival and Departure Overlap (ADO) [13] when both of them use only a 
single mobile beacon for localization in static WSNs. In the prediction phase, like MCL and MSL, 
MBL adopts a uniform distribution as the dynamic model. This paper also proposes A-MBL, to 
increase the efficiency and accuracy of MBL by adapting the size of sample sets and the parameter of 
the dynamic model during the estimation process. As the MBL, A-MBL does not use the observation 
information from neighbors. 
 
3. Description of A-MBL 
 
3.1. Assumption 
 

Similar to the assumption in [3], let us consider a sensor network with M static sensor nodes in a 2D 
plane which do not have a priori known locations (called unknown nodes) and a single mobile node 
(called beacon), equipped with localization hardware, e.g., a GPS, which allows it to know its location 
at all times. We assume that all unknown nodes are randomly deployed in an area of size S and each 
sensor (unknown node or beacon) has the same ideal radio range r. The beacon is capable of moving a 
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distance in a time step (vb) in any direction where 0 ≤ vb ≤vmax. The beacon knows vmax, but it does not 
know the value of vb or the direction of movement in any time step. At time t, every unknown node 
within the radio range of the beacon will hear a location announcement from that beacon. We do not 
assume very tightly synchronized clocks. In a realistic deployment, it would be necessary to deal with 
network collisions and account for missed messages [18]. 
 
3.2. A-MBL  
 

A-MBL uses the particle filter approach (also called sequential Monte Carlo method) to perform 
Bayesian filter based localization on a sample representation. The key idea is to represent the required 
posterior density by a set of random samples with associated weights and to compute estimates based 
on these samples and weights [19]. 

Let { 1 }i i
t tl w i N< , >, = ,...,  denotes a random measure that characterizes the posterior 

density ( )t tp l o|  which denotes the current location estimate lt conditioned on the observation ot from 
the beacon at time t, where { 1 }i

t tL l i N= , = ,...,  denotes a set of support samples (or called particles) 
with associated weights { 1 }i

t tW w i N= , = ,...,  at time t and N denotes the number of samples of an 

unknown node. 
The details of the A-MBL are as follows:  
Initialization: In this stage, all unknown nodes have no information about their locations. The initial 

set of samples Equation 1 for each unknown node is chosen randomly from the whole deployed area 
and represented by a set of uniformly distributed samples with equal weights Equation 2. The weight 
equal to one represents the importance of corresponding sample, which infers one of the location 
estimates of the unknown node:  

0 0 0 0
1{ | ~ ( ) , 1,..., }i iL l l p l i N
S

= = =       (1) 

0 1, 1,...,iw i N= =        (2) 

where 0L denotes the initial set of each sample, 0( )p l  denotes initial location probability density, the 

symbol ~ denotes sample generated sign, i.e., the samples on the left side are generated from the 
probability density on the right side, and 0

iw  denotes the initial weight of each sample. 

Prediction: In this stage, we adopt a dynamic model in which the unknown node is capable of 
moving a distance in a time step (vnode) in any direction where 0 ≤ vnode ≤ α. The unknown node knows 
α, but it does not know the value of vnode or the direction of movement in any time step. Then, the 
unknown node generates new samples as follows: 

Pt = { i
tl | i

tl  is selected from 1( )i i
t tp l l −| , where 1 1

i
t tl L− −∈  for all 1,...,i N= }   (3) 

where Pt represents the approximation of prior density at time t after the prediction stage, Lt-1 
represents the approximation of posterior density at time t-1, and the transition equation for each 
sample described as follows: 

2
1

1 ( )
( )

0 ( )
t t

if filter R TRUE
p l l

if filter R FALSE
πα−

⎧ =⎪| = ⎨
⎪ =⎩

      (4) 
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where filter(R) denotes the unknown node receives the current location announcement of the beacon, 
but did not receive the location announcement from the beacon’s previous location, or the unknown 
node received the preceding location announcement from the beacon, but does not receive the location 
announcement from the beacon’s current location. For more details about filter(R) see [3]. 

Update: In this stage, the unknown node filters the impossible samples based on new observations. 
The unknown node updates samples as follows: 

Ut = { i
tl | i

tl  where i
t tl P∈  and ( )i

tw l  = 1}    (5) 

where Ut represents the approximation of posterior density at time t after the update stage, and the 
weight ( )i

tw l  will be obtained by ( )i
t tp o l| .The weight of sample is determined by the filter condition:  

1 ( )
( )

0 ( )t t t

if filter R TRUE
w p o l

if filter R FALSE
=⎧

= | = ⎨ =⎩
      (6) 

Resampling: A-MBL adopts a Systematic resampling algorithm [20] in this paper since it is simple 
to implement, takes O(Ns) time, and minimizes the Monte Carlo variation.  

Adapting: A-MBL adopts two predefined adjustment tables, one for the number of samples N, and 
the other for the parameter α. Once some record in the table is matched, the number of samples and the 
value of α in the unknown node will be adjusted according to the corresponding time. 

The complete A-MBL for every unknown node is shown in [3]. 
 
4. Key Issues 
 
4.1. Dynamic Model 
 

In this section, we use the term “random numbers” to mean independent random variables from a 
probability distribution, i.e., we use random numbers to simulate random variables from some 
probability distribution. For example, let random variable Z is uniformly distributed over (0, 1). If U is 
uniformly distributed over (0, 1) random numbers, then Equation 7 denotes random variables Z are 
simulated by random numbers U:  

Z U=         (7) 

We denote the horizontal X and vertical Y location of the i-th sample of an unknown node at time t 
by ( , )i

tl X Y= . 

 
4.1.1. Square uniform distribution 
 

If we adopt Square Uniform Distribution (SUD) as the dynamic model, i.e., a new sample is 
generated from each current sample by randomly choosing a point within a square with a side length 
2α when the filter(R) is equal to TRUE. Thus, the transition equation for each sample described  
as follows: 
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2
1

1 ( )
( ) 4

0 ( )
t t

if filter R TRUE
p l l

if filter R FALSE
α−

⎧ =⎪| = ⎨
⎪ =⎩

     (8) 

Next, we simulate SUD from random numbers shown as follows: 
Let the horizontal X and vertical Y location of the i-th sample of an unknown node are independent 

uniform random variables on the interval (-α, α). If U1 and U2 are independent uniformly distributed 
over (0, 1) random numbers, then 

1

2

2 *
2 *

X U
Y U

α α
α α

= − +
= − +

       (9) 

Each unknown node will use Equation 9 to generate its own samples when SUD is adopted as the 
dynamic model. 
 
4.1.2. Circle uniform distribution 
 

If we adopt Circle Uniform Distribution (CUD) as the dynamic model, i.e., a new sample is 
generated from each current sample by randomly choosing a point within a circle centered at the 
current location of the sample and the radius α when the filter(R) equal to TRUE. Then, the transition 
equation for each sample described as follows: 

2
1

1 ( )
( )

0 ( )
t t

if filter R TRUE
p l l

if filter R FALSE
πα−

⎧ =⎪| = ⎨
⎪ =⎩

     (10) 

How can the uniform distribution of filters in a circle be realized? One solution could be to generate 
the filters uniformly in a circle and then draw again if the point is not within the circle. The approach 
called Accept-Reject is shown in Algorithm 1. 
 

Algorithm 1. Accept-Reject method 

1: do  
2: Generate random numbers U1 and U2; 
3: 1 22 * , 2 * ;X U Y Uα α α α= − + = − +  

4: While 2 2 2X Y r+ ≥  
5: Accept X, Y; 
 
Since the probability that a random point in the square will fall within the circle is equal to π/4 (the 

area of the circle divided by the area of the square), it follows that, on average, the Accept-Reject 
method will require 4/π = 1.273 iterations of step 2. Hence, it will, on average, require 2.546 random 
numbers to generate 2 independent random variables. 

A more efficient solution is to choose the angle uniformly as before, but for the radius an 
intermediate value U is generated uniformly between 0 and 1, and then r is calculated as r=sqrt(U)*α, 
where sqrt() denotes square root function. The approach is called polar method. 
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Formally, let the distribution of samples in a circle of the radius (0, α) with the angle θ uniformly 
between (0, 2π). If 1U  and U2 are independent uniformly distributed over (0, 1) random numbers, then: 

1

2

0 (2 0)*
( )*

cos
sin

U
r sqrt U
X r
Y r

θ π
α

θ
θ

= + −
=
=
=

     (11) 

where θ is described in Figure 1. 
Each unknown node can use Algorithm 1 or Equation 11 to generate its own samples when CUD is 

adopted as the dynamic model. 

Figure 1. Polar method of CUD. 
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4.1.3. Normal distribution 
 

If we adopt Normal Distribution (ND) with parameters 0 and σ2 as the dynamic model, then the 
transition equation for each sample is described as follows: 

2

1
(0, ) ( )

( )
0 ( )t t
N if filter R TRUE

p l l
if filter R FALSE

σ
−

⎧ =
| = ⎨

=⎩
     (12) 

Special techniques have been devised to simulate from most of the common continuous 
distributions [21]. Now, we review the two most popular generating approaches of ND. 

(1) Box-Muller 
Let the horizontal X and vertical Y location of the i-th sample of an unknown node are independent 

standard normal random variables. If U1 and 2U  are independent uniformly distributed over (0, 1) 
random numbers, then: 

1/2
1 2

1/2
1 2

( 2 log ) cos(2 )

( 2log ) sin(2 ),

X U U

Y U U

π

π

= −

= −
     (13) 

The preceding approach to generating standard normal random variables is called the Box-Muller 
method. Its efficiency suffers somewhat from its need to compute the preceding sine and cosine values. 
There is, however, a way to get around this potentially time-consuming difficulty. 
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(2) Polar method 
The literature [21] also introduces the following approach to generating a pair of independent 

standard normals: 
 

Algorithm 2. Polar method 

1: do  
2: Generate random numbers U1 and U2; 
3: Set 2 2

1 1 2 2 1 22 1, 2 1, ;V U V U S V V= − = − = +  

4: While 1S >  

5: 1 2
2 log 2log,S SX V Y V

S S
− −

= = ; 

 
The preceding is called the polar method. It will, on average, require 2.546 random numbers, one 

logarithm, one square root, one division, and 9.546 multiplications to generate two independent  
standard normals. 

If the normal random variable has mean u and the variance σ2 , then it is given as:  
u X
u Y

σ
σ

+
+

       (14) 

To compare the efficiency of the various algorithms mentioned above, we show the results of the 
comparison in Table 1. As shown in Table 1, the method to simulate SUD is the most efficient among 
these algorithms. Whether or not to use SUD as the dynamic model also depends on the accuracy of 
localization results, however. We will evaluate the localization accuracy of these approaches adopted 
as the dynamic model in Section 4.2. 

Table 1. The efficiency of different algorithms. 

Probability 
Distribution 

UD (Uniform Distribution) ND (Normal 
Distribution) SUD CUD 

Simulation Method  Accept-Reject Polar Box-Muller Polar 
Random Numbers 2 2.546 2 2 2.546 
Trigonometric Function 0 0 2 2 0 
Logarithm 0 0 0 1 1 
Square Root 0 0 1 1 1 
Multiplication 4 7.638 5 6 10.638 
Division 0 0 0 0 1 

 
4.2. Neighbors’ Observation 
 

The aim of combined with the observation from the neighbors is to improve performance, and then 
get results in faster convergence of the algorithms. To this end, we modify the sampling procedure in 
MBL to use observations from the neighbors, i.e., each unknown node not only relies on observations 
from the beacon, but also from the neighbors that have better estimates.  
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As the approaches described in [16], after choosing a sample from the unknown node, its weight is 
determined using the beacon and neighbors’ observation. The weight of a sample li chosen for the 
unknown node p, is described as ( )il

w p , which is computed as follows: corresponding to the k-th 
neighbor qk of the unknown node p, we set a partial weight for the sample li, ( )i kl

w q′ . The weight 
( )il

w p  of sample li is the product of the partial weights ( )i kl
w q′  obtained corresponding to each 

neighbor q of the unknown node p. That is: 

1
( ) ( )i i

n
kl lk

w p w q
=

′=∏        (15) 

where n is the number of neighbors of the unknown node p. 
The partial weights ( )i kl

w q′  of the sample li corresponding to observations from the beacon or the 

neighbors of unknown node are computed as follows: 
(1) If the unknown node receives the observation from the beacon, then the partial weight ( )i kl

w q′  

of sample li will be computed by the Equation 6 as MBL (or A-MBL). 
(2) If the unknown node receives the observations from its neighbors, then the partial weight 
( )i kl

w q′  of the sample li corresponding to the neighbor qk is computed using the weights ( )j
kw q of the 

sample j
kq  of the neighbor qk as follows: 

1

( ) ( ), ( , )i

N
j i j

k k kl
j

w q w q where d l q r
=

′ = ≤∑      (16) 

To summarize the inter-dependencies of the weights amongst the relevant node, we visualize the 
observations in Figure 2. In Figure 2, the black dot denotes the current unknown node and the red dots 
denote the samples of it. The green dots denote the neighbor of the unknown node and the blue dots 
denote the samples of neighbors. The dotted lines between the red dot and green dot denote the partial 
weight ( )i kl

w q′  of sample li. The dash dot line between the red dot and the blue dot denote the weights 

( )j
kw q of the sample j

kq  of the neighbor qk. 
The sample li is kept if ( )il

w p is greater than a threshold value β. 

Figure 2. The weight of neighbors. 

il
p

j
kq

kq
j

kq
kq

( )j
kw q

( )i kl
w q′( )il

w p

 
 



Sensors 2009, 9            
 

 

6160

An important question is that the right conditions should be met in order to combine with the 
observation from neighbors is to improve accuracy and obtain faster convergence of the algorithms. 

Nagpal et al. [22] have claimed that πr/4nd is a lower bound for the error in any range-free 
localization algorithm in static sensor networks, where nd is the node density, the average number of 
nodes in one hop transmission range, i.e., nd is the average number of neighbors to an unknown node. 
In our scenarios, using a single mobile beacon that knows its position is broadly equivalent to using 
many static beacons each broadcasting once. We may consider each observation from mobile beacon 
to an unknown node as one constraint (bounded) from the static beacon in the radio range of the 
unknown node. Thus, the number of observations to the unknown node in mobile beacon-assisted 
approach is equal to the number of constraints from static neighbor beacons of the unknown node, i.e., 
the number of observations in mobile beacon-assisted approach is equal the node density, nd. As a 
result, if the number of observations from the mobile beacon to the unknown node is larger than nd, the 
neighbors’ observation will not improve the precision of the unknown nodes. 
 
4.3. Self-Adapting Mechanism 
 

How to determine the number of samples and the value of parameter α in the dynamic model to 
achieve more flexibility is the key question to A-MBL. On the one hand, likelihood-based  
adaptation [23], KLD-Sampling adaptation [24], and coefficient of variation [3] do not judge the 
accuracy of MBL to reach the stable phase. On the other hand, the values in such predefined 
adjustment tables in A-MBL are related to the localization time, i.e., different scale deployment of the 
sensor nodes requires different predefined adjustment tables. Obtaining these tables is hard work. The 
intuitive answer to those questions is that MBL needs a self-adapting mechanism to achieve more 
flexibility, and the corresponding approach is called Self-Adapting MBL (SA-MBL). 

The following major factors should be considered to satisfy the self-adapting mechanism: 
(1) The approach should judge the localization to reach the stable phase as the effect of pre-defined 

table in A-MBL. 
(2) The approach should be unrelated to the scale deployment of sensor nodes, the localization time, 

and the speed of the beacon, etc., but just related to the unknown nodes themselves. 
In other words, in order to better judge the stable phase of localization, we need some stable 

attribute obtained from the unknown nodes themselves. 
We know that the locations of samples are in continuous convergence as new observations are 

incorporated in the initialization phase. When the accuracy of MBL reaches the stable phase, the 
distribution of samples will also reach a stable phase. To this end, we hope to find the statistical 
distribution of samples which can be closer to above-mentioned objectives. 

We suppose that the samples of an unknown node are sampling from a SUD when we adopt the 
SUD as the dynamic model. Then, we want to obtain the parameters in the SUD of the samples when 
the localization reaches the stable phase. We adopt the Method of Moments Estimators (MME) to 
estimate the parameter of the SUD.  

To a single unknown node, the horizontal X and vertical Y location of the i-th sample have two 
unknown parameters, respectively. Let the horizontal location X of the i-th sample have two unknown 
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parameters [a, b]. X1, X2,…,XN are horizontal locations of samples l1, l2,…,lN of size N, respectively. 
Then, the MME for a and b is as follows:  

2

1

2

1

3 ( )

3 ( )

N
i

i

N
i

i

a X X X
N

b X X X
N

=

=

= − −

= + −

∑

∑
      (17) 

 
where: 

1

N
i

i
X X

=

=∑        (18) 

We adopt Equation 19 to judge the accuracy of MBL to reach the stable phase, where AME denotes 
Average of Moments Estimators. When AME reaches the stable phase, the number of samples and the 
parameters in the dynamic model will be adjusted. Once the parameters in the dynamic model have 
been adjusted, the precision will be improved and AME will reach a new stable phase. The above 
stability, adjustment and re-stability process does not stop, until the localization obtains the desired 
positioning accuracy: 

1

1 ( )
M

i i
i

AME b a
M =

= −∑        (19) 

where M is the number of unknown nodes, ai and bi denote the parameters of the uniform distribution 
of the i-th unknown node. 

From an implementation perspective, Equation 17 will be computed in the unknown node at a 
certain time interval. All unknown nodes do not require send the result of (b – a) to the beacon at one 
time, but each unknown node sends the value when it contacts the beacon. Equation 19 will be 
computed in the beacon and the beacon only maintains (b – a) of the recently M contacted  
unknown nodes. 
 
5. Evaluation 
 

The key metric [16] for evaluating a localization algorithm is the accuracy of the location estimates 
or localization error. This is computed as follows:  

1

1 M

i i
i

Error e R
M =

= −∑       (20) 

2
dn SM
rπ

=        (21) 

where M is the number of unknown nodes and can be obtained from the Equation 21, Ri denotes the 
real location of the i-th unknown node, ei denotes the location estimate of the i-th unknown node, and 
||ei - Ri|| denotes the distance between locations ei and Ri. The errors shown in the simulation results are 
in terms of the radio range, i.e., the errors shown are computed by dividing the error in Equation 20 by 
the radio range of sensor node. Most parameter settings for our simulations are those used  
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in [16,18]. Our results were obtained using sensor nodes randomly distributed in a 500 units × 500 
units square field, i.e., S = 500 × 500. In our experiments, we set ideal radio range r = 100, the node 
density nd = 10, the number of samples for an unknown node N = 50, the parameter α = 0.1r in the 
SUD or CUD, the parameter σ = 0.02r in the ND, and the maximum speed of beacon vmax = 1.0r. We 
adopt Walking GPS architecture [12] for the beacon and unknown nodes which significantly reduce 
the size of the code and data memory used on the sensor node. Other simulation parameters of the 
unknown node are based on the MicaZ sensor node. The beacon’s movement is implemented using 
random waypoint mobility model. 
 
5.1. Dynamic Model 
 

In this section, we will evaluate the accuracy of different probability densities adopted as the 
dynamic model in the prediction stage for MBL. The graph in Figure 3 shows the comparison of 
accuracy for SUD_MBL, CUD_MBL, and ND_MBL, where SUD_MBL, CUD_MBL, and ND_MBL 
denote different dynamic models SUD, CUD, and ND as shown in Equation 8, 10, and 12 adopted by 
MBL respectively in the prediction stage.  

As shown in Figure 3, on the one hand, for SUD_MBL and CUD_MBL, the curvatures of the two 
curves are always very close to each other, i.e., different dynamic models SUD and CUD will not 
affect the accuracy of MBL. On the other hand, in the initialization phase, the convergence of 
SUD_MBL and CUD_MBL is much faster than ND_MBL, but, in the stable phase, the accuracy of 
ND_MBL is a little bit higher than in SUD_MBL and CUD_MBL. In order to compare the accuracy of 
those different dynamic models for MBL from the quantitative point of view, we give Table 2 to show 
the accuracy of MBL under three different dynamic models. These experimental results are the 
average of 20 executions with different pseudorandom number generator seeds. In Table 2, ND_MBL 
shows nearly 20%-25% better accuracy when compared to the SUD_MBL and CUD_MBL. Shown in 
Section 3.1.3, we have known that SUD_MBL is more efficient than ND_MBL. Taking into account 
both the efficiency and accuracy of localization, which the dynamic model should we choose? 

We give another result as shown in Figure 4. Compared to the SUD_A-MBL which denotes A-MBL 
adopting SUD as the dynamic model, ND_MBL has no advantage due to the invariable parameter in 
the dynamic model, i.e., the accuracy of MBL with adapting mechanism are higher than ND_MBL 
with different dynamic model to improve accuracy. That is to say, SUD_A-MBL achieves higher 
accuracy and does not lose efficiency. Of course, if ND_MBL also adopts an adapting mechanism, 
then ND_MBL can achieve higher accuracy. We show the accuracy comparison results between 
SUD_A-MBL and ND_A-MBL in Figure 5. Though SUD_A-MBL and ND_A-MBL will reach almost 
the same accuracy at the end, ND_A-MBL needs more time to do so than SUD_A-MBL, i.e., the 
efficiency of ND_A-MBL is lower because it spends longer time achieving the stable phase of 
localization process. 
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Figure 3. Accuracy comparison of different dynamic model. 
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Figure 4. Accuracy comparison between SUD_A-MBL and ND_MBL. 
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Figure 5. Accuracy comparison between SUD_A-MBL and ND_A-MBL. 
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Table 2. The accuracy of different dynamic model. 

 Name SUN_MBL CUD_MBL ND_MBL 
Error 0.097430 0.090572 0.073601 

 
5.2. Neighbors’ Observation 
 

The threshold value β which mentioned in Section 3.2 depends on the number of neighbors of an 
unknown node. In [16], MSL uses β = (0.1)neighbor, where neighbor denotes the number of neighbors of 
an unknown node. In our experiments, we set neighbor = nd, i.e., (0.1) dnβ = . To reduce computational 
complexity, the unknown node will use the observation from the neighbors in some interval. 

The graph in Figure 6 shows the comparison results of accuracy for SUD_MBL and 
NEIGHBOR_SUD_MBL when the time interval is 200, where NEIGHBOR_SUD_MBL denotes 
SUD_MBL relying on observation not only from the beacon, but also from its neighbors in the update 
stage. As shown in Figure 6, SUD_MBL and NEIGHBOR_SUD_MBL, these two curvature of the 
curves are always very close to each other, i.e., combined with the observation from neighbors will not 
improve the accuracy of MBL and have not faster convergence under these conditions.  

The graph in Figure 7 shows the comparison results of accuracy for SUD_MBL and 
NEIGHBOR_SUD_MBL when the time interval is 20. When the time is 20, the accuracy of 
NEIGHBOR_SUD_MBL is suddenly improved, just because of the impact of neighbor’s observation. 
After the time is larger than 106, the accuracy will not be improved by a neighbor’s observation. 
Obviously, NEIGHBOR_SUD_MBL is more accurate than SUD_MBL from 20 to 106. 

Under the same conditions, we show the result of SUD_MBL concerning the number of 
observations from the mobile beacon to the unknown node. Table 3 shows the average number of 
observations of unknown nodes from the beacon. As shown the second column in Table 3, when the 
average number of observations (Number = 10) is equal to nd (nd = 10), SUD_MBL is still in the 
stabilization process (the time is 106), i.e., the samples of unknown node cannot represent the location 
of unknown node at this time. With the increase of the number of observations from the beacon, this 
number will far exceed the nd, i.e., the neighbors’ observation will not improve the accuracy of 
SUD_MBL. 
 

Figure 6. Comparison of neighbor’s impact when (Time ≥200) and (Time mod 200 = 0). 
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Figure 7. Comparison of neighbor’s impact when (Time ≥ 20) and (Time mod 20 = 0). 
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Table 3. The average number of observations from beacon. 

Time 106 208 500 1000 2000 3000 
Number 10 20 45 91 176 260 

 
5.3. SA-MBL 
 

Figure 8 shows the coverage of AME for three different α of SUD_MBL. Whether the parameter α 
is 0.1r, 0.05r or 0.01r, as the time goes on, the AME of the unknown node will achieve stable phase 
eventually. To catch the AME of the stable phase under 10 different parameters α for later use, we give 
the Table 4 to show the results. These experimental results are the average of 20 executions with 
different pseudorandom number generator seeds. Based on this table, SA-MBL will adjust the value α 
according to the corresponding AME. In general, when this condition  
∣AMEc - AMEi∣＜ ε is satisfied, where AMEc denotes the current AME maintained in the beacon 
and AMEi represents some value listed in the i-th row of the Table 4. Then, the current 
parameter cα maintained in the unknown node will be set as αc = αi+1. For example, when current value 

of AME in the beacon is nearly 34, the parameter α will be adjusted to 0.07r. Similarly, the number of 
samples N will be adjusted accordingly based on Table 4. 

The graph in Figure 9 shows the comparison of accuracy between A-MBL and SA-MBL. As shown 
in this figre, for A_MBL and SA_MBL, the curvature of the two curves are always very close to each 
other, i.e., MBL with Self-Adapting mechanism will get almost the same performance with A-MBL 
for which obtaining predefined adjustment tables is difficult. The graph in Figure 10 shows the 
efficiency and accuracy comparison for SA-MBL under the same conditions except for the deployment 
region. In order to obtain close precision, the largest the deployment region (S = 700 × 700) will spend 
the longest convergence time among these experiments.  
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Table 4. Parameters for ten different values of AME. 

No. α  N AME 
1 0.10r 50 38.749791 
2 0.09r 50 36.766873 
3 0.08r 40 34.275935 
4 0.07r 40 30.948355 
5 0.06r 30 28.403102 
6 0.05r 30 24.881642 
7 0.04r 20 21.765849 
8 0.03r 20 18.161460 
9 0.02r 10 13.720697 

10 0.01r 10 08.323300 
 

Figure 8. The coverage of AME in three different α. 
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Figure 9. Accuracy comparison between A-MBL and SA_MBL. 
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Figure 10. Location convergence under different deployment regions. 
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Figure 11. Unknown node density. 
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Figure 12. Error bar of SA-MBL. 
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In another experiment we vary the unknown node density from 2 to 20. We set the time of beacon 
movement as 3,000 to achieve the stable phase. As shown in Figure 11, the unknown node density will 
not affect the accuracy of SA-MBL. That is to say, the adapting mechanism in SA-MBL can be 
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unrelated to the deployment region, the location time and node density, i.e., the approach is actually 
self-adapting. Finally, the localization error bar in Figure 11 shows that the SA-MBL is stable. 
 
6. Conclusions 
 

In this paper, we compare the efficiency of various probability distributions in the dynamic model, 
and evaluate the accuracy of these approaches adopted as the dynamic model. We suggest that SUD 
should be adopted as the dynamic model due to achieve higher accuracy and not lose efficiency. We 
also conclude that the neighbors’ observation do not achieve more accuracy of MBL than expected. 
Finally, we propose SA-MBL which can judge the accuracy of MBL to reach the stable phase as the 
effect of predefined adjustment tables in A-MBL and be unrelated to the scale deployment of sensor 
nodes, localization time, and the speed of the beacon, etc., but just related to the unknown nodes 
themselves. As a result, SA-MBL can achieve more flexibility and result in almost the same 
performance as A-MBL. In future work, a number of practical factors will be considered, and the 
practical factors may affect efficiency, accuracy, and flexibility of our localization approaches. 
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